(19)
(11)EP 3 112 907 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16176251.3

(22)Date of filing:  24.06.2016
(51)Int. Cl.: 
G01V 1/36  (2006.01)
G01V 1/38  (2006.01)

(54)

SEPARATION OF UP-GOING AND DOWN-GOING WAVEFIELDS INCLUDING THE DIRECT ARRIVAL

TRENNUNG VON AUFSTEIGENDEN UND ABSTEIGENDEN WELLENFELDERN EINSCHLIESSLICH DER DIREKTEN ANKUNFT

SÉPARATION DE CHAMPS D'ONDES DESCENDANT ET MONTANT COMPRENANT L'ARRIVÉE DIRECTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.06.2015 US 201562185793 P
30.03.2016 US 201615084748

(43)Date of publication of application:
04.01.2017 Bulletin 2017/01

(73)Proprietor: PGS Geophysical AS
0216 Oslo (NO)

(72)Inventors:
  • HEGNA, Stian
    Houston TX 77079 (US)
  • KLUVER, Tilman
    Houston TX 77079 (NO)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
US-A1- 2015 003 196
  
  • MARIUSZ MAJDAÑSKI ET AL: "Attenuation of free-surface multiples by up/down deconvolution for marine towed-streamer data", GEOPHYSICS, SOCIETY OF EXPLORATION GEOPHYSICISTS, US, vol. 76, no. 6, 1 November 2011 (2011-11-01), pages V129-V138, XP001573605, ISSN: 0016-8033, DOI: 10.1190/GEO2010-0337.1 [retrieved on 2012-01-10]
  • AMUNDSEN L ET AL: "ATTENUATION OF FREE-SURFACE MULTIPLES FROM MARINE PRESSURE AND PRESSURE GRADIENT", EAGE CONFERENCE AND EXHIBITION, XX, XX, 2 June 2003 (2003-06-02), pages 1-04, XP008051988,
  • AMUNDSEN L: "WAVENUMBER-BASED FILTERING OF MARINE POINT-SOURCE DATA", GEOPHYSICS, SOCIETY OF EXPLORATION GEOPHYSICISTS, US, vol. 58, no. 9, 1 September 1993 (1993-09-01), pages 1335-1348, XP000412865, ISSN: 0016-8033, DOI: 10.1190/1.1443516
  • David Carlson ET AL: "Increased resolution and penetration from a towed dual-sensor streamer", First Break, 1 December 2007 (2007-12-01), XP055314851, Retrieved from the Internet: URL:https://www.pgs.com/globalassets/techn ical-library/tech-lib-pdfs-v2/fb_carlson_e tal_dec2007_increasedresolutionandpenetrat ion.pdf [retrieved on 2016-10-28]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

CROSS-REFERENCE TO RELATED APPLICATIONS



[0001] This application claims the benefit of U.S. Provisional Application Serial No. 62/185,793 filed June 29, 2015 and titled "Separation of Up-Going and Down-Going Wavefields Including the Direct Arrival".

BACKGROUND



[0002] In seismic exploration of formations below bodies of water, such as a lake or ocean, in some cases an acoustic source is used to create the interrogating energy. In particular, the acoustic source is suspended in the water at a known depth and the acoustic source is activated at known times. The acoustic wavefield, comprising pressure wavefield and fluid particle velocity wavefield components, propagates through the water, into the formation below the sea floor, and a portion of the acoustic energy therein is reflected and propagates back for detection by sensors deployed in the water body or on the sea floor beneath the water body. (The pressure and fluid particle velocity wavefield components may simply be referred to as pressure and fluid particle velocity wavefields, respectively.) Based on the known activation time of the acoustic source, the known velocity of the acoustic signal in the water, and a velocity model of the formation layers below the sea floor, the depth of the various acoustic reflectors can be determined with relatively good accuracy.

[0003] The acoustic energy impinging on the sensors may include both an upward propagating wavefield from reflections occurring beneath the sensors and a downward propagating wavefield from reflections at the surface of the water body. The separation of the wavefields may include estimating fluid particle velocities from pressure measurements in at least a portion of the spectrum of the wavefields. However, in addition to the reflected wavefields, the sensors experience an acoustic wavefield propagating directly from the source (the "direct arrival"). An issue in separating the up-going and down-going wavefields is the proper correction of the direct arrival when estimating fluid particle velocities from pressure measurements.
Madjanski et al., "Attenuation of free-surface multiples by up-down deconvolution for marine towed streamer data" Geophysics vol. 76, p. V129-V138, 2011 ("Madjanski") is directed to the attenuation of multiple reflections (multiples) from the free surface in a water layer. Madjanski teaches the prediction of direct arrivals using near-field hydrophone measurements.

[0004] Amundsen et al., "Attenuation of free-surface multiples from marine pressure and pressure-gradient", EAGE 65th Conference and Exhibition, P192, 2003 ("Amundsen 2003") is directed to the attenuation of multiple reflections (multiples) from the free surface in a water layer. Amundsen 2003 teaches a process of muting the direct wave and estimating the vertical component of particle velocity by estimating the vertical derivative of the pressure field.

BRIEF DESCRIPTION OF THE DRAWINGS



[0005] For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:

Figure 1 shows an overhead view of a marine survey in accordance with at least some embodiments;

Figure 2 shows a side elevation view of marine survey in accordance with at least some embodiments;

Figure 2A shows additional aspects of the view of a marine survey in Figure 2;

Figure 3 shows a side elevation view of marine survey in accordance with at least some embodiments;

Figure 4 shows a side elevation view of marine survey in accordance with at least some embodiments;

Figure 5 shows a side elevation view of marine survey in accordance with at least some embodiments;

Figure 6, comprising sheets 6A and 6B, shows a flowchart of a method in accordance with at least some embodiments; and

Figure 7 shows a block diagram of a computer system in accordance with at least some embodiments.


NOTATION AND NOMENCLATURE



[0006] Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different companies may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus should be interpreted to mean "including, but not limited to...." Also, the term "couple" or "couples" is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.

[0007] "Cable" shall mean a flexible, load carrying member that also comprises electrical conductors and/or optical conductors for carrying electrical power and/or signals between components.

[0008] "Rope" shall mean a flexible, axial load carrying member that does not include electrical and/or optical conductors. Such a rope may be made from fiber, steel, other high strength material, chain, or combinations of such materials.

[0009] "Line" shall mean either a rope or a cable.

[0010] "Notional" source signature" shall mean the time-dependent wavefield emitted by a single acoustic source. The notional source signature may be represented in a time domain or a frequency domain.

[0011] "Co-located" in the context of two or more sensors shall mean located within 0.1 wavelength of a seismic acoustic signal proximate to the sensors.

[0012] "Corner frequency" shall mean, with respect to a filter, the frequency at which an output of the filter falls below a nominal passband output value by preselected amount. For example, if the predetermined amount is 3 dB, the corner frequency may be referred to as a 3 dB corner.

[0013] "Vertical" shall mean in the context of a direction, parallel to the direction of Earth's gravity.

DETAILED DESCRIPTION



[0014] The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure or the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment. The invention is defined by the appended claims.

[0015] Figure 1 shows an overhead view of a marine survey system 100 in accordance with at least some embodiments. In particular, Figure 1 shows a survey or tow vessel 102 having onboard equipment 104, such as navigation, energy source control, and data recording and processing equipment. In at least some embodiments, data processing equipment included in onboard equipment 104 may be configured to perform some or all of the processes described further below. Vessel 102 is configured to tow one or more sensor streamers 106A-F through a water body 131. While Figure 1 illustratively shows six sensor streamers 106, any number of sensor streamers 106 may be used. A horizontal coordinate system may be defined by the array 107 of sensor streamers wherein the direction parallel to the sensor streamers defines an inline direction, labeled x, and a direction orthogonal thereto, or cross-line direction, labeled y.

[0016] In the example system, the sensor streamers 106 are coupled to towing equipment that maintains the sensor streamers 106 at selected depth and lateral positions with respect to each other and with respect to the survey vessel 102. The towing equipment may comprise two paravane tow lines 108A and 108B each coupled to the vessel 102 by way of winches 110A and 110B, respectively. The winches enable changing the deployed length of each paravane tow line 108. The second end of paravane tow line 108A is coupled to a paravane 112, and the second end of paravane tow line 108B is coupled to paravane 114. In each case, the tow lines 108A and 108B couple to their respective paravanes through respective sets of lines called a "bridle". The paravanes 112 and 114 are each configured to provide a lateral force component to the various elements of the survey system when the paravanes are towed in the water. The combined lateral forces of the paravanes 112 and 114 separate the paravanes from each other until the paravanes put one or more spreader lines 120, coupled between the paravanes 112 and 114, into tension. The paravanes 112 and 114 either couple directly to the spreader line 120 or, as illustrated, couple to the spreader line by way of spur lines 122A and 122B.

[0017] As illustrated, the sensor streamers 106 are each coupled, at the ends nearest the vessel 102 (i.e., the proximal ends), to a respective lead-in cable termination 124A-F. The lead-in cable terminations 124 are coupled to or are associated with the spreader lines 120 so as to control the lateral positions of the streamers 106 with respect to each other and with respect to the vessel 102. Electrical and/or optical connections between the appropriate components in the onboard equipment 104 and the sensors 116 in the streamers 106 may be made using inner lead-in cables 126A-F. Much like the tow lines 108 associated with respective winches 110, each of the lead-in cables 126 may be deployed by a respective winch or similar spooling device such that the deployed length of each lead-in cable 126 can be changed. The illustrated towing equipment may be used alone or in conjunction with other lateral position and depth control equipment. Other example systems may have more complex or simpler towing arrangements.

[0018] Each sensor streamer 106 may comprise an elongated outer jacket defining an interior volume. The elongated outer jacket defines a central axis along the long dimension of the sensor streamer. In the example situation of Figure 1, the central axis of each sensor streamer is parallel to the direction of travel of the tow vessel 102, the direction of travel indicated by arrow 117. The sensors 116 may reside within the interior volume or on the elongated outer jacket, and the sensors may be longitudinally spaced along each sensor streamer 106. In some embodiments, the sensors 116 are geophones which are sensitive to fluid particle velocity. The geophones may be suspended in a gimbal arrangement such that each geophone is most sensitive to a vertical component of fluid particle velocity (i.e., velocity aligned with the force of gravity). In other embodiments, sensors 116 may be geophones sensitive to three components of fluid particle velocity. In still other embodiments, the sensors 116 are hydrophones which are sensitive to acoustic pressure. In yet still other cases, the sensors 116 may include one or any combination of the following: geophones; hydrophones, co-located geophones and hydrophones, accelerometers, solid-state motion sensors (MEMS), orientation sensors, and electromagnetic sensors. Sensor streamers 106 may each have any length. In an example system the sensor streamers may be between 5 kilometers (km) and 15 km. Although it may be possible to have the onboard equipment 104 record signals from each sensor 116 individually, in some cases the sensors associated with a sensor streamer are logically divided into arrays for purposes of recording received signals, such as sensor arrays 180, 182, and 184 associated with sensor streamer 106F

[0019] Still referring to Figure 1, in some situations the tow vessel 102, in addition to towing the sensor streamers 106, may also tow an acoustic source 190. The acoustic source 190 may take any suitable form, such as an air gun-type system, or a marine vibrator, for example. In other cases, however, a separate vessel may tow the acoustic source 190 such that certain predetermined relationships between the physical location of the sensor streamers 106, the underground hydrocarbon bearing formation, and the acoustic source 190 may be achieved. Further, in at least some other embodiments, two or more acoustic sources may be deployed in a marine geophysical survey.

[0020] Figure 2 and Figures 3-5 described below, further illustrate the principles of the disclosed embodiments. In particular, Figures 2-5 show aspects of acoustic wavefields emitted into water body 131 by acoustic source 190. It would be appreciated by those skilled in the art with the benefit of this disclosure that while depicted in separate figures for ease of illustration, these aspects are all associated with any single firing of the acoustic source. It would be further appreciated that, at the position of any particular sensor, the sensor responds to the superposition of the wavefields impinging thereon as described separately in conjunction with Figures 2-5.

[0021] Turning first to Figure 2, a side elevation view of a marine survey system 100 in accordance with some at least some embodiments is shown. Figure 2 shows a streamer 106 being towed in a direction indicated by arrow 117 by tow vessel 102. In some embodiments, the forward portion of the sensor streamer may be associated with a lead buoy 202, where lead buoy 202 may help maintain the depth of the sensor streamer 106 and/or associated portion of the spreader line; however, in other cases the lead buoy 202 may be omitted, or other buoys (e.g., buoys associated with the spreader line 120 (not shown in Figure 2)) may perform similar functions. Figure 2 also illustrates a tail buoy 204. Tail buoy 204 may couple to the sensor streamer 106 by any suitable mechanism, such as line 205, sometimes referred as a "dead section". Tail buoy 204 may at least partially support the sensor streamer 106 at the selected depth z below the surface, and thus may help maintain the depth of the streamer 106; however, in other cases the tail buoy 204 may be omitted. Sensors 116 within streamer 106 detect seismic acoustic signals generated by acoustic source 190 under the control of systems within onboard equipment 104 including acoustic wavefields reflected from subsurface formations, shown in Figure 2, by way of example, as seafloor 206. It would be appreciated by those skilled in the art, with the benefit of the disclosure, that other reflections may be produced by geologic formations disposed beneath seafloor 206, including hydrocarbon deposits contained therein but not shown in Figure 2 for ease of illustration. It would be further appreciated by those skilled in the art that the principles of the embodiments described herein are the same regardless of the source of the subsurface reflections.

[0022] Acoustic source 190 emits an acoustic wavefield into water body 131. The acoustic wavefield propagates within the water body, and a portion of the wavefield propagates toward seafloor 206, as depicted by ray paths 208 and 210. Ray paths shown in Figure 2, and Figures 3-5 below, depict aspects of the respective propagation paths through the water body of the various wavefields described herein. A reflected wavefield, depicted by ray paths 212 and 214 is returned, in this example, by seafloor 206 toward sensor streamer 106 and water body surface 216. The reflected wavefield is incident on the sensors in sensor streamer 106, (e.g. sensors 116A, B) which detect the reflected acoustic wavefield. As described above, sensors 116 include sensors responsive to the pressure wavefield in the reflected acoustic wavefield and also sensors responsive to the fluid particle velocity wavefield therein. The reflected wavefield further propagates toward water body surface 216 as depicted by ray paths 218 and 220 (shown dashed in Figure 2). Upon reaching water body surface 216, the acoustic wavefield may undergo a further reflection, the boundary between water body surface 216 and the air above the water body representing a discontinuity in acoustic impedance. A downward propagating wavefield, depicted by ray paths 222 and 224 (shown dashed in Figure 2) then may impinge on sensors 116 (e.g. sensors 116B, 116C). This surface-reflected downward propagating wavefield may be referred to as a "ghost", or more particularly, a "receiver ghost". For simplicity of illustration, only two source generated ray paths and two ghost ray paths are depicted in Figure 2, while an actual seismic source wave would define many ray paths originating at the acoustic source 190, reflected off the seafloor and subsurface structures, and reflected as ghost paths off the water body surface.

[0023] The upward propagating acoustic pressure wavefield and the surface-reflected downward propagating, or "ghost" acoustic pressure wavefield linearly superposed at the positions of sensors 116 may destructively interfere depending on the wavefield frequency, the depth, z, of the sensor streamer, and the emergence angle of the incoming wave-front. Thus, the destructive interference in the pressure signals may, for example, create a so-called ghost notch in the spectrum of the sensor signal.

[0024] By suitably combining signals from co-located pressure and particle motion sensors, for example by data processing systems within onboard equipment 104, the downward propagating ghost wavefield and the upward propagating wavefield reflected from the subsurface formations may be separated. For example, pressure signals from hydrophones and fluid particle velocity signals from co-located geophones may be combined to effect a separation of the wavefields. In at least some exemplary embodiments, the upward propagating or up-going and downward propagating or down-going pressure wavefields, Pu and Pd respectively, may be found from measured pressure and vertical fluid particle velocity wavefields in accordance with Equations (1) and (2):

and



[0025] In Equations (1) and (2) P represents the measured pressure wavefield by a sensor 116 comprising a hydrophone, say, and represented in the frequency-wavenumber domain. Vz represents the vertical component of fluid particle velocity measured by a co-located geophone, say, also represented in the frequency-wavenumber domain. The frequency of the acoustic wavefield is represented by ω, the density of the fluid comprising water body 131, sea water, say, by ρ and the vertical wavenumber by kz. The vertical wavenumber kz, may be determined from the frequency, and horizontal wavenumbers in accordance with Equation (3):

where c represents the speed of sound in the fluid comprising the water body, e.g. salt water, and kx and ky represent the horizontal wavenumbers, which may typically be in the inline (x) and cross-line (y) directions. In at least some embodiments, the fluid particle velocity measurements may be subject to low frequency noise. Thus, as described in the commonly-owned U.S. Patent Application Serial No. 10/792,510 (U.S. Publication No. 2005/0195686), titled System for Combining Signals of Pressure Sensors and Particle Motion Sensors in Marine Seismic Streamers," issued as U.S. Patent No. 7,359,283, the vertical component of fluid particle velocity may be estimated from the pressure measurement as set forth in Equation 4:



[0026] In Equation (4), V'z represents the estimated vertical component of fluid particle velocity based on the measured pressure, P, r represents the acoustic reflection coefficient at the surface of the water body, and z represents the depth of the sensor. The remaining symbols in Equation (4) are as previously described. The low frequency part of the measured vertical component of the fluid particle velocity may be replaced with the low frequency part of the estimated vertical velocity component. In at least some embodiments, the measured and estimated fluid particle velocities may be combined in the frequency domain via the application of high and low pass filters respectively:

where FL and FH represent the frequency-dependent weight functions of the low and high pass filters. The weight functions may be normalized such that |FH| + |FL | = 1. In at least some embodiments, the low-high pass corner frequency of the filters may be set so that it is below the first ghost notch, for example, at a zero degree, relative to the vertical, emergent angle at a frequency below c/2z. In at least some other embodiments, FL and FH may be frequency and/or wavenumber dependent weight functions that are derived based on the signal to noise ratio. The value of

from Equation (5) may be used in the wavefield separation in Equations (1) and (2).

[0027] Additional aspects of the acoustic wavefields emitted by an acoustic source will now be described in conjunction with Figures 2A and 3. Consider first Figure 2A, showing a side elevation view of a marine survey 200 as in Figure 2. In Figure 2, downward-propagating acoustic wavefields emitted by acoustic source 190 were considered. However acoustic source 190 emits an acoustic wavefield which propagates throughout water body 131. A portion of the wavefield propagates upward toward the surface 216 of the water body. Such an upward propagating wavefield is represented by ray paths 226A and 228A (shown dashed) in Figure 2A. As previously described, the upward propagating wavefield reflects from the water body surface 216 and the reflected wavefield propagates downward toward seafloor 206. In Figure 2A, the reflected wavefield is represented by ray paths 226B and 228B (shown dashed). Similar to ray paths 208, 210, a formation-reflected wavefield, depicted by ray paths 230 and 232 is returned, in this example, by seafloor 206 toward sensor streamer 106. The reflected wavefield is incident on the sensors in sensor streamer 106, (e.g. sensors 116A, B). The surface-reflected wavefield represented by ray paths 226B and 228B may be referred to a source ghost.

[0028] Further, a portion of the wavefield propagates, directly or via a sea surface reflection, from acoustic source 190 to sensors 116. These so-called direct arrivals are described in conjunction with Figure 3. A portion of the acoustic wavefield propagates directly from the acoustic source to the sensors. For example, the three such direct arrivals represented by ray paths 302, 304 and 306 are shown incident on sensors 116D, 116E and 116F, respectively. Further, portions of the acoustic wavefield emitted into water body 131 propagate upward from acoustic source 190 toward the surface as illustrated by ray paths 303A, 305A and 307A (shown dashed in Figure 3). On reflection by the surface of the water body, the reflected wavefield, illustrated by ray paths 303B, 305B and 307B, respectively (also shown dashed in Figure 3), may propagate downward as direct arrivals and impinge on sensor streamer 106.

[0029] As described above, at the position of a sensor, the pressure wavefield measured thereby comprises the superposition of all of the wavefields, including the downward propagating source wavefields reflected from the subsurface formations, the ghost wavefields and the direct arrivals, incident on sensor streamer 106. Thus, when estimating the vertical fluid particle velocity from a pressure measurement, as described in conjunction with Equation (4), the effect of the receiver ghost pressure wavefield may be imposed on the estimate of the direct arrival fluid particle velocity. However, the direct arrival only has one ghost related with the depth of the source when the acoustic source is towed shallower than the sensor streamer, and thus, the direct arrival may not be correctly estimated. As a consequence, there may also be errors in the up-going and down-going wavefields after wavefield separation.

[0030] To address the foregoing, in accordance with the principles of the embodiments disclosed herein, the direct arrivals may be predicted by calculation and, to correct the measurement of the pressure and fluid particle velocity wavefields, be subtracted from the measured pressure and fluid particle motion data, respectively. The predicted direct arrivals may then be added back to the down-going wavefields following wavefield separation. The predicted direct arrivals may be calculated in accordance with Equation (6):

where P'n(ω) represents, in the frequency domain, a pressure signal at the frequency ω for the direct arrival at a sensor position, n. Sp(ω) represents the frequency-dependent response of a pressure sensor (e.g. hydrophone). Although a single acoustic source 190 is shown deployed in marine survey system 100, other embodiments may include two or more acoustic sources, as previously described. To account for such embodiments, the pressure signal in equation (6) includes a sum over a number, m, of sources, indexed by the symbol l. Nl(ω) represents the notional source signature as a function of frequency of the lth acoustic source. The notional source signature as a function of frequency may be, e.g. the Fourier transform of the time dependent notional source signature. In Equation (6) r represents the reflectivity of the sea surfrace; c represents the acoustic velocity in the medium comprising the water body; Rln represents the distance along the ray path from the lth acoustic source to the nth pressure sensor; and R'ln represents the distance along a ray path from the lth source to the water body surface and from the point of intersection of the ray path with the water body surface to the nth pressure sensor. For example, with respect to ray paths 307A and 307B, the distance R'ln may comprise the distance from source 190 to point 316 plus the distance from point 316 to sensor 116A. The distances may be calculated using the Pythagorean formula for calculating Euclidean distances. For example, if the position of the lth acoustic source in Cartesian coordinates is



and the position of the nth pressure sensor in the same coordinate system is

then

If several sensors are connected in sensor arrays, e.g. sensor arrays 180-184, Figure 1, the calculations may be repeated for each individual sensor position on the array and summed over the sensors comprising the array, as may be used with serial-connected sensor arrays, or stacked, i.e. summed and normalized to the number of sensors comprising the sensor array, as may be used with parallel-connected sensor arrays. The vertical component of fluid particle velocity of the predicted direct arrivals may be likewise calculated using Equation (7):

where V'zn(ω) represents the calculated vertical component of the fluid particle velocity of the predicted direct arrival wavefield, at the position of the nth particle velocity sensor as a function of angular frequency, θln is the angle relative to the vertical of the incoming ray path from the lth acoustic source to the nth particle velocity sensor and θln is the angle relative to the vertical of the incoming ray path reflected from the water body surface. Figure 3 shows exemplary angles θln and θln for ray paths 306 and 307B, respectively, incident on sensor 116F. SVz represents the frequency-dependent response of the vertical fluid particle velocity sensor. Other symbols in Equation (7) are as in Equation (6). Similar expressions may be used to calculate the other components, e.g. x- and y- components of the predicted direct arrival fluid particle velocity.

[0031] The calculations as described in conjunction with Equations (6) and (7) include several parameters as inputs thereto. In some circumstances, some of these parameters, for example the relative positions of the sensors and acoustic sources, or the propagation velocity of sound in the water body may not be accurately known. In such embodiments, these parameters may be derived by finding the relative positions and velocity that minimizes an objective function based on a difference between the measured and predicted direct arrivals. Stated otherwise, the direct arrivals measured at the sensor streamers and the acoustic wavefields emitted by the acoustic sources may be used as an acoustic network to solve for the relative positions. Further, the reflectivity of the surface of the water body and properties of the notional source signatures may also be derived thereby. Exemplary objective functions to be minimized are the norm of the difference between the measured and predicted direct arrival pressure and fluid particle velocity wavefields, Equation (8):

where the symbols are as defined in Equations (6) and (7), the summation is, as before, over the n sensors, and for a quantity, W, which may be complex-valued, as set forth above, ∥W∥ is the norm of W, ∥W∥ = √|W2|.

[0032] As described further in conjunction with Figure 6, the measured pressure and fluid particle motions may be corrected for the direct arrivals. Wavefield separation may then be performed using data free of the direct arrivals. For example, the predicted direct arrivals, calculated as described above, may be subtracted from the measured pressure and fluid particle velocities, and the up-going and down-going wavefields separated. The direct arrivals may then be added back to the separated wavefields. If the acoustic source is towed at a shallower depth that the sensor streamers, as depicted in Figure 3, for example, the direct arrivals should only be present in the down-going wavefields, so the predicted direct arrivals may thus be added only to the down-going pressure and/or particle velocity wavefields. If, however, the acoustic source or sources are towed at a greater depth than the sensor streamers the respective up-going wavefields may be back propagated and the down-going wavefields may be forward propagated to a datum deeper than the source depth, as will now be described in conjunction with Figure 4.

[0033] Figure 4 shows a side elevation view of a marine survey system 100 similar to Figures 2 and 3. The illustrative embodiment of marine survey system 100 in Figure 4 includes an acoustic source disposed at a depth, D, greater than the depth, z1 of sensor streamer 106. Figure 4 also shows the separated up-going wavefield, represented by ray paths 402, 404 and 406, and separated down-going wavefield, represented by ray paths 408 and 410 (shown dashed in Figure 4), without inclusion of the direct arrivals. The direct arrivals will be considered below in conjunction with Figure 5. Ray paths 402, 404 and 406, incident on sensors 116I, 116H and 116F, respectively may be back propagated from the depth z1 to a datum at a depth z2 using P'up = Pup eikz(z2-z1), corresponding to positions 403, 405 and 407, respectively. P'up represents the back propagated pressure wavefield and Pup the separated pressure wavefield at the depth z1. Similarly, ray paths 408 and 410 may be forward propagated, along ray paths 412 and 414 (shown dash-dotted in Figure 4), respectively, to positions 409 and 411 at the datum at depth z2 using P'down = Pdowne-ikz(z2-z1). The fluid particle velocity wavefields may be back- and forward-propagated similarly. The depth, z2 of the datum may be any convenient choice such that z2 > z1. For example, z2 may be chosen to be a few meters below z1, say from 1 to 3 meters, but other values may be freely chosen as are convenient.

[0034] Consider now the direct arrivals by turning to Figure 5. The downward propagating direct arrivals depicted by ray paths 502 and 502 may be re-predicted at the corresponding positions 409 and 411 at the datum 503 at depth z2. These direct arrivals may be re-predicted using Equations (6) and (7) for the pressure and vertical component of the fluid particle velocity, respectively, with the distances Rln corresponding to positions at datum 503, for example positions 409 and 411. Similarly the upward propagating ray paths from acoustic source may reflect from water body surface 216 at positions 507 and 509 to become a downward propagating wavefield illustrated by ray paths 510 and 512 (shown dot-dashed in Figure 5). These ray paths, incident on sensors 116J and 116H, respectively may be re-predicted at the datum 503. The distances R'ln correspond to positions on the datum 503, e.g. positions 409, 411 and comprise the sum of the Euclidean distance from acoustic source 109 to the respective reflection points, e.g. points 507 and 509 and the Euclidean distance from the reflection points to the positions on the datum 503.

[0035] In accordance with an example system, a geophysical data product may be produced. The geophysical data product may include pressure and fluid particle velocity wavefield measurement data corrected for direct arrivals as described above. The geophysical data product may be stored on a non-transitory, tangible computer-readable medium. The geophysical data product may be produced offshore (e.g., by equipment on a vessel) or onshore (e.g., at a facility on land) either within the United States or in another country. If the geophysical data product is produced offshore or in another country, it may be imported onshore to a facility, for example, in the United States. The imported geophysical data product may include recorded pressure wavefield data and data comprising a component or components of fluid particle velocity, both as described further below. The geophysical data product may also include corrected wavefield data and corrected fluid particle velocity component data. Once onshore in, for example the United States, geophysical analysis may be performed on the geophysical data product. In that vein, turning to Figure 6, illustrated therein is a flowchart of an exemplary method 600 in accordance with at least some embodiments. Method 600 starts at block 602. As described above, an acoustic wavefield propagating in, say, a water body includes a pressure wavefield, and fluid particle velocity wavefield. At block 604, a pressure wavefield data of a first acoustic wavefield is obtained. The pressure wavefield data may be, in at least some embodiments, recorded data measured by a first sensor, for example a hydrophone, as described above. Stated otherwise, the first sensor may measure the pressure wavefield of the first acoustic wavefield, the pressure wavefield data being generated in response to the measuring. The pressure wavefield data may then be recorded, for example, by onboard equipment 104.

[0036] A pressure response of the first sensor to a pressure wavefield of a second acoustic wavefield propagating in the water body is calculated, block 606. The second acoustic wavefield has a propagation path between a source of the second acoustic wavefield and the position of the first sensor; the propagation path includes no reflection from a subsurface formation. Stated differently, the second acoustic wavefield comprises a so-called direct arrival - either a wavefield that propagates directly from the acoustic source to the sensor position or an acoustic wavefield that propagates from the acoustic source to the interface between the surface of a water body and the atmosphere, reflects from the interface and propagates downward to the position of the sensor. For example, the calculation in block 606 may be as described in conjunction with Equation (6) above. The calculation may be based on, inter alia, the distance along the propagation path between the acoustic source and the first sensor, the notional source signature, and the frequency response of the first sensor. In at least some embodiments, the calculation may be carried out by a processor executing a program of instructions as described in conjunction with Figure 7. In at least some embodiments, the processor may be located onshore, and the foregoing calculation, and those to be described below, performed on recorded data from an acquisition as set forth above. As previously described, onboard equipment 104 may include data recording equipment to record the data for subsequent geophysical analysis onshore. In yet other embodiments, the processor may be associated with data processing equipment included in onboard equipment 104 and the foregoing calculation, and those described below, performed onboard, and the pressure and velocity wavefields corrected for direct arrivals stored in a non-transitory medium for subsequent geophysical analysis onshore.

[0037] In block 608, the pressure wavefield data of the first acoustic wavefield is corrected based on the calculated response of the first sensor to the pressure wavefield of the second acoustic wavefield. By way of example, the measured pressure wavefield may be corrected by subtracting the calculated response from the pressure wavefield data. The correction may also be performed by a processor executing a computer program. In at least some embodiments, the processor may be a component of a data processing system included as part of onboard equipment 104.

[0038] Data comprising a component, e.g. a vertical component, of a fluid particle velocity wavefield of the first acoustic wavefield is obtained in block 610. Similar to the pressure wavefield data, the fluid particle velocity data may include recorded data from as measured by a second sensor, such as a geophone, co-located with the first sensor. Stated otherwise, the second sensor may measure a component, or components, of the fluid particle velocity wavefield of the first acoustic wavefield, the data comprising the component of the fluid particle velocity wavefield being generated in response to the measuring. The data comprising the component of the fluid particle velocity wavefield may then be recorded by onboard equipment 104, say.

[0039] The response of the second sensor to the component of a fluid particle velocity field of the second acoustic wavefield may be calculated at block 612. The response may be calculated as described above in conjunction with Equation (7). In block 614, the data comprising the component of the fluid particle velocity wavefield may be corrected based on the calculated response of the second sensor to the component of a fluid particle velocity field of the second acoustic wavefield from block 612. For example, the calculated response may be subtracted from the fluid particle velocity wavefield component data. The calculated response, in at least some embodiments, may be based on, inter alia, the distance along the propagation path between the acoustic source and the second sensor, the acoustic source notional signature, the frequency response of the first sensor, and an angle between the propagation path of the second wavefield and a vertical direction. And as previously described, the second acoustic wavefield has a propagation path between a source of the second acoustic wavefield and the position of the first sensor; the propagation path includes no reflection from a subsurface formation. Method 600 ends at block 616.

[0040] The first acoustic wavefield may be separated into an up-going wavefield portion and a down-going wavefield portion, based on the corrected pressure and fluid particle velocity measurements. For example, in at least some embodiments, the first acoustic wavefield may be separated in accordance with Equations (1) and (2) in which the pressure therein comprises the measured pressure as corrected in block 608. The fluid particle velocity may be measured and corrected based on the calculated fluid particle velocity response as described above at blocks 610 and 612. In at least some embodiments, the correction may comprise subtracting the calculated fluid particle velocity response from the measured fluid particle velocity, analogous to the correction of the measured pressure. In an embodiment in which the measured fluid particle velocity is corrected, the wavefield separated in accordance with Equations (1) and (2) may be based on the corrected vertical component of fluid particle velocity as well as the corrected pressure. As in the pressure wavefield correction, in at least some embodiments, the correction and/or wave field separation may be carried out by a processor executing computer program instructions.

[0041] Further, as described above in conjunction with Equation (4), in at least a low-frequency portion of the wavefield spectrum, the vertical component of fluid particle velocity may be estimated based on the fluid pressure wavefield. The wavefield separation may, in such embodiments, be based on the estimated vertical fluid particle velocity. Further still, to account for the direct arrivals in the down-going wavefield portion, the second acoustic wavefield may be added to the down-going wavefield portion.

[0042] As described above in conjunction with Figures 4 and 5, in some embodiments, the acoustic source may be disposed at a depth in the water body that is deeper than the depth of the sensor streamers. In such embodiments, the up-going wavefield may be back-propagated to a datum depth that is greater than the depth of the acoustic source and the down-going wave-field forward-propagated to the datum, as previously described. The respective pressure and fluid particle velocity sensor responses may be re-predicted at the corresponding positions at the datum depth. The re-predicted responses may then be added to the down-going wavefield portion.

[0043] Figure 7 shows a block diagram of a computer system 700 which is illustrative of a computer system upon which the various embodiments may be practiced. In particular, computer system 700 comprises a processor 702, and the processor couples to a main memory 704 by way of a bridge device 706. Moreover, the processor 702 may couple to a long term storage device 708 (e.g., a hard drive, solid state disk, memory stick, optical disc) by way of the bridge device 706. Programs executable by the processor 702 may be stored on the storage device 708, and accessed when needed by the processor 702. The program stored on the storage device 708 may comprise programs to implement the various embodiments of the present specification. In some cases, the programs are copied from the storage device 708 to the main memory 704, and the programs are executed from the main memory 704. Thus, the main memory 704, and storage device 704 shall be considered computer-readable storage media. In addition, a display device 712, which may comprise any suitable electronic display device upon which any image or text can be displayed, may be coupled to the processor 702 by way of bridge 706. An input device or input devices, 710 may also be coupled to the processor by way of the bridge 706. Furthermore, computer system 700 may comprise a network interface 714, coupled to the processor 702 by way of bridge 706, and coupled to storage device 704, the network interface 714 acting to couple the computer system to a communication network, for example an Ethernet or similar network which may be employed to couple data processing system 700 to other components in onboard equipment 104. Relatedly, separated up-going and down-going wavefields, based on the measurements corrected for the direct arrivals as previously described, may be calculated by the processor 702 and communicated to the long term storage device 708 by way of bridge 706 to become a geophysical data product.

[0044] References to "one embodiment", "an embodiment", "a particular embodiment", and "some embodiments" indicate that a particular element or characteristic is included in at least one embodiment of the invention. Although the phrases "in one embodiment", "an embodiment", "a particular embodiment", and "some embodiments" may appear in various places, these do not necessarily refer to the same embodiment.

[0045] The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, while the exemplary embodiments may refer to a single acoustic source, the principles of those embodiments apply to a plurality of acoustic sources.


Claims

1. A system (100) comprising:

a processor (702);

a memory (704) coupled to the processor (702);

wherein the memory (704) stores a program that, when executed by the processor (702), causes the processor to:

calculate (606) a pressure response of a first sensor; and

correct (608) pressure wavefield data obtained from the first sensor responsive to a first acoustic wavefield propagating in a water body, the correction based on the calculated pressure response of the first sensor; wherein:

the calculated pressure response of the first sensor is responsive to a second acoustic wavefield propagating in the water body and having a propagation path (306) between a source (190) of the second acoustic wavefield and the first sensor; and

the propagation path (306) includes no reflection from a subsurface formation (206);

characterised in that the program further causes the processor (702) to:

calculate (612) a fluid particle velocity response of a second sensor; and

correct (614) a component of fluid particle velocity wavefield data obtained from the second sensor responsive to the first acoustic wavefield, the correction based on the calculated fluid particle velocity response of the second sensor;

wherein the calculated fluid particle velocity response of the second sensor is responsive to the second acoustic wavefield at a position of the second sensor co-located with the first sensor.


 
2. The system (100) of claim 1 wherein the program further causes the processor (702) to correct the pressure wavefield data obtained from the first sensor by subtracting the calculated pressure response from the pressure wavefield data.
 
3. The system (100) of claim 1 wherein the program further causes the processor (702) to correct the component of the fluid particle velocity wavefield data obtained from the second sensor by subtracting the calculated fluid particle velocity response from the component of the fluid particle velocity wavefield data.
 
4. The system (100) of claim 3 wherein the program further causes the processor (702) to:

separate the pressure wavefield data and fluid particle velocity wavefield data into an up-going wavefield data portion and a down-going wavefield data portion; and

add the calculated pressure response and calculated fluid particle velocity response to the down-going wavefield data portion.


 
5. The system (100) of any of the preceding claims, wherein:

the pressure wavefield data is based on a measured first acoustic wavefield; and

the calculated pressure response is based on the response of the first sensor including pressure sensitivity as a function of frequency of the measured first acoustic wavefield, and a signature of an acoustic source of the first acoustic wavefield as a function of frequency of the measured first acoustic wavefield.


 
6. The system (100) of any of the preceding claims wherein the propagation path has a first portion directed from an acoustic source (190) to a surface (216) of the water body (131) and a second portion directed from the surface of the water body to the first sensor.
 
7. The system (100) of any of claims 1 to 5 wherein the propagation path (306) is directed from an acoustic source (190) to the first sensor without reflection from a surface (216) of a water body (131).
 
8. The system (100) of any of the preceding claims further comprising one or more of:

a first sensor configured to measure the pressure wavefield of the first acoustic wavefield;

an acoustic source (190) configured to generate the first and second acoustic wavefields in a water body (131); and

a second sensor configured to measure the component of the fluid particle velocity wavefield of the first acoustic wavefield.


 
9. A method comprising:

obtaining (604) pressure wavefield data of a first acoustic wavefield propagating in a water body (131);

calculating (606) a pressure response of a first sensor to a second acoustic wavefield propagating in the water body (131);

correcting (608) the pressure wavefield data of the first acoustic wavefield based on the calculated response of the first sensor to the pressure wavefield of the second acoustic wavefield; and

obtaining (610) data comprising a component of a fluid particle velocity wavefield of the first acoustic wavefield from a second sensor co-located with the first sensor;

characterised by:

calculating (612) a response of the second sensor to a component of a fluid particle velocity wavefield of the second acoustic wavefield; and

correcting (614) the data comprising the component of the fluid particle velocity wavefield of the first acoustic wavefield based on the calculated response to the component of fluid particle velocity wavefield of the second acoustic wavefield;
wherein the second acoustic wavefield has a propagation path (306) between a position of the co-located first and second sensors and an acoustic source (190) of the second acoustic wavefield without a reflection from a subsurface formation (206).


 
10. The method of claim 9 wherein correcting (608) the pressure wavefield data comprises subtracting the calculated pressure response from the pressure wavefield data.
 
11. The method of claim 9 or claim 10 further comprising:

estimating a vertical component of a fluid particle velocity wavefield of the first acoustic wavefield based on the corrected pressure wavefield data; and

filtering the estimated vertical component of fluid particle velocity wavefield by a low-pass filter to generate a first filtered portion of a vertical fluid particle velocity wavefield data.


 
12. The method of claim 11 wherein a corner frequency of the low-pass filter is less than a frequency of a first ghost notch in a pressure wavefield of the first acoustic wavefield.
 
13. The method of claim 11 or claim 12 further comprising:

filtering the data comprising the component of the fluid particle velocity wavefield by a high-pass filter to generate a second filtered portion of the fluid particle velocity wavefield data; and

adding the first and second filtered portions of the fluid particle velocity wavefield data.


 
14. The method of any of claims 11 to 13 further comprising:

separating the first acoustic wavefield into an up-going wavefield portion and a down-going wavefield portion based on the corrected pressure wavefield data; and

adding the calculated pressure response of the first sensor to the down-going wavefield portion.


 
15. The method of claim 14 wherein separating the first acoustic wavefield into up-going and down-going wavefield portions is further based on first and second filtered portions of the data comprising a component of the fluid particle velocity wavefield of the first acoustic wavefield.
 
16. The method of any of claims 9 to 15 wherein calculating the response of the first sensor is based on a distance along the propagation path (306) between the position of the first sensor and the acoustic source (190).
 
17. The method of claim 14 wherein a depth of the acoustic source (190) is beneath the position of the first sensor, the method further comprising:

back propagating the up-going wavefield portion to a datum having a depth below the depth of the acoustic source (190); and

forward propagating the down-going wavefield portion to the datum.


 
18. The method of claim 17 further comprising re-predicting the pressure response of the first sensor to the pressure wavefield of the second acoustic wavefield at one or more positions on the datum based on the corresponding forward-propagated down-going and back-propagated up-going wavefield portions, optionally wherein calculating the response of the first sensor is further based on a source signature of the acoustic source (190) and a frequency-dependent response of the first sensor.
 
19. The method of any of claims 9 to 18 wherein calculating the response of the second sensor is based on the source signature of the acoustic source (190), and a frequency-dependent response of the second sensor, and an angle of the propagation path between the position of the first and second sensors and the acoustic source, and a vertical direction.
 
20. The method of any of claims 9 to 19 further comprising:

measuring, by the first sensor, a pressure wavefield of the second acoustic wavefield; and

deriving the position of the first sensor by minimizing an objective function based on a difference between the calculated response of the first sensor to the pressure wavefield of the second acoustic wavefield and the measurement of the pressure wavefield of the second acoustic wavefield.


 
21. The method of any of claims 9 to 20 further comprising:

measuring the pressure wavefield of the first acoustic wavefield by the first sensor, the pressure wavefield data generated in response to the measuring; and

measuring the component of the fluid particle velocity wavefield by the second sensor, the data comprising the component of fluid particle velocity generated in response to the measuring.


 
22. The method of claim 21 further comprising:

recording the pressure wavefield data; and

recording the data comprising the component of fluid particle velocity.


 
23. The method of claim 22 further comprising:
importing a geophysical data product, the geophysical data product including:

the recorded pressure wavefield data; and

the recorded data comprising the component of the fluid particle velocity wavefield.


 
24. The method of claim 23, wherein the geophysical data product further comprises:

corrected data comprising the component of the fluid particle velocity wavefield; and

corrected pressure wavefield data.


 


Ansprüche

1. System (100), umfassend:

einen Prozessor (702);

einen Speicher (704), der mit dem Prozessor (702) gekoppelt ist;

wobei der Speicher (704) ein Programm speichert, das bei Ausführung durch den Prozessor (702) den Prozessor zu Folgendem veranlasst:

Berechnen (606) einer Druckreaktion eines ersten Sensors; und

Korrigieren (608) von Druckwellenfelddaten, die von dem ersten Sensor erhalten werden, der auf ein erstes akustisches Wellenfeld anspricht, das sich in einem Gewässer ausbreitet, wobei die Korrektur auf dem berechneten Druckverhalten des ersten Sensors basiert; wobei:

die berechnete Druckreaktion des ersten Sensors auf ein zweites akustisches Wellenfeld reagiert, das sich im Gewässer ausbreitet und einen Ausbreitungsweg (306) zwischen einer Quelle (190) des zweiten akustischen Wellenfelds und dem ersten Sensor besitzt; und

wobei der Ausbreitungsweg (306) keine Reflexion von einer Formation unter der Oberfläche (206) einschließt;

dadurch gekennzeichnet, dass das Programm den Prozessor (702) ferner zu Folgendem veranlasst:

Berechnen (612) einer Fluidteilchengeschwindigkeitsreaktion eines zweiten Sensors; und

Korrigieren (614) einer Komponente von Fluidteilchengeschwindigkeitswellenfelddaten, die vom zweiten Sensor als Reaktion auf das erste akustische Wellenfeld erhalten wurden, wobei die Korrektur auf der berechneten Fluidteilchengeschwindigkeitsreaktion des zweiten Sensors basiert;

wobei die berechnete Fluidteilchen-Geschwindigkeitsreaktion des zweiten Sensors auf das zweite akustische Wellenfeld an einer Position des zweiten Sensors, der zusammen mit dem ersten Sensor angeordnet ist, reagiert.


 
2. System (100) nach Anspruch 1, wobei das Programm ferner den Prozessor (702) veranlasst, die von dem ersten Sensor erhaltenen Druckwellenfelddaten zu korrigieren, indem die berechnete Druckreaktion von den Druckwellenfelddaten subtrahiert wird.
 
3. System (100) nach Anspruch 1, wobei das Programm ferner den Prozessor (702) veranlasst, die Komponente der von dem zweiten Sensor erhaltenen Fluidteilchengeschwindigkeitswellenfelddaten zu korrigieren, indem die berechnete Fluidteilchengeschwindigkeitsreaktion von der Komponente der Fluidteilchengeschwindigkeitswellenfelddaten subtrahiert wird.
 
4. System (100) nach Anspruch 3, wobei das Programm den Prozessor (702) ferner zu Folgendem veranlasst:

Trennen der Druckwellenfelddaten und der Geschwindigkeitswellenfelddaten der Fluidteilchen in einen aufwärtsgerichteten Wellenfelddatenabschnitt und einen abwärtsgerichteten Wellenfelddatenabschnitt; und

Hinzufügen der berechneten Druckreaktion und der berechneten Fluidteilchengeschwindigkeitsreaktion zu dem abwärtsgerichteten Wellenfelddatenabschnitt.


 
5. System (100) nach einem der vorhergehenden Ansprüche, wobei

die Druckwellenfelddaten auf einem gemessenen ersten akustischen Wellenfeld basieren; und

die berechnete Druckreaktion auf der Reaktion des ersten Sensors einschließlich der Druckempfindlichkeit als einer Funktion der Frequenz des gemessenen ersten akustischen Wellenfelds und einer Signatur einer akustischen Quelle des ersten akustischen Wellenfelds als einer Funktion der Frequenz des gemessenen ersten akustischen Wellenfelds basiert.


 
6. System (100) nach einem der vorhergehenden Ansprüche, wobei der Ausbreitungsweg einen ersten Abschnitt aufweist, der von einer akustischen Quelle (190) zu einer Oberfläche (216) des Gewässers (131) gerichtet ist, und einen zweiten Abschnitt, der von der Oberfläche des Gewässers zu dem ersten Sensor gerichtet ist.
 
7. System (100) nach einem der Ansprüche 1 bis 5, wobei der Ausbreitungsweg (306) von einer akustischen Quelle (190) zum ersten Sensor ohne Reflexion von einer Oberfläche (216) eines Gewässers (131) gerichtet ist.
 
8. System (100) nach einem der vorhergehenden Ansprüche, ferner umfassend einen oder mehrere der Folgenden:

einen ersten Sensor, der konfiguriert ist, um das Druckwellenfeld des ersten akustischen Wellenfelds zu messen;

eine akustische Quelle (190), die konfiguriert ist, um das erste und das zweite akustische Wellenfeld in einem Gewässer (131) zu erzeugen; und

einen zweiten Sensor, der konfiguriert ist, um die Komponente des Fluidteilchengeschwindigkeitswellenfelds des ersten akustischen Wellenfelds zu messen.


 
9. Verfahren, Folgendes umfassend:

Erhalten von (604) Druckwellenfelddaten eines ersten akustischen Wellenfelds, das sich in einem Gewässer (131) ausbreitet;

Berechnen (606) einer Druckreaktion eines ersten Sensors auf ein zweites akustisches Wellenfeld, das sich im Gewässer (131) ausbreitet;

Korrigieren (608) der Druckwellenfelddaten des ersten akustischen Wellenfelds basierend auf der berechneten Reaktion des ersten Sensors auf das Druckwellenfeld des zweiten akustischen Wellenfelds; und

Erhalten (610) von Daten, die eine Komponente eines Fluidteilchengeschwindigkeitswellenfelds des ersten akustischen Wellenfelds umfassen, von einem zweiten Sensor, der zusammen mit dem ersten Sensor angeordnet ist;

gekennzeichnet durch:

Berechnen (612) einer Reaktion des zweiten Sensors auf eine Komponente eines Fluidteilchengeschwindigkeitswellenfelds des zweiten akustischen Wellenfelds; und

Korrigieren (614) der Daten, die die Komponente des Fluidteilchengeschwindigkeitswellenfelds des ersten akustischen Wellenfelds umfassen, auf der Grundlage der berechneten Reaktion auf die Komponente des Fluidteilchengeschwindigkeitswellenfelds des zweiten akustischen Wellenfelds;

wobei das zweite akustische Wellenfeld einen Ausbreitungsweg (306) zwischen einer Position des ersten und des zweiten Sensors, die zusammen angeordnet sind, und einer akustischen Quelle (190) des zweiten akustischen Wellenfelds ohne eine Reflexion von einer Formation unter der Oberfläche (206) aufweist.


 
10. Verfahren nach Anspruch 9, wobei die Korrektur (608) der Druckwellenfelddaten das Subtrahieren der berechneten Druckreaktion von den Druckwellenfelddaten umfasst.
 
11. Verfahren nach Anspruch 9 oder 10, ferner Folgendes umfassend:

Abschätzen einer vertikalen Komponente eines Fluidteilchengeschwindigkeitswellenfelds des ersten akustischen Wellenfelds auf der Grundlage der korrigierten Druckwellenfelddaten; und

Filtern der geschätzten vertikalen Komponente des Fluidteilchengeschwindigkeitswellenfelds durch einen Tiefpassfilter, um einen ersten gefilterten Abschnitt der vertikalen Fluidteilchengeschwindigkeitswellenfelddaten zu erzeugen.


 
12. Verfahren nach Anspruch 11, wobei eine Eckfrequenz des Tiefpassfilters kleiner als eine Frequenz einer ersten Geisterkerbe in einem Druckwellenfeld des ersten akustischen Wellenfelds ist.
 
13. Verfahren nach Anspruch 11 oder Anspruch 12, ferner Folgendes umfassend:

Filtern der Daten, die die Komponente des Fluidteilchengeschwindigkeitswellenfelds umfassen, durch einen Hochpassfilter, um einen zweiten gefilterten Abschnitt der Fluidteilchengeschwindigkeitswellenfelddaten zu erzeugen; und

Hinzufügen des ersten und zweiten gefilterten Abschnitts der Fluidteilchengeschwindigkeitswellenfelddaten.


 
14. Verfahren nach einem der Ansprüche 11 bis 13, ferner Folgendes umfassend:

Trennen des ersten akustischen Wellenfelds in einen aufwärtsgerichteten Wellenfeldabschnitt und einen abwärtsgerichteten Wellenfeldabschnitt auf der Grundlage der korrigierten Druckwellenfelddaten; und

Hinzufügen der berechneten Druckreaktion des ersten Sensors zum abwärtsgerichteten Wellenfeldabschnitt.


 
15. Verfahren nach Anspruch 14, wobei das Trennen des ersten akustischen Wellenfelds in aufwärtsgerichtete und abwärtsgerichtete Wellenfeldabschnitte weiterhin auf ersten und zweiten gefilterten Abschnitten der Daten basiert, die eine Komponente des Fluidteilchengeschwindigkeitswellenfelds des ersten akustischen Wellenfelds umfassen.
 
16. Verfahren nach einem der Ansprüche 9 bis 15, wobei das Berechnen der Reaktion des ersten Sensors auf einem Abstand entlang des Ausbreitungswegs (306) zwischen der Position des ersten Sensors und der akustischen Quelle (190) basiert.
 
17. Verfahren nach Anspruch 14, wobei eine Tiefe der akustischen Quelle (190) unterhalb der Position des ersten Sensors liegt, wobei das Verfahren ferner Folgendes umfasst:

Rückwärtsausbreiten des aufwärtsgerichteten Wellenfeldabschnitts zu einem Bezugspunkt, der eine Tiefe unterhalb der Tiefe der akustischen Quelle hat (190); und

Vorwärtsausbreiten des nach unten gerichteten Wellenfeldabschnitts zum Bezugspunkt.


 
18. Verfahren nach Anspruch 17, ferner umfassend das erneute Vorhersagen der Druckreaktion des ersten Sensors auf das Druckwellenfeld des zweiten akustischen Wellenfelds an einer oder mehreren Positionen auf dem Bezugspunkt auf der Grundlage der entsprechenden, sich vorwärts ausbreitenden, abwärtsgerichteten und der sich rückwärts ausbreitenden, aufwärtsgerichteten Wellenfeldabschnitte, wobei das Berechnen der Reaktion des ersten Sensors optional ferner auf einer Quellensignatur der akustischen Quelle (190) und einer frequenzabhängigen Reaktion des ersten Sensors basiert.
 
19. Verfahren nach einem der Ansprüche 9 bis 18, wobei das Berechnen der Reaktion des zweiten Sensors auf der Quellensignatur der akustischen Quelle (190) und einer frequenzabhängigen Reaktion des zweiten Sensors sowie einem Winkel des Ausbreitungswegs zwischen der Position des ersten und des zweiten Sensors und der akustischen Quelle und einer vertikalen Richtung basiert.
 
20. Verfahren nach einem der Ansprüche 9 bis 19, ferner Folgendes umfassend:

Messen eines Druckwellenfelds des zweiten akustischen Wellenfelds durch den ersten Sensor; und

Ableiten der Position des ersten Sensors durch Minimieren einer objektiven Funktion, basierend auf einer Differenz zwischen der berechneten Reaktion des ersten Sensors auf das Druckwellenfeld des zweiten akustischen Wellenfelds und der Messung des Druckwellenfelds des zweiten akustischen Wellenfelds.


 
21. Verfahren nach einem der Ansprüche 9 bis 20, ferner Folgendes umfassend:

Messen des Druckwellenfelds des ersten akustischen Wellenfelds durch den ersten Sensor, wobei die Druckwellenfelddaten als Reaktion auf die Messung erzeugt werden; und

Messen der Komponente des Fluidteilchengeschwindigkeitswellenfelds durch den zweiten Sensor, wobei die Daten die Komponente der Fluidteilchengeschwindigkeit umfassen, die als Reaktion auf die Messung erzeugt wird.


 
22. Verfahren nach Anspruch 21, ferner Folgendes umfassend:

Aufzeichnen der Druckwellenfelddaten; und

Aufzeichnen der Daten, die die Komponente der Fluidteilchengeschwindigkeit umfassen.


 
23. Verfahren nach Anspruch 22, ferner Folgendes umfassend:
Importieren eines geophysikalischen Datenprodukts, wobei das geophysikalische Datenprodukt Folgendes umfasst:

die aufgezeichneten Druckwellenfelddaten; und

die aufgezeichneten Daten, umfassend die Komponente des Fluidteilchengeschwindigkeitswellenfelds.


 
24. Verfahren nach Anspruch 23, wobei das geophysikalische Datenprodukt ferner Folgendes umfasst:

korrigierte Daten, die die Komponente des Fluidteilchengeschwindigkeitswellenfelds umfassen; und

korrigierte Druckwellenfelddaten.


 


Revendications

1. Système (100) comprenant :

un processeur (702) ;

une mémoire (704) couplée au processeur (702) ;

la mémoire (704) stockant un programme qui, lorsqu'il est exécuté par le processeur (702), amène le processeur à :

calculer (606) une réponse en pression d'un premier capteur ; et

corriger (608) des données de champ d'ondes de pression obtenues à partir du premier capteur en réponse à un premier champ d'ondes acoustiques se propageant dans un plan d'eau, la correction étant basée sur la réponse en pression calculée du premier capteur ; dans lequel :

la réponse en pression calculée du premier capteur répond à un second champ d'ondes acoustiques se propageant dans le plan d'eau et ayant un chemin de propagation (306) entre une source (190) du second champ d'ondes acoustiques et le premier capteur ; et

le chemin de propagation (306) ne comporte aucune réflexion depuis une formation souterraine (206) ;

caractérisé en ce que le programme amène en outre le processeur (702) à :

calculer (612) une réponse en vitesse de particules de fluide d'un second capteur ; et

corriger (614) une composante des données de champ d'ondes de vitesse de particules de fluide obtenues à partir du second capteur en réponse au premier champ d'ondes acoustiques, la correction étant basée sur la réponse calculée de vitesse de particules de fluide du second capteur ;

la réponse calculée de la vitesse de particules de fluide du second capteur répondant au second champ d'ondes acoustiques au niveau d'une position du second capteur colocalisé avec le premier capteur.


 
2. Système (100) selon la revendication 1, dans lequel le programme amène en outre le processeur (702) à corriger les données de champ d'ondes de pression obtenues à partir du premier capteur en soustrayant la réponse en pression calculée des données de champ d'ondes de pression.
 
3. Système (100) selon la revendication 1, dans lequel le programme amène en outre le processeur (702) à corriger la composante des données de champ d'ondes de vitesse de particules de fluide obtenues à partir du second capteur en soustrayant la réponse en vitesse calculée des particules de fluide de la composante des données de champ d'ondes de vitesse de particules de fluide.
 
4. Système (100) selon la revendication 3, dans lequel le programme amène en outre le processeur (702) à :

séparer les données de champ d'ondes de pression et les données de champ d'ondes de vitesse de particules de fluide en une partie de données de champ d'ondes montant et une partie de données de champ d'ondes descendant ; et

ajouter la réponse en pression calculée et la réponse en vitesse calculée de particules de fluide à la partie de données de champ d'ondes descendant.


 
5. Système (100) selon l'une quelconque des revendications précédentes, dans lequel :

les données de champ d'ondes de pression sont basées sur un premier champ d'ondes acoustiques mesuré ; et

la réponse en pression calculée est basée sur la réponse du premier capteur comportant la sensibilité à la pression en fonction de la fréquence du premier champ d'ondes acoustiques mesuré, et une signature d'une source acoustique du premier champ d'ondes acoustiques en fonction de la fréquence du premier champ d'ondes acoustiques mesuré.


 
6. Système (100) selon l'une quelconque des revendications précédentes, dans lequel le chemin de propagation a une première partie dirigée depuis une source acoustique (190) vers une surface (216) du plan d'eau (131) et une seconde partie dirigée depuis la surface du plan d'eau vers le premier capteur.
 
7. Système (100) selon l'une quelconque des revendications 1 à 5, dans lequel le chemin de propagation (306) est dirigé depuis une source acoustique (190) vers le premier capteur sans réflexion depuis une surface (216) d'un plan d'eau (131).
 
8. Système (100) selon l'une quelconque des revendications précédentes comprenant en outre un ou plusieurs des éléments suivants :

un premier capteur configuré pour mesurer le champ d'ondes de pression du premier champ d'ondes acoustiques ;

une source acoustique (190) configurée pour générer les premier et second champs d'ondes acoustiques dans un plan d'eau (131) ; et

un second capteur configuré pour mesurer la composante du champ d'ondes de vitesse de particules de fluide du premier champ d'ondes acoustiques.


 
9. Procédé consistant à :

obtenir (604) des données de champ d'ondes de pression d'un premier champ d'ondes acoustiques se propageant dans un plan d'eau (131) ;

calculer (606) une réponse en pression d'un premier capteur à un second champ d'ondes acoustiques se propageant dans le plan d'eau (131) ;

corriger (608) les données de champ d'ondes de pression du premier champ d'ondes acoustiques sur la base de la réponse calculée du premier capteur au champ d'ondes de pression du second champ d'ondes acoustiques ; et

obtenir (610) des données comprenant une composante d'un champ d'ondes de vitesse de particules de fluide du premier champ d'ondes acoustiques à partir d'un second capteur co-localisé avec le premier capteur ;

caractérisé par les étapes consistant à :

calculer (612) une réponse du second capteur à une composante d'un champ d'ondes de vitesse de particules de fluide du second champ d'ondes acoustiques ; et

corriger (614) les données comprenant la composante du champ d'ondes de vitesse de particules de fluide du premier champ d'ondes acoustiques sur la base de la réponse calculée à la composante du champ d'ondes de vitesse de particules de fluide du second champ d'ondes acoustiques ;

le second champ d'ondes acoustiques ayant un chemin de propagation (306) entre une position des premier et second capteurs co-localisés et une source acoustique (190) du second champ d'ondes acoustiques sans réflexion depuis une formation souterraine (206) .


 
10. Procédé selon la revendication 9, dans lequel la correction (608) des données de champ d'ondes de pression comprend la soustraction de la réponse en pression calculée des données de champ d'ondes de pression.
 
11. Procédé selon la revendication 9 ou 10, consistant en outre à :

estimer une composante verticale d'un champ d'ondes de vitesse de particules de fluide du premier champ d'ondes acoustiques sur la base des données de champ d'ondes de pression corrigées ; et

filtrer la composante verticale estimée du champ d'ondes de vitesse de particules de fluide par un filtre passe-bas pour générer une première partie filtrée des données d'un champ d'ondes vertical de vitesse de particules de fluide.


 
12. Procédé selon la revendication 11, dans lequel une fréquence de coupure du filtre passe-bas est inférieure à une fréquence d'une première encoche fantôme dans un champ d'ondes de pression du premier champ d'ondes acoustiques.
 
13. Procédé selon la revendication 11 ou la revendication 12, consistant en outre à :

filtrer les données comprenant la composante du champ d'ondes de vitesse de particules de fluide par un filtre passe-haut pour générer une seconde partie filtrée des données de champ d'ondes de vitesse de particules de fluide ; et

ajouter les première et seconde parties filtrées des données de champ d'ondes de vitesse de particules de fluide.


 
14. Procédé selon l'une quelconque des revendications 11 à 13, consistant en outre à :

séparer le premier champ d'ondes acoustiques en une partie de champ d'ondes montant et une partie de champ d'ondes descendant sur la base des données de champ d'ondes de pression corrigées ; et

ajouter la réponse en pression calculée du premier capteur à la partie de champ d'ondes descendant.


 
15. Procédé selon la revendication 14, dans lequel la séparation du premier champ d'ondes acoustiques en parties de champ d'ondes montant et descendant est en outre basée sur des première et seconde parties filtrées des données comprenant une composante du champ d'ondes de vitesse de particules de fluide du premier champ d'ondes acoustiques.
 
16. Procédé selon l'une quelconque des revendications 9 à 15, dans lequel le calcul de la réponse du premier capteur est basé sur une distance le long du chemin de propagation (306) entre la position du premier capteur et la source acoustique (190).
 
17. Procédé selon la revendication 14, dans lequel une profondeur de la source acoustique (190) est en dessous de la position du premier capteur, le procédé consistant en outre à :

propager vers l'arrière la partie de champ d'ondes montant vers une référence ayant une profondeur inférieure à la profondeur de la source acoustique (190) ; et

propager vers l'avant la partie de champ d'ondes descendant vers la référence.


 
18. Procédé selon la revendication 17, comprenant en outre une nouvelle prédiction de la réponse en pression du premier capteur au champ d'ondes de pression du second champ d'ondes acoustiques à une ou plusieurs positions sur la référence sur la base des parties correspondantes de champ d'ondes descendant se proprageant vers l'avant et de champ d'ondes montant se propageant vers l'arrière, éventuellement dans lequel le calcul de la réponse du premier capteur est en outre basé sur une signature de source de la source acoustique (190) et une réponse dépendant de la fréquence du premier capteur.
 
19. Procédé selon l'une quelconque des revendications 9 à 18, dans lequel le calcul de la réponse du second capteur est basé sur : la signature de source de la source acoustique (190), une réponse dépendant de la fréquence du second capteur, un angle du chemin de propagation entre la position des premier et second capteurs et la source acoustique et une direction verticale.
 
20. Procédé selon l'une quelconque des revendications 9 à 19, consistant en outre à :

mesurer, par le premier capteur, un champ d'ondes de pression du second champ d'ondes acoustiques ; et

dériver la position du premier capteur en minimisant une fonction objectif sur la base d'une différence entre la réponse calculée du premier capteur au champ d'ondes de pression du second champ d'ondes acoustiques et la mesure du champ d'ondes de pression du second champ d'ondes acoustiques.


 
21. Procédé selon l'une quelconque des revendications 9 à 20, consistant en outre à :

mesurer le champ d'ondes de pression du premier champ d'ondes acoustiques par le premier capteur, les données de champ d'ondes de pression étant générées en réponse à la mesure ; et

mesurer la composante du champ d'ondes de vitesse de particules de fluide par le second capteur, les données comprenant la composante de vitesse de particules de fluide générée en réponse à la mesure.


 
22. Procédé selon la revendication 21, consistant en outre à :

enregistrer les données de champ d'ondes de pression ; et

enregistrer les données comprenant la composante de vitesse de particules de fluide.


 
23. Procédé selon la revendication 22, consistant en outre à :
importer un produit de données géophysiques, le produit de données géophysiques comportant :

des données de champ d'ondes de pression enregistrées ; et

des données enregistrées comprenant la composante du champ d'ondes de vitesse de particules de fluide.


 
24. Procédé selon la revendication 23, dans lequel le produit de données géophysiques comprend en outre :

des données corrigées comprenant la composante du champ d'ondes de vitesse de particules de fluide ; et

des données de champ d'ondes de pression corrigées.


 




Drawing






























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description