(19)
(11)EP 3 118 634 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.11.2019 Bulletin 2019/47

(21)Application number: 16176282.8

(22)Date of filing:  24.06.2016
(51)International Patent Classification (IPC): 
G01R 15/24(2006.01)
G02B 6/36(2006.01)
G01D 5/26(2006.01)
G01D 5/353(2006.01)

(54)

OPTICAL CURRENT TRANSDUCER ALIGNMENT

OPTISCHE STROMWANDLERAUSRICHTUNG

ALIGNEMENT DE TRANSDUCTEUR DE COURANT OPTIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 13.07.2015 US 201514797583

(43)Date of publication of application:
18.01.2017 Bulletin 2017/03

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • WALLACE, Daniel Robert
    Syracuse, NV 13212 (US)
  • ROSS, Brian Timothy
    Fort Edward, NY 12828 (US)

(74)Representative: Brevalex 
95, rue d'Amsterdam
75378 Paris Cedex 8
75378 Paris Cedex 8 (FR)


(56)References cited: : 
EP-A1- 0 507 742
CN-A- 102 213 729
CN-U- 203 324 348
CN-A- 101 408 559
CN-A- 103 063 898
US-A1- 2009 097 796
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    I. Field of the Invention



    [0001] The present disclosure generally relates to optical current transducers. More particularly, the present disclosure relates to optical current transducer alignment.

    II. Background of the Invention



    [0002] Fiber-optic current transducers (FOCTs) can be used to detect alternating currents in transmission lines. FOCTs operate based on the principle of Faraday rotation, which is a magneto-optical effect whereby a rotation of the polarization plane of a light beam confined in a fiber-optic waveguide placed near the transmission line occurs in response to a magnetic field induced by the current in the transmission line. The angle of the rotation is linearly proportional to the component of the magnetic field in the direction of light propagation in the waveguide. As such, a change in angle can be correlated with the strength of the magnetic field, which can in turn be used to calculate the current in the transmission line.

    [0003] An FOCT can be used to detect an alternating current using a differential current measurement configuration. In such a measurement scheme, one or more conductors pass through a common fiber-optic loop of the FOCT. This configuration only works if the current in the conductors algebraically add to zero. For example, for a normal 3-phase transmission system, the currents are 120 degrees out of phase from one another, and they algebraically add to zero. Therefore, the current in the transmission system can be detected by the FOCT, simply by monitoring a differential current in the transmission system. Similarly, for a single phase transmission system, currents in the conductors are 180 degrees out of phase, and they add up to zero.

    [0004] In differential current measurements, improper alignment between a polarizer unit and a mirror unit of the fiber-optic loop can lead to large phase and amplitude root-mean-squared (RMS) errors in the measured differential current. As such, since differential current measurements involve currents in the milli-Ampère (mA) regime, the of a current reading can suffer largely as a result of improper alignment between the polarizer unit and the mirror unit.

    [0005] CN 101408559 describes a method for making a sensor coil of a reflective optical fiber current sensor. A groove which takes the shape of the spiral of Archimedes is processed on a ring-shaped metallic framework, the sensitive fiber is wound in the groove, filled with fiber paste and fixed. The groove is sealed and the stress on the sensitive fiber is released by temperature.

    [0006] CN 102213729 describes an optical fiber current sensing comprising a sensing optical fiber and a bracket, wherein the sensing optical fiber comprises an optical fiber and a flexible protective sleeve surrounding the optical fiber and the bracket comprises a first part and a second part provided with optical fiber grooves. The first part and the second part can be detachably connected to form a closed ring structure surrounding a conductor to be detected and the grooves of the first and second parts forming the closed ring which is used for containing the sensing optical fiber.

    [0007] CN 203324348 describes a fiber optic sensitive ring comprising two sensing fibers, first and second λ/4 wave plates and first and second reflectors, wherein two ends of the fiber sensitive ring at a center plane perpendicular to an axial direction respectively comprise a double-layer groove. An Archimedes spiral type groove is marked at a bottom portion of each bottom groove and are symmetrical relative to the center plane. Two sensing fibers are respectively wound in the Archimedes spiral type grooves, with the λ/4 wave plates fixed at one end of the Archimedes spiral type grooves, and the reflectors fixed at the other end of the Archimedes spiral type grooves.

    III. Summary



    [0008] The embodiments of the present disclosure help solve or mitigate the above-noted issues as well as other issues known in the art.

    [0009] The present invention resides in a system for use with an optical current transducer and in a method for aligning an optical current transducer as defined in the appended claims.

    [0010] Additional features, modes of operations, advantages, and other aspects of various embodiments are described below with reference to the accompanying drawings. It is noted that the present disclosure is not limited to the specific embodiments described herein. These embodiments are presented for illustrative purposes only. Additional embodiments, or modifications of the embodiments disclosed, will be readily apparent to persons skilled in the relevant art(s) based on the teachings provided.

    IV. Brief Description of the Drawings



    [0011] Illustrative embodiments may take form in various components and arrangements of components. Illustrative embodiments are shown in the accompanying drawings, throughout which like reference numerals may indicate corresponding or similar parts in the various drawings. The drawings are only for purposes of illustrating the embodiments and are not to be construed as limiting the disclosure. Given the following enabling description of the drawings, the novel aspects of the present disclosure should become evident to a person of ordinary skill in the relevant art(s).

    FIG. 1 is an illustration of an optical current transducer system according to an exemplary embodiment.

    FIG. 2 is an illustration of an optical current transducer sensor cable according to an exemplary embodiment.

    FIG. 3A and FIG. 3B are illustrations of two arrangements of a sensor cable around a current-carrying conductor.

    FIG. 4 is an illustration of an optical current transducer cable wrapped around two conductors.

    FIG. 5A is an illustration of horizontal cross-sectional view of alignment block according to an exemplary embodiment.

    FIG. 5B is a top view of a cover for the alignment block shown in FIG. 5A.

    FIG. 5C is a vertical cross-sectional view of the alignment block shown FIG. 5A.

    FIG. 6A is an illustration of an optical current transducer cable wrapped around two conductors using an alignment block according to an exemplary embodiment.

    FIG. 6B is an illustration of a fixture for aligning an optical current transducer sensor cable according to an exemplary embodiment.

    FIG. 7 is a flow chart depicting a method according to an exemplary embodiment.


    V. Detailed Description of Embodiments of the Present Invention



    [0012] While the illustrative embodiments are described herein for particular applications, it should be understood that the present disclosure is not limited thereto. Those skilled in the art and with access to the teachings provided herein will recognize additional applications, modifications, and embodiments within the scope thereof and additional fields in which the present disclosure would be of significant utility.

    [0013] FIG. 1 is an illustration of a fiber-optic optical current transducer (FOCT) system 100 according to an exemplary embodiment. The FOCT includes a sensor module 105 and a receiver/decoder module 101. The sensor module 105 includes a fiber 207 positioned around a conductor 113. Fiber 207 is a flint cable that is used to sense the current. It is noted that fiber 207 is labeled hereinafter as sensor 207, in order to refer the optical sensing component of system 100.

    [0014] The receiver module 101 includes a light source 107 that produces a non-polarized light beam 131 for input to an optical splitter 109. The optical splitter 109 is configured to split the light beam 131 into multiple outputs, of which only two are shown (125 and 126).

    [0015] Output 126 is fed to an optical circulator 111 that allows light to enter a first port (P1) and to exit through a second port (P2). Light returning to the second port (P2) of optical circulator 111 is directed to a third port (P3) of optical splitter 109 of the fiber optic sensor 105 via optical circulator 111. Light beam 131 is coupled to fiber 207 and serves as a probe light beam that changes polarization when current flows in conductor 113. The light in fiber 207 is reflected back into the fiber using an end mirror 116 and back to the receiver 101 via path 123 and path 121. Paths 123 and 121 can be implemented using optical fibers or numerous other wave-guiding devices known in the art.

    [0016] The light in sensor 207 is reflected back to receiver 101. A processing unit 132 included in receiver 101 is configured to process the reflected light to provide (at terminal 129) a measure of the current in conductor 113. Processing unit 132 includes transducers 117 and 119. These transducers are configured to convert the light beams from path 123 and path 121 into electrical signals X and Y, respectively.

    [0017] Transducers 117 and 119 can be implemented using PIN diodes. By way of example, and not by limitation, each PIN diode may have a responsivity in the range of about 0.1 [Ampere/Watt] ([A/W]) to about 1 [A/W]. The transducers can also be implemented using other types of photodetector configurations. For example, p-n junctions, photogates, active or passive pixel sensors can be used to implement each of transducer 117 and 119. In general, any phototransducer can be used without departing from the scope contemplated in the present disclosure.

    [0018] Processing unit 132 includes a system 185 configured to process electrical signals X and Y to produce an output signal at terminal 129, the output signal being indicative of the current in conductor 113. While only terminal 129 is shown in FIG. 1 as an output of processing unit 132 (and of system 185), other output terminals may be present. This may be a digital value stored in memory or an analog value from a D/A converter. Furthermore, while transducers 117 and 119 are shown to be separate from system 185, in some implementations, these transducers can be part of system 185.

    [0019] FIG. 2 is an illustration of sensor 207 of system 100, according to an embodiment. Sensor 207 can be a flint cable of any length. Sensor 207 includes polarizer unit 118 from which two branches (X and Y) split at one end. These branches are the data fibers that are used to transduce signals on the X and Y paths shown in FIG. 1. The X and Y branches can be terminated using fiber-optic termination connectors 201 and 203, respectively. Furthermore, the sensing fiber extends from the other end of polarizer unit 118 to mirror unit 116.

    [0020] FIG. 3A and FIG. 3B illustrate two arrangements (300 and 302) that can be used to sense a current in conductor 113 using sensor 207. In FIG. 3A, sensor 207 is wrapped around conductor 113 in one full turn and mirror unit 116 and polarizer unit 118 are aligned. In general, any number n of turns where n is an integer will result into proper alignment of mirror unit 116 and polarizer unit 118.

    [0021] In contrast, in FIG. 3B, sensor 207 is wrapped around conductor 113 in one and a quarter (1 ¼) turn. The arrangement of FIG. 3B results in a significant misalignment between polarizer unit 118 and mirror unit 116. As such, for situations where several turns are needed and the length of sensor 207 does not allow an integer number of turns, mirror unit 116 and polarizer unit 118 cannot be aligned. This issue is readily apparent when using sensor 207 to make a differential current measurement, as discussed below.

    [0022] FIG. 4 is an illustration of a differential current measurement scenario 400 using sensor 207. In this situation, sensor 207 is wrapped around two conductors 113a and 113b. In the loop around conductor 113a, sensor 207 is wrapped around the conductor in a first direction 403. In the loop around conductor 113b, sensor 207 is wrapped around the conductor in a second direction 401 that is opposite to first direction 403. As shown in FIG. 4, in a differential current measurement scheme, mirror 116 and polarizer 118 are misaligned. More importantly, however, the number of turns around conductor 113b and 113a are fractional, which yields losses in sensitivity as a result of the flux lines of the magnetic field being improperly coupled to the fiber's material.

    [0023] FIG. 5A illustrates a horizontal cross-sectional view of an alignment block configured to remedy the aforementioned issues. Alignment block 500 has width and length 502a and 502b which are shown in FIG. 5B and FIG. 5C but are omitted in FIG. 5A for clarity. Alignment 500 includes two grooves, each being along one of two longitudinal axes (509 and 507). The grooves are disposed such that their longitudinal axes make a predetermined angle θ. In other words, the grooves subtend the angle θ.

    [0024] The first groove, being along axis 507, has a depth (not shown) and two distinct widths along axis 507. As such, the first groove has two distinct cross-sectional areas.

    [0025] The first cross-sectional area is given by the width of the groove in a first portion and in a second portion, indicated by width 503a. The second cross-sectional area is given by the width of the groove in a third portion, which is indicated by width 505a.

    [0026] The second groove is similarly configured. Specifically, the second groove, along axis 509, has two distinct cross-sectional areas. The first cross-sectional area is given by width 503b in two regions, and the second cross-sectional area is given by width 505b in a third region.

    [0027] In some embodiments, width 503a and 503b are substantially similar in size. Similarly, widths 505a and 505b are substantially similar in size. Furthermore, the depth of each groove is also substantially similar in size to the depth of the other groove, and the depth of each groove is uniform along the groove's longitudinal axis. One of skill in the art will readily recognize that the relative dimensions noted above can vary depending the dimensions of the cables of sensor 207 and on the dimensions of the components of sensor 207 (polarizer 118 and mirror 116).

    [0028] Alignment block 500 may include a plurality of slots 501a that are used to fasten alignment block 500 to a fixed support (not shown). Slots 501a can also be used to mount a cover (not shown) onto alignment block 500.

    [0029] A cover 501 of alignment block 500 is shown in FIG. 5B. Cover 501 can include a fastening means such as a latch, a lock or the like to fix it onto the body of alignment block 500, in addition to (or instead of) using slots 501a. One of skill in the art will readily recognize that screws, nails, pins or the like can all be used to mount alignment block 500 onto the fixed support. Further, any other method of mounting alignment block 500 to a fixed support and of mounting a cover on alignment block 500 can be used without departing from the scope of the present disclosure.

    [0030] FIG. 5C shows a vertical cross-sectional view 502 of alignment block 500. Widths 502c and 502d are generally shown to depict the cross-section of alignment block 500, but referring to FIG. 5A, in the appropriate regions of each grooves, widths 502c and 502d are equivalent to one of widths 503a, 503b, 505a, and 505b. Depth 502e is the depth of each of the grooves.

    [0031] FIG. 6A is an illustration of a differential current measurement configuration 600 according to an embodiment. Segments 601, 603, 605, and 607 of sensor 207 are shown with respect to how they fit within alignment block 500. As shown in the figure, sensor 207 is wrapped around conductors 113a and 113b in a similar fashion to the configuration shown FIG. 4. However, in the configuration of FIG. 6A, because alignment block 500 is used, mirror 116 and polarizer 118 can be properly aligned. In other words, they can be aligned so that they are disposed in vertically intersecting planes.

    [0032] In one embodiment, mirror 116 and polarizer 118 can be placed in the same groove (directly on top one another). The other groove is then there to allow a user to wrap the cable around the conductors in the opposite direction. Doing so provides a signal that is inverted or 180 degrees out of phase. This is equivalent to rotating a conventional CT 180 degrees to change where the polarity dot is. As such, using one FOCT, this embodiment allows the use of a single block, instead of two different blocks, one for each of the two conductors.

    [0033] This gives sensor 207 an arrangement substantially equivalent to the shape given by the number "8," wherein the current-carrying conductors pass through the holes of the shape of the number "8." Further, in some embodiments, the angle θ can be varied to meet the requirements of the mounting enclosure (FIG. 6B), so that the fiber is not kinked or distorted when installed.

    [0034] As in FIG. 4, the arrangement of FIG. 6A allows sensor 207 to be wrapped around in a first direction (using any number of turns allowed by the length of the cable) to enclose conductor 113a. Similarly, the arrangement of FIG. 6A allows sensor 207 to be wrapped around in a second direction opposite to the first direction, using any number of turns, to enclose conductor 113b. Ensuring that that the wrapping direction is different for each conductor allows one to account for the difference in polarity of the currents in the two conductors.

    [0035] FIG. 6B is an illustration of a fixture 602 that can be used to arrange sensor 207 in a pattern substantially equivalent to a pattern formed by the number "8," as shown in FIG. 6A. Fixture 602 can include sections 609 and 613, each configured to house portions of sensor 207. Contour 611 shows the outer dimensions of alignment block 500. In one embodiment, sections 609 and 613 may be detachable from alignment block 500. Each of the sections can also be made of detachable parts. Further, while only conductor (113a or 113b) is shown in each loop of fixture 602, it is noted that any number of conductors can pass through each loop to make a differential current measurement.

    [0036] Furthermore, in one embodiment, the angle θ can be about 60 degrees, the primary cross-section can be 0.3125 inch wide, and the secondary cross-section can be 0.485 inch wide. The depth of each of the grooves can be 2.25 inches, and the size of alignment block 500 can be 3 inches by 3.5 inches for contour 611, and alignment block 500 can be 3 inches thick. In other embodiments, the angle θ can be between about 20 degrees and about 60 degrees. Further, in an exemplary embodiment, mirror unit 116 and polarizer unit 118 can be 1.575 inch long and 0.4710 inch wide. As previously mentioned, other dimensions can be achieved without departing from the scope of the present disclosure.

    [0037] In the embodiments of the present disclosure, the angle θ allows mirror unit 116 and polarizer unit 118 to be easily aligned. As such, when each of mirror unit 116 and polarizer unit 118 are placed in alignment block 500, they are easily aligned in two vertically intersecting planes making an internal angle θ. Furthermore, mirror unit 116 and polarizer unit 118, when placed in alignment block 500, are also aligned in the z-direction (i.e. along a normal vector to the drawing sheet of FIG. 5 A). The z-direction distance separating mirror unit 116 and polarizer unit 118 can be chosen to be as small as possible. In some embodiments, that distance can be smaller than 0.15 inches. The smaller the z-direction distance, the better the magnetic field coupling.

    [0038] FIG. 7 is a flow chart of a method 700 according to an exemplary embodiment. Method 700 may be used in the context of performing a differential current measurement using the embodiments previously described. Method 700 includes mounting a first portion of a sensor cable (like sensor 207) into one of the grooves of alignment block 500 (step 701). Method 700 includes a step 703 in which the first portion of the sensor cable includes the polarizer unit. The polarizer unit is mounted in the feature of alignment block 500 that is designed to hold the polarizer unit (e.g. see segments 601 and 607 in FIG. 6A which are attached to polarizer unit 118).

    [0039] Method 700 further includes a step 705 of wrapping a second portion of the sensor cable in a second groove of alignment block 500. Further, method 700 includes a step 707 of mounting the mirror unit in the feature of alignment block 500 that is designed to hold the mirror unit (e.g. see segments 603 and 605 in FIG. 6A which are attached to mirror unit 116).

    [0040] Method 700 can include wrapping the sensor cable in a fixture like fixture 602 (FIG. 6B). It is noted that wrapping the sensor cable can include making several turns within the fixture so as to provide a predetermined number of turns around the one or more conductors within a loop of the sensor cable.

    [0041] The methods and apparatuses described herein have several advantages. They allow proper alignment of an FOCT's polarizer section to its mirror section. Using the embodiments, measured differential current waveforms were found to be in phase with a reference waveform, suggesting no phase errors resulting from misalignment. Further, the exemplary alignment block allow an FOCT's sensor cable to be wrapped around the conductors properly and have the polarizer/mirror sections positioned correctly with respect to the conductors and to themselves.

    [0042] The embodiments described herein allow the installation of a differential optical current transducer to be done quickly without measuring devices or other types of test equipment. Cabling can easily be removed and replaced without changing the alignment between the polarizer and mirror sections. This is because these components can remain in the alignment block, while the cabling is changed.

    [0043] Furthermore, the embodiments provide robustness against vibrations, which in conventional current transducers can cause misalignments and lead to errors.

    [0044] Further, while this disclosure showed embodiments where one optical current transducer is used, situations where two or more optical current transducers are used to make a differential current measurement can be used. In such cases, the alignment block can include enough grooves to support the number of sensor cables, polarizers, and mirrors used. Alternatively, a fixture like fixture 602 could include several alignment blocks 500, wherein each block is dedicated to one sensor cable like sensor 207.

    [0045] Moreover, alignment block 500 can be made using any machining or additive manufacturing technique known in the art. Alignment block 500 (or fixture 602) can be made of any material, such as wood or plastic. However, neither alignment block 500 nor fixture 602 can be made of a ferrite material or any other material that would disrupt the induced magnetic field in the conductors.

    [0046] Those skilled in the relevant art(s) will appreciate that various adaptations and modifications of the embodiments described above can be configured without departing from the scope of the disclosure. Therefore, it is to be understood that, within the scope of the appended claims, the teachings of the present disclosures may be practiced other than as specifically described herein.


    Claims

    1. A system, for use with an optical current transducer (100), the system comprising
    a sensor (105) including (i) a polarizer unit (118) and (ii) a mirror unit (116) joined to the polarizer unit (118) by a fiber-optic cable (207); and
    an alignment block (500) comprising first groove disposed along a first longitudinal axis (507) and a second groove disposed along a second longitudinal axis (509),
    wherein the first groove comprises first and second regions along the longitudinal axis (507) thereof, the first region configured to hold a portion of the cable (207) and having a first width (503a) and the second region configured to hold the polarizer unit (118) and having a second width (505a);
    wherein the second groove comprises first and second regions along the longitudinal axis (509) thereof, the first region configured to hold a portion of the cable (207) and having a first width (503b) that is the same as the first width (503a) of the first groove (503) and the second region configured to hold the mirror unit (116) and having a second width (505b) that is the same as the second width (505a) of the first groove; and
    wherein the longitudinal axes of the first and second grooves subtend an angle of between 20 and 60 degrees and the mirror unit (116) and the polarizer unit (118) are disposed one of top of the other at the angle subtended by the first and second grooves.
     
    2. The system according to claim 1, wherein the alignment block (500) is made of one of a non-ferrite material or plastic.
     
    3. The system according to any preceding claim, further comprising a fixture (602) surrounding the sensor (207).
     
    4. The system according to any preceding claim, wherein the optical current transducer is configured to perform a differential measurement and wherein the cable (207) of the sensor (105) is wrapped in a first loop around a first conductor (113a) in a first direction (403) and in a second loop around a second conductor (113b) in a second direction (401) that is opposite to the first direction (403).
     
    5. The system according to claim 4, wherein the first and second loops of the cable (207) form the shape of a number 8, with the first and second conductors disposed at the centre of the respective loop.
     
    6. The system according to claim 4 or 5, wherein the first and second conductors (113a, 113b) carry currents of opposite polarity.
     
    7. The system according to any preceding claim, the alignment block (500) includes fixtures (501a) for mounting a cover (501).
     
    8. The system according to claim 7, wherein a cover (501) mounted on the alignment block (500) using said fixture (501a) includes a fastener.
     
    9. A method for aligning an optical current transducer (100) using an alignment block (500) having first and second grooves, wherein the longitudinal axis (507) of the first groove and the longitudinal axis (509) of the second groove subtend an angle of between 20 and 60 degrees, and wherein the optical current transducer comprises (100) a sensor (105) including a polarizer unit (118) and a mirror unit (116) joined to the polarizer unit (118) by a fiber-optic cable (207), the method comprising:

    mounting a first portion of the cable (207) in a first region of the first groove and the polarizer unit (118) in a second region of the first groove, the first and second regions extending along the longitudinal axis (507) of the first groove and the first region having a first width (503a) and the second region having a second width (505a);

    mounting a second portion of the cable (207) in a first region of the second groove and the mirror unit (116) in a second region of the second groove such that the mirror unit (116) is disposed on top of the polarizer unit (118) at the angle subtended by the first and second grooves, the first region having a first width (503b) that is the same as the first width (503a) of the first groove and the second region having a second width (505b) that is the same as the second width (505a) of the first groove.


     


    Ansprüche

    1. System zur Verwendung mit einem optischen Stromwandler (100), wobei das System umfasst
    einen Sensor (105), der (i) eine Polarisationseinheit (118) und (ii) eine Spiegeleinheit (116) aufweist, die über ein faseroptisches Kabel (207) mit der Polarisationseinheit (118) verbunden ist; und
    einen Ausrichtungsblock (500), der eine erste Rille, die entlang einer ersten Längsachse (507) angeordnet ist, und eine zweite Rille umfasst, die entlang einer zweiten Längsachse (509) angeordnet ist,
    wobei die erste Rille erste und zweite Bereiche entlang ihrer Längsachse (507) umfasst, wobei der erste Bereich konfiguriert ist, um einen Abschnitt des Kabels (207) zu halten, und eine erste Breite (503a) aufweist und der zweite Bereich konfiguriert ist, um die Polarisationseinheit (118) zu halten, und eine zweite Breite (505a) aufweist;
    wobei die zweite Rille erste und zweite Bereiche entlang ihrer Längsachse (509) umfasst, wobei der erste Bereich konfiguriert ist, um einen Abschnitt des Kabels (207) zu halten, und eine erste Breite (503b) aufweist, die gleich der ersten Breite (503a) der ersten Rille (503) ist, und der zweite Bereich konfiguriert ist, um die Spiegeleinheit (116) zu halten, und eine zweite Breite (505b) aufweist, die gleich der zweiten Breite (505a) der ersten Rille ist; und
    wobei die Längsachsen der ersten und zweiten Rillen einen Winkel zwischen 20 und 60 Grad einnehmen und die Spiegeleinheit (116) und die Polarisationseinheit (118) übereinander in dem Winkel angeordnet sind, den die ersten und zweiten Rillen einnehmen.
     
    2. System nach Anspruch 1, wobei der Ausrichtungsblock (500) aus einem Nicht-Ferritmaterial oder Kunststoff hergestellt ist.
     
    3. System nach einem vorstehenden Anspruch, weiter umfassend eine Befestigung (602), die den Sensor (207) umgibt.
     
    4. System nach einem vorstehenden Anspruch, wobei der optische Stromwandler konfiguriert ist, um eine Differenzmessung durchzuführen, und wobei das Kabel (207) des Sensors (105) in einer ersten Schleife um einen ersten Leiter (113a) in einer ersten Richtung (403) und in einer zweiten Schleife um einen zweiten Leiter (113b) in einer zweiten Richtung (401) gewickelt ist, die der ersten Richtung (403) entgegengesetzt ist.
     
    5. System nach Anspruch 4, wobei die ersten und zweiten Schleifen des Kabels (207) die Form einer Zahl 8 bilden, wobei die ersten und zweiten Leiter in der Mitte der jeweiligen Schleife angeordnet sind.
     
    6. System nach Anspruch 4 oder 5, wobei die ersten und zweiten Leiter (113a, 113b) Ströme entgegengesetzter Polarität führen.
     
    7. System nach einem vorstehenden Anspruch, wobei der Ausrichtungsblock (500) Befestigungen (501a) zur Befestigung einer Abdeckung (501) aufweist.
     
    8. System nach Anspruch 7, wobei eine Abdeckung (501), die unter Verwendung der Befestigung (501a) an dem Ausrichtungsblock (500) befestigt ist, ein Befestigungselement aufweist.
     
    9. Verfahren zur Ausrichtung eines optischen Stromwandlers (100) unter Verwendung eines Ausrichtungsblocks (500) mit ersten und zweiten Rillen, wobei die Längsachse (507) der ersten Rille und die Längsachse (509) der zweiten Rille einen Winkel zwischen 20 und 60 Grad einnehmen und wobei der optische Stromwandler (100) einen Sensor (105) umfasst, der eine Polarisationseinheit (118) und eine Spiegeleinheit (116) umfasst, die über ein faseroptisches Kabel (207) mit der Polarisationseinheit (118) verbunden ist, wobei das Verfahren umfasst:

    Befestigen eines ersten Abschnitts des Kabels (207) in einem ersten Bereich der ersten Rille und der Polarisationseinheit (118) in einem zweiten Bereich der ersten Rille, wobei sich die ersten und zweiten Bereiche entlang der Längsachse (507) der ersten Rille erstrecken und der erste Bereich eine erste Breite (503a) aufweist und der zweite Bereich eine zweite Breite (505a) aufweist;

    Befestigen eines zweiten Abschnitts des Kabels (207) in einem ersten Bereich der zweiten Rille und der Spiegeleinheit (116) in einem zweiten Bereich der zweiten Rille, so dass die Spiegeleinheit (116) auf der Polarisationseinheit (118) in dem Winkel angeordnet ist, den die ersten und zweiten Rillen einnehmen, wobei der erste Bereich eine erste Breite (503b) aufweist, die gleich der ersten Breite (503a) der ersten Rille ist, und der zweite Bereich eine zweite Breite (505b) aufweist, die gleich der zweiten Breite (505a) der ersten Rille ist.


     


    Revendications

    1. Système, pour une utilisation avec un transducteur de courant optique (100), le système comprenant
    un capteur (105) incluant (i) une unité polariseur (118) et (ii) une unité miroir (116) reliée à l'unité polariseur (118) par un câble à fibre optique (207) ; et
    un bloc d'alignement (500) comprenant une première rainure disposée le long d'un premier axe longitudinal (507) et une seconde rainure disposée le long d'un second axe longitudinal (509),
    dans lequel la première rainure comprend des première et seconde régions le long de l'axe longitudinal (507) de celle-ci, la première région configurée pour maintenir une partie du câble (207) et ayant une première largeur (503a) et la seconde région configurée pour maintenir l'unité polariseur (118) et ayant une seconde largeur (505a) ;
    dans lequel la seconde rainure comprend des première et seconde régions le long de l'axe longitudinal (509) de celle-ci, la première région configurée pour maintenir une partie du câble (207) et ayant une première largeur (503b) qui est la même que la première largeur (503a) de la première rainure (503) et la seconde région configurée pour maintenir l'unité miroir (116) et ayant une seconde largeur (505b) qui est la même que la seconde largeur (505a) de la première rainure ; et
    dans lequel les axes longitudinaux des première et seconde rainures sous-tendent un angle entre 20 et 60 degrés et l'unité miroir (116) et l'unité polariseur (118) sont disposées l'une sur l'autre à l'angle sous-tendu par les première et seconde rainures.
     
    2. Système selon la revendication 1, dans lequel le bloc d'alignement (500) est fait de l'un d'un matériau non ferritique ou de plastique.
     
    3. Système selon l'une quelconque des revendications précédentes, comprenant en outre un dispositif de fixation (602) entourant le capteur (207).
     
    4. Système selon l'une quelconque des revendications précédentes, dans lequel le transducteur de courant optique est configuré pour effectuer une mesure différentielle et dans lequel le câble (207) du capteur (105) est enroulé en une première boucle autour d'un premier conducteur (113a) dans une première direction (403) et en une seconde boucle autour d'un second conducteur (113b) dans une seconde direction (401) qui est opposée à la première direction (403).
     
    5. Système selon la revendication 4, dans lequel les première et seconde boucles du câble (207) dessinent la forme d'un nombre 8, avec les premier et second conducteurs disposés au centre de la boucle respective.
     
    6. Système selon la revendication 4 ou 5, dans lequel les premier et second conducteurs (113a, 113b) portent des courants de polarité opposée.
     
    7. Système selon l'une quelconque des revendications précédentes, le bloc d'alignement (500) inclut des dispositifs de fixation (501a) pour le montage d'un couvercle (501).
     
    8. Système selon la revendication 7, dans lequel un couvercle (501) monté sur le bloc d'alignement (500) utilisant ledit dispositif de fixation (501a) inclut une pièce de fixation.
     
    9. Procédé d'alignement d'un transducteur de courant optique (100) utilisant un bloc d'alignement (500) ayant des première et seconde rainures, dans lequel l'axe longitudinal (507) de la première rainure et l'axe longitudinal (509) de la seconde rainure sous-tendent un angle entre 20 et 60 degrés, et dans lequel le transducteur de courant optique comprend (100) un capteur (105) incluant une unité polariseur (118) et une unité miroir (116) reliée à l'unité polariseur (118) par un câble à fibre optique (207), le procédé comprenant :

    le montage d'une première partie du câble (207) dans une première région de la première rainure et de l'unité polariseur (118) dans une seconde région de la première rainure, les première et seconde régions s'étendant le long de l'axe longitudinal (507) de la première rainure et la première région ayant une première largeur (503a) et la seconde région ayant une seconde largeur (505a) ;

    le montage d'une seconde partie du câble (207) dans une première région de la seconde rainure et de l'unité miroir (116) dans une seconde région de la seconde rainure de telle manière que l'unité miroir (116) est disposée au-dessus de l'unité polariseur (118) à l'angle sous-tendu par les première et seconde rainures, la première région ayant une première largeur (503b) qui est la même que la première largeur (503a) de la première rainure et la seconde région ayant une seconde largeur (505b) qui est la même que la seconde largeur (505a) de la première rainure.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description