(19)
(11)EP 3 122 488 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15770068.3

(22)Date of filing:  25.03.2015
(51)International Patent Classification (IPC): 
B21D 53/02(2006.01)
B28D 1/04(2006.01)
F28F 1/02(2006.01)
F28F 13/00(2006.01)
B28D 1/00(2006.01)
F28D 1/047(2006.01)
F28F 1/12(2006.01)
(86)International application number:
PCT/US2015/022476
(87)International publication number:
WO 2015/148657 (01.10.2015 Gazette  2015/39)

(54)

HEAT EXCHANGER AND METHOD OF MAKING THE SAME

WÄRMETAUSCHER UND VERFAHREN ZUR HERSTELLUNG DAVON

ÉCHANGEUR DE CHALEUR ET SON PROCÉDÉ DE FABRICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.03.2014 US 201461971614 P

(43)Date of publication of application:
01.02.2017 Bulletin 2017/05

(73)Proprietor: Modine Manufacturing Company
Racine, Wisconsin 53403-2552 (US)

(72)Inventors:
  • STEINBACH, Eric
    Wausau, WI 54401 (US)
  • JOHNSON, Mark
    Racine, WI 53406 (US)
  • HARFORD, Arthur
    Kenosha, WI 53144 (US)
  • JAIN, Siddarth
    Lindenhurst, IL 60046 (US)

(74)Representative: Williams, Michael David 
Marks & Clerk LLP 1 New York Street
Manchester M1 4HD
Manchester M1 4HD (GB)


(56)References cited: : 
EP-A2- 1 331 463
JP-A- 2002 224 756
US-A1- 2001 022 220
US-A1- 2008 141 525
US-B1- 6 357 518
JP-A- H02 205 251
JP-A- 2013 252 560
US-A1- 2003 106 677
US-A1- 2014 007 600
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATION


    BACKGROUND



    [0001] The present application relates to heat exchangers and methods of making heat exchangers, and particularly relates to curved or non-planar heat exchangers.
    Similar heat exchangers and methods of making heat exchangers are known from JP H02 205251 A, JP 2002 224756 A, JP 2013 252560 A and EP 1 331 463 A2.

    [0002] Vapor compression systems are commonly used for refrigeration and/or air conditioning and/or heating, among other uses. In a typical vapor compression system, a refrigerant, sometimes referred to as a working fluid, is circulated through a continuous thermodynamic cycle in order to transfer heat energy to or from a temperature and/or humidity controlled environment and from or to an uncontrolled ambient environment. While such vapor compression systems can vary in their implementation, they most often include at least one heat exchanger operating as an evaporator, and at least one other heat exchanger operating as a condenser.

    [0003] In systems of the aforementioned kind, a refrigerant typically enters an evaporator at a thermodynamic state (i.e., a pressure and enthalpy condition) in which it is a sub-cooled liquid or a partially vaporized two-phase fluid of relatively low vapor quality. Thermal energy is directed into the refrigerant as it travels through the evaporator, so that the refrigerant exits the evaporator as either a partially vaporized two- phase fluid of relatively high vapor quality or a superheated vapor.

    [0004] At another point in the system the refrigerant enters a condenser as a superheated vapor, typically at a higher pressure than the operating pressure of the evaporator. Thermal energy is rejected from the refrigerant as it travels through the condenser, so that the refrigerant exits the condenser in an at least partially condensed condition. Most often the refrigerant exits the condenser as a fully condensed, sub-cooled liquid.

    [0005] Some vapor compression systems are reversing heat pump systems, capable of operating in either an air conditioning mode (such as when the temperature of the uncontrolled ambient environment is greater than the desired temperature of the controlled environment) or a heat pump mode (such as when the temperature of the uncontrolled ambient environment is less than the desired temperature of the controlled environment). Such a system may require heat exchangers that are capable of operating as an evaporator in one mode and as a condenser in another mode.

    [0006] It may on occasion be desirable for a heat exchanger operating as a condenser and/or as an evaporator in such systems to have a non-planar shape, particularly a curved or arcuate shape. To that end, it is known for refrigerant heat exchangers to be constructed with a generally planar shape and to then be bent or formed into a curved shape. Performing such deformation without causing damage to the heat exchanger can be problematic, however, and is typically limited to heat exchangers having a single column of tubes and/or heat exchangers having a small core depth dimension and/or heat exchangers with an especially large radius of curvature.

    SUMMARY



    [0007] According to an embodiment of the invention, a method of making a heat exchanger includes slitting a sheet of material to define a first section and a second section, forming the sheet of material to define serpentine corrugations, and separating the formed sheet of material into a plurality of fin segments. The first and second sections are joined together at spaced-apart connecting points, and each fin segment includes one or more of the connecting points. The fin segments are alternatingly arranged between rows of flat tubes to define a core stack, which is brazed to form a monolithic heat exchanger core. The heat exchanger core is bent into an arcuate shape having a radial direction, such that one of the first and second tube lengths of each row is located radially inward of the other. The bending of the heat exchanger core severs at least one of the connecting points of each fin segment.

    [0008] In some embodiments, the first and third tubes are bent to define a first bend radius, and the second and fourth tubes are bent to define a second bend radius that is larger than the first bend radius. In some embodiments the material of the corrugated fin segment is intermittently slit to define breaking points prior to arranging the corrugated fin segment between the first and second row of tubes.

    [0009] According to another embodiment of the invention, a heat exchanger includes first and second sets of parallel arranged tubes. The first set of tubes extends along a first arcuate path, and the second set of tubes extends along a second arcuate path. Each one of the second set of tubes is aligned in a common plane with a corresponding one of the first set of tubes. Corrugated fin segments are arranged in spaces between adjacent tubes, and crests and troughs of the corrugated fin segments are joined to broad and flat faces of the tubes. Each of the tubes has one or more fluid conduits extending through the tube. A common header fluidly joins the fluid conduits of each one of the second set of tubes with the fluid conduits of the corresponding one of the first set of tubes.

    [0010] In some embodiments, the corrugated fin segments include a first series of flanks connecting the crests and troughs joined to the first set of tubes, and a second series of flanks connecting the crests and troughs joined to the second set of tubes. The first series of flanks of each corrugated fin segment is disconnected from the second series of flanks of that corrugated fin segment over at least a majority of the fin segment.

    [0011] In some embodiments the first arcuate path defines a first axis and a first radius, the second arcuate path defines a second axis and a second radius, the second axis is aligned with the first axis, and the second radius is not equal to the first radius.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 

    FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the invention.

    FIG. 2 is a partial perspective view of a portion of the heat exchanger of FIG. 1 , with some parts removed for clarity.

    FIG. 3 is a perspective view of the heat exchanger of FIG. 1 in an unfinished condition.

    FIG. 4 is a partial view taken along the lines IV-IV of FIG. 3.

    FIG. 5 is a detail view of the portion V-V of FIG. 3.

    FIG. 6 is a diagram of a fin rolling operation according to an embodiment of the invention.

    FIG. 7 is a plan view of the heat exchanger of FIG. 1 undergoing a forming operation according to an embodiment of the invention.

    FIG. 8 is a plan view of a heat exchanger undergoing a forming operation according to an alternative embodiment of the invention.

    FIG. 9 is a partial perspective view of a portion of a heat exchanger according to an alternative embodiment of the invention.


    DETAILED DESCRIPTION



    [0013] Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having" and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms "mounted," "connected," "supported," and "coupled" and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, "connected" and "coupled" are not restricted to physical or mechanical connections or couplings.

    [0014] A heat exchanger 1 according to an embodiment of the present invention is depicted in FIG. 1, and includes a plurality of tube lengths 2 to convey a fluid through the heat exchanger 1. The tube lengths 2 are arranged in a series of rows and columns to allow for a combination of series and parallel flow of the fluid, and corrugated fin segments 3 are arranged between adjacent rows of the tube lengths 2 to provide both structural connection between the adjacent rows and extended heat transfer surface area. The heat exchanger 1 is formed into an approximately arcuate shape, as will be described. Such a heat exchanger 1 can be find utility in any number of heat transfer applications, and can be especially useful as an evaporator or a condenser or both in a refrigerant system.

    [0015] For ease of reference only a portion of the heat exchanger 1 , with selected ones of the tube lengths 2 and corrugated fin segments 3 hidden from view, is shown in FIG. 2. Specifically, FIG. 2 illustrates two rows (29a and 29b) of tube lengths 2, each of the rows 29a and 29b including two of the tube lengths 2, with one of the tube lengths 2 from each row being arranged into a first column 27, and the other one of the tube lengths 2 from each row being arranged into a second column 28. Ends of those tube lengths 2 belonging to the first column 27 are received into slots 17 provided in a first tubular header 6, and ends of those tube lengths 2 belonging to the second column 28 are received into similar slots 17 provided in a second tubular header 7.

    [0016] With continued reference to FIG. 2, the corrugated fin segments 3 include a series of relatively planar flanks connected by alternating peaks and troughs. The peaks and troughs are joined to generally planar broad sides of the tube lengths 2, preferably by a metallurgical joining technique such as brazing.

    [0017] The arcuate shape of the heat exchanger 1 can provide certain benefits over a generally planar heat exchanger in applications that require a compact packaging arrangement between the heat exchanger and, for example, an air mover directing a flow of air over the external surfaces of the heat exchanger tubes, wherein effecting the efficient transfer of heat between a fluid flowing through those tubes and the flow of air is desirable. As one non-limiting example, refrigerant-based systems of the type commonly referred to as "ductless mini-split" systems typically incorporate an air mover directing a flow of air in a generally radial direction through a heat exchanger within a compact package. By providing a heat exchanger 1 with an arcuate profile and locating the air mover at approximately the center axis of the arcuate profile, a greater amount of heat exchange surface area can be provided within the same amount of space.

    [0018] Referring back to FIG. 1, the heat exchanger 1 is provided with a first port 15 joined to and in fluid communication with the tubular header 6, and with a second port 16 joined to and in fluid communication with the tubular header 7. A common header 8 receiving ends of the tube lengths 2 opposite to those ends received into the tubular headers 6 and 7 is arranged at an end of the heat exchanger 1. The exemplary common header 8 of the embodiment of FIG. 1 is described in greater detail in co-pending United States patent application no. 13/076, 607, filed on March 31, 2011 and assigned to the Applicant of the present application, the entire contents of which are hereby incorporated by reference. The common header 8 receives ends of tube lengths 2 from both columns 27 and 28, and provides for fluid communication between those ones of the tube lengths 2 arranged into a common row 29. In this way, those tube lengths 2 arranged in a single column 27 or 28 can be arranged hydraulically in parallel with one another, whereas the columns 27, 28 themselves can be arranged hydraulically in series with each other.

    [0019] When the heat exchanger 1 is assembled into a system, highly efficient heat exchange between a fluid (for example, a refrigerant) passing through the tube lengths 2 and an airflow passing over the tube lengths 2 can be achieved. As one non-limiting example, the heat exchanger 1 can be used as a refrigerant evaporator to cool and/or dehumidify a flow of air by receiving into the port 16 a flow of at least partially liquid refrigerant having a relatively low boiling temperature. The refrigerant is distributed within the tubular header 7 to the tube lengths 2 of the column 28, and is circulated therethrough to the common header 8, wherein the refrigerant is transferred to the tube lengths 2 of the column 27. The refrigerant subsequently travels through those tube lengths of the column 27 to the tubular header 6, wherein the refrigerant is collected and is removed from the heat exchanger 1 by way of the port 15. As the refrigerant passes through the tube lengths 2, air at a temperature that is generally in excess of that boiling point temperature is directed over the tube lengths 2 to transfer heat into the refrigerant, thereby cooling and/or dehumidifying the air while causing the refrigerant to evaporate. The counter-cross arrangement of refrigerant and air flows provides increased heat transfer effectiveness over a purely cross-flow arrangement.

    [0020] As another non-limiting example, the heat exchanger 1 can be used as a refrigerant condenser to heat a flow of air by receiving into one the port 16 a flow of superheated refrigerant vapor having a relatively high condensing temperature, and circulating the refrigerant through the heat exchanger 1 in a similar manner as described above to heat a flow of air passing over the tube lengths 2. In some embodiments it can be preferable to have the heat exchanger 1 operate as a condenser in one operating mode, and as an evaporator in another operating mode. In such embodiments it can be preferable for refrigerant to be received into the heat exchanger 1 through the port 16 and removed through the port 15 in one operating mode, and vice-versa in the other operating mode.

    [0021] According to some embodiments of the invention, the heat exchanger 1 is first formed as a planar heat exchanger core 10 (shown in FIG.3) and is thereafter deformed by a bending operation into the arcuate shape shown in FIG. 1. The planar heat exchanger core 10 can be made by stacking the tube lengths 2 in alternating rows 29 of (for example) two tube lengths 2 each and corrugated fin segments 3 to define a core stack 4. As best seen in FIG. 4, tube lengths 2 within a given row 29 are arranged so that corresponding broad sides 25 of the tube lengths 2 are coplanar, and the rows 29 are arranged relative to one another such that the tube lengths 2 are arranged into columns 27 and 28, each such column containing a tube length 2 of each of the rows 29. Space is provided between adjacent tube lengths 2 in each of the columns 27, 28 so that corrugated fin segments 3 can be interposed between the adjacent tube lengths 2.

    [0022] FIG. 4 depicts a repeating arrangement of tube lengths 2 and corrugated fin segments 3, and will be used to describe certain aspects of those tube lengths 2 and corrugated fin segments 3 in greater detail. The tube lengths 2 include opposing broad and flat sides 25 joined by narrow sides 26. The narrow sides 26 are shown as being arcuate in shape, although in some embodiments the narrow sides 26 can be planar or some other shape as may be desired. Internal webs 37 are disposed between the narrow sides 26 to join the broad and flat sides 25, thereby subdividing the internal chamber within the tube length 2 into a plurality of parallel arranged fluid conduits 30. The webs 37 further provide additional benefit by increasing the internal surface area of the tube length 2 so as to improve the rate of heat transfer within the tube, as well as providing structural support for the broad and flat sides 25. Such a tube length 2 can, for example, be produced through an extrusion process. It should be understood that the number of webs 37 within the tube length 2 can be varied in order to optimize the performance of the heat exchanger 1, and in some embodiments the webs 37 can be dispensed with entirely and a single conduit 30 can be provided within each tube length 2.

    [0023] As further shown in FIG. 4, the corrugated fin segments 3 arranged between adjacent rows 29 of tube lengths 2 have a width dimension that is approximately equal to the total core depth. A slit 11 is provided in each of the corrugate fin segments 3 along an approximately central location in the width dimension, the slit 11 functioning to divide the corrugated fin segment 3 into a first fin section 13 joined to tube lengths 2 in the first column 27, and a second fin section 14 joined to tube lengths 2 in the second column 28. In order to further improve the heat transfer performance of the heat exchanger 1, louvers 38 or other types of known turbulation enhancement features can be added to the flanks of the corrugated fin segments 3, as shown.

    [0024] Connecting points 12 span the slit 11 and are intermittently spaced to connect the first fin section 13 to the second fin section 14 at several points along the length of the corrugate fin segment 13. The presence of the connecting points 12 serve to maintain each of the corrugated fin segments 3 as a unitary piece during the assembly of the planar heat exchanger 10. The connecting points can be arranged to join the sections 13, 14 at the flanks, crests, troughs, or some combination thereof. In some preferable
    embodiments, the tube lengths 2, the corrugated fin segments 3, and optionally the tubular headers 6 and 7 and the common header 8 are all formed from aluminum alloys, and are joined together in a single brazing operation to form a monolithic heat exchanger core 4. A brazing alloy having a lower temperature than the base aluminum alloys can be added to one or more of the components, for example as a clad layer. During the brazing operation, the assembled components are heated to a temperature at which the brazing alloy melts, and the liquid braze alloy is allowed to reflow over the joints between adjacent parts in order to provide metallurgical joints between those parts upon cooling of the planar heat exchanger core 10.

    [0025] When the planar heat exchanger core 10 is bent into the shape of the curved heat exchanger 1, as shown in FIG. 7, those ends of the tube lengths 2 that are joined to the common header 8 remain in their original alignment to one another. The tubular headers 6 and 7, by contrast, move relative to one another as shown. By bending the first column 27 and the second column 28 of tube lengths 2 about a common axis 9 that is perpendicular to the broad and flat sides 25 of the tube lengths 2, those tube lengths 2 of the first column 27 are formed along a first arcuate path 31 having a first radial dimension RI, while those tube lengths 2 of the second column 28 are formed along a second arcuate path 32 having a second radial dimension R2 that is greater than the first radial dimension. Accordingly, the relative positioning of the tubular headers 6 and 7 is not maintained by the bending process.

    [0026] The inventors have found that when a corrugated fin segment lacking the slit 11 is used to construct the planar heat exchanger core, such a bending process results in severe buckling of the tube lengths, leaving the resulting heat exchanger unsuitable for use. This is because the joints produced between the crests and troughs of the corrugated fin segments and the broad and flat sides of tube lengths prevent the relative movement of tube lengths 2 within a row 29, as is required by the bent geometry of the heat exchanger 1 as shown in FIG. 7. However, when a corrugated fin segment 3 including the slit 11 is used, the bending process itself can serve to shear at least some of the connecting points 12, thereby allowing the fin sections 13 and 14 to move relative to one another in order to allow the tube lengths 2 to follow the desired arcuate paths 31 and 32. Accordingly, the connecting points 12 can also be referred to as breaking points 12.

    [0027] Constructing the bent heat exchanger 1 in such a manner solves several of the problems heretofore associated with heat exchanger having a curved or arcuate shape. The fabrication of such a heat exchanger having more than a single row can be achieved, allowing for a curved heat exchanger with multiple fluid passes arranged in a concurrent flow or counter flow orientation to a flow of air. Furthermore, a smaller radius of curvature can be achieved for a given core depth, thereby facilitating the packaging of the heat exchanger into more compact spaces. By way of example, the heat exchanger 1 of FIG. 7 has a core depth of approximately 30 millimeters and the arcuate paths 31, 32 have radii of approximately 215 millimeters and 230 millimeters, respectively. It can be preferable for the radii of the arcuate paths to be no more than ten times the core depth.

    [0028] It can be desirable in some embodiments to include side plates 5 at the extreme ends of the stack of alternating tube lengths 2 and corrugated fin segments 3. Such side plates 5 allow for a compressive load to be applied to the stack and maintained during the brazing operation in order to ensure that the requisite contact between adjoining surfaces is maintained. In order to accommodate the bending of the planar heat exchanger 10 into the curved heat exchanger 1, the side plate 5 can be provided with a gap 18 extending along the length of the side plate 5 at an approximately central location in the width direction (i.e. between the first and second columns 27, 28). Connecting points 19 (best seen in FIG. 5) can be provided at several locations along the length of the side plate 5, and can be used to maintain the integrity of the side plate 5 for ease of handling during assembly. Those connecting points 19 can then be sheared during the bending operation in order to allow for the relative movement of the fin sections 13, 14 of those immediately adjacent corrugated fin segments 3.

    [0029] The corrugated fin segments 3 can be formed in a fin rolling operation 39 depicted in FIG. 6. A flat sheet 21 is unrolled from a roll of fin material 20, and progresses through a series of operations. At a slitting station 22 the slit 11 is formed into the sheet 21. By way of example only, the slitting station 22 can include a cutting blade that is cam-driven to produce the slit 11 with the connecting points 12 occurring at regular intervals. As the sheet 21 continues past the slitting station 22, a forming station 23 produces the corrugations in the sheet 21. The corrugated sheet 21 eventually reaches a separating station 24, where the continuous sheet 21 is separated into the discrete corrugated fin segments 3. The louvers 38, if present, can be formed either prior to the forming station 23 or within the forming station 23.

    [0030] In some embodiments, the slit 11 can be formed by removing a portion of the flat sheet 21 at the slitting station 22, so that a gap of some dimension is formed between the first fin section 13 and the second fin section 14, as shown in FIG. 4. In other embodiments, it may be advantageous and preferable to form the slit 11 without the removal of material, thereby eliminating the need to dispose of the removed material and avoiding the possibility of equipment jamming or otherwise malfunctioning due to the presence of the removed material.

    [0031] An alternate embodiment of a curved heat exchanger 1 ', formed by constructing and then bending a planar heat exchanger core 10', is depicted in FIG. 8. The planar heat exchanger core 10' and the bent heat exchanger 1 ' have multiple aspects and features in common with the previously described planar heat exchanger core 10 and bent heat exchanger 1, respectively, and those features and aspects are numbered in similar fashion to that of FIG. 7. The planar heat exchanger core 10' again includes a first column 27 of tube lengths 2 and a second column 28 of tube lengths 2, with corrugated fin segments 3 arranged between aligned rows of the tube sections 2, crests and troughs of the corrugated fin segments 3 being bonded to the broad and flat surfaces of the adjacent tube lengths 2. The tube lengths 2 of the second column 28 are, however, longer in length than the tube lengths 2 of the first column 27. Consequently, the tube lengths 2 of that second column 28 have an un-finned region 34 of substantial length immediately adjacent to the tubular header 7 joined to the ends of the tube lengths 2 of the second column 28.

    [0032] Upon bending of the planar heat exchanger core 10' to the shape of the bent heat exchanger 1 ', the varying lengths of the tube sections 2 in the two columns 27, 28 can cause the centroidal axes of both of the tubular headers 6, 7 to lie in a common plane 33 passing through the bending axis 9. As a result, the blocking effect of the headers 6, 7 on a flow of air passing radially through the heat exchanger 1 ' is minimized, thereby also minimizing the undesirable pressure drop associated with such blocking of airflow.

    [0033] Further benefits can additionally be realized by the presence of the un-finned region 34. In some particular embodiments, the heat exchanger 1 ' can be used in a reversing heat pump system. In such a system, the heat exchanger 1 ' can operate as a refrigerant evaporator when the system is operating in one mode of operation (for example, a cooling mode) and can operate as a refrigerant condenser in another mode of operation (for example, a heating mode). The flow of refrigerant is reversed between operating modes in such a system, so that in one operating mode the refrigerant passes are arranged in a counter flow orientation to the air flow while in the other operating mode the refrigerant passes are arranged in a concurrent flow orientation.

    [0034] By way of example, in the cooling mode the refrigerant can enter into the heat exchanger 1 through the tubular header 7 as a two-phase refrigerant and, after receiving heat from the air passing through the core 4, can be removed from the heat exchanger 1 through the tubular header 6 as a slightly superheated refrigerant. The air is directed through the core 4 in a radially outward direction, passing first through the fin sections 13 and second through the fin sections 14. Consequently, the air encounters the downstream pass of the refrigerant (i.e. as the refrigerant moves through the tube lengths 2 of the column 27) prior to encountering the upstream pass of the refrigerant (i.e. as the refrigerant moves through the tube lengths 2 of the column 28), a flow orientation commonly referred to as counter flow. The flow of refrigerant is reversed in heating mode, and the refrigerant enters the tubular header 6 as a superheated refrigerant and, after rejecting heat to the air, exits the tubular header 7 as a sub-cooled liquid refrigerant. The air again moves through the core in a radially outward direction, so that in heating mode the air encounters the upstream pass of the refrigerant prior to encountering the downstream pass, a flow orientation commonly referred to as concurrent flow.

    [0035] When the heat exchanger 1 ' operates as a refrigerant condenser (as in the above described heating mode), the refrigerant must first be sensibly cooled from a superheated vapor condition to a saturated vapor condition. Once the refrigerant reaches its saturation point, further heat removal to the air will condense the refrigerant to a saturated liquid, after which some additional heat is removed to sub-cool the liquid refrigerant. Achieving some amount of sub-cooling is known to be beneficial to the overall performance of the system. The arrangement of the tube lengths 2 in the heat exchanger 1 ' places the superheated vapor end and the sub-cooled liquid end of the refrigerant flow path adjacent to one another. This can cause problems in heating mode in that the portion of the air passing through the superheated vapor portion of the core 4, which is heated to a substantially higher temperature than the remainder of the air due to the elevated temperature of the superheated refrigerant, passes directly over the portion of tube lengths 2 carrying the sub-cooled liquid refrigerant. That portion of the air can, in some cases, be heated to a temperature that exceeds the temperature of the sub-cooled liquid refrigerant, which could result in reheating of the refrigerant and a subsequent loss of sub-cooling. Having the un-fmned region 34 located directly behind that portion of the column 27 where the de-superheating of the refrigerant occurs can effectively inhibit this undesirable heat transfer from the heated air to the sub-cooled refrigerant passing through that portion of the tube lengths 2 in the un-fmned region 34.

    [0036] FIG. 9 shows yet another embodiment of a heat exchanger according to the present invention. The planar heat exchanger core 10" of FIG. 9 also has multiple aspects and features in common with the previously described planar heat exchanger core 10, and those features and aspects are again numbered in similar fashion. In contrast to the heat exchanger core 10, the heat exchanger core 10" is constructed without the common header 8. Instead, the tube lengths 2 that make up a single row 29 are both parts of a single long tube 35. A folded return bend 36 in each of the tubes 35 places the two tube lengths 2 of that tube 35 into the side by side arrangement of a tube row 29. In so doing, the fluid conduits 30 within a tube 35 can remain unbroken between the tubular headers 6 and 7, so that re-distribution of fluid flow between such conduits at the transition from one tube length 2 of a tube row 29 to the other tube length 2 of that tube row can be avoided.

    [0037] In constructing the planar heat exchanger core 10", each of the tubes 35 can be pre-bent to include the return bend 36 prior to assembly of the heat exchanger core. The fully assembled heat exchanger core 10" can subsequently be brazed and then bent to the desired final shape. The lack of a common header 8, and the relative flexibility of the return bends 36, allows for some or all of the relative movement of the ends of the tube lengths 2 resulting from the bending of the planar heat exchanger core 10" to occur at the return bends 36, as opposed to having all of that movement occurring at the tubular headers 6 and 7. This can allow for all of the connecting points 12 of the corrugated fin segments 3 to be broken, with less displacement occurring between corrugations of the first fin sections 13 and the second fin sections 14.

    [0038] Various alternatives to the certain features and elements of the present invention are described with reference to specific embodiments of the present invention. With the exception of features, elements, and manners of operation that are mutually exclusive of or are inconsistent with each embodiment described above, it should be noted that the alternative features, elements, and manners of operation described with reference to one particular embodiment are applicable to the other embodiments.

    [0039] The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the scope of the present invention.


    Claims

    1. A method of making a heat exchanger (1), comprising: slitting a sheet of material (20) in a longitudinal direction to define a first section (13) and a second section (14), the first and second sections (13,14) being joined together at spaced-apart connecting points (12,19) along the longitudinal direction; forming the sheet of material (20) to define serpentine corrugations; separating the formed sheet of material (20) into a plurality of fin segments (3), each fin segment (3) having a plurality of the corrugations and one or more of the connecting points (12,19); arranging the fin segments (3) in alternating fashion between rows of flat tubes to define a core stack (4), each row comprising a first tube length (2) and a second tube length (2) in side- by side relation; brazing the arranged fin segments (3) and flat tubes to form a monolithic heat exchanger core (10), peaks and troughs of the corrugations in the first section (13) of each of the fin segments being joined to one of the first and second tube lengths (2) in a first adjacent row and one of the first and second tube lengths (2) in a second adjacent row, peaks and troughs of the corrugations in the second section (14) of each of the fin segments (3) being joined to the other of the first and second tube lengths (2) in the first adjacent row and the other of the first and second tube lengths (2) in the second adjacent row;
    characterized by
    bending the monolithic heat exchanger core (10) into an arcuate shape having a radial direction, such that one of the first and second tube lengths (2) of each row is located radially inward of the other of the first and second tube lengths (2) of each row, wherein bending of the monolithic heat exchanger core (10) severs at least one of the connecting points (12, 19) of each fin segment (3).
     
    2. The method of claim 1, further comprising the step of assembling a common header (8) to ends of the first and second tube lengths (2) of each row of flat tubes at one side of the core stack (4) prior to brazing.
     
    3. The method of claim 1, wherein each of the first and second tube lengths (2) of each row is an individual tube.
     
    4. The method of claim 1, further comprising the step of assembling a first header to an end of the first tube length (2) of each row at one side of the core stack (4), and assembling a second header (7) to an end of the second tube length (2) of each row at said one side of the core stack (4), prior to brazing.
     
    5. The method of claim 4, wherein bending the monolithic heat exchanger core (10) displaces the first header (6) relative to the second header (7).
     
    6. The method of claim 1, wherein the step of slitting the sheet of material (20) does not remove material from the sheet.
     
    7. The method of claim 6, wherein at least a portion of the first section (13) is displaced in relation to the second section (14).
     
    8. A heat exchanger (1) manufactured according to the method of one of the previous claims comprising: a first plurality of parallel arranged tubes extending along a first arcuate path (31), each one of the first plurality of parallel arranged tubes having one or more fluid conduits extending therethrough; a second plurality of parallel arranged tubes extending along a second arcuate path (32), each one of the second plurality of parallel arranged tubes having one or more fluid conduits extending therethrough, each one of the second plurality of parallel arranged tubes being aligned in a common plane (33) with a corresponding one of the first plurality of parallel arranged tubes; a plurality of corrugated fin segments (3) arranged in spaces between adjacent ones of said parallel arranged tubes,
    characterized in that
    each of the corrugated fin segments (3) having a first series of flanks connecting alternating crests and troughs joined to broad and flat surfaces of the first plurality of parallel arranged tubes and a second series of flanks connecting alternating crests and troughs joined to broad and flat surfaces of the second plurality of parallel arranged tubes; and a common header (8) fluidly joining the one or more fluid conduits of each of the second plurality of parallel arranged tubes and the one or more fluid conduits of each of the corresponding one of the first plurality of parallel arranged tubes.
     
    9. The heat exchanger (1) of claim 8, wherein the first series of flanks of each corrugated fin segment (3) is disconnected from the second series of flanks of that corrugated fin segment (3) over at least a majority of the fin segment (3).
     
    10. The heat exchanger (1) of claim 8, wherein the first arcuate path (31) defines a first axis and a first radius, the second arcuate path (32) defines a second axis and a second radius, the second axis is aligned with the first axis, and the second radius is not equal to the first radius.
     
    11. The heat exchanger (1) of claim 10, further comprising a first inlet/outlet header (6) joined to ends of the first plurality of parallel arranged tubes, and a second inlet/outlet header (7) joined to ends of the second plurality of parallel arranged tubes.
     
    12. The heat exchanger (1) of claim 11, wherein a centroidal axis of the first inlet/outlet header (6), a centroidal axis of the second inlet/outlet header (7), and the aligned first and second axes are approximately arranged in a common plane (33).
     
    13. The heat exchanger (1) of claim 11, wherein the second radius is greater than the first radius and a region of the second plurality of parallel arranged tubes immediately adjacent to the second inlet/outlet header (7) is free of the second series of flanks connecting alternating crests and troughs.
     
    14. The heat exchanger (1) of claim 8 wherein the corrugated fin segments (3) define a core depth and the first and second arcuate paths (31,32) define a first and a second bend radius, each of the first and second bend radii being no more than ten times the core depth.
     


    Ansprüche

    1. Verfahren zum Herstellen eines Wärmetauschers (1), umfassend: Schlitzen einer Materialfolie (20) in einer Längsrichtung, um einen ersten Abschnitt (13) und einen zweiten Abschnitt (14) zu definieren, wobei der erste und der zweite Abschnitt (13, 14) an voneinander beabstandeten Verbindungspunkten (12, 19) entlang der Längsrichtung verbunden sind; Formen der Materialfolie (20), um schlangenartige Wellungen zu definieren; Auftrennen der geformten Materialfolie (20) in eine Mehrzahl von Rippensegmente (3), wobei jeder Rippensegment (3) eine Mehrzahl der Wellungen und einen oder mehrere der Verbindungspunkte (12, 19) aufweist; Anordnen der Rippensegmente (3) in abwechselnder Weise zwischen Reihen von flachen Rohren, um einen Kernstapel (4) zu definieren, wobei jede Reihe eine erste Rohrlänge (2) und eine zweite Rohrlänge (2) nebeneinander umfasst; Löten der angeordneten Rippensegmente (3) und flachen Rohren, um einen monolithischen Wärmetauscherkern (10) zu formen, wobei Höhen und Tiefen der Wellungen in dem ersten Abschnitt (13) jedes der Rippensegmente mit einer der ersten und zweiten Rohrlänge (2) in einer ersten angrenzenden Reihe und einer der ersten und zweiten Rohrlänge (2) in einer zweiten angrenzenden Reihe verbunden sind, wobei Höhen und Tiefen der Wellungen in dem zweiten Abschnitt (14) jedes der Rippensegmente (3) mit der anderen der ersten und zweiten Rohrlänge (2) in der ersten angrenzenden Reihe und mit der anderen der ersten und zweiten Rohrlänge in der zweiten angrenzenden Reihe verbunden sind;
    gekennzeichnet durch
    Biegen des monolithischen Wärmetauscherkerns (10) in eine Bogenform, welche eine radiale Richtung aufweist, derart dass eine der ersten und zweiten Rohrlänge (2) jeder Reihe radial einwärts im Verhältnis zu der anderen der ersten und zweiten Rohrlänge (2) jeder Reihe angeordnet ist, wobei das Biegen des monolithischen Wärmetauscherkerns (10) mindestens einen der Verbindungspunkte (12, 19) jedes Rippensegments (3) zertrennt.
     
    2. Verfahren nach Anspruch 1, ferner umfassend den Schritt des Anbringens eines gemeinsamen Sammelrohrs (8) an den Enden der ersten und zweiten Rohrlänge (2) jeder Reihe von flachen Rohren auf einer Seite des Kernstapels (4), vor dem Löten.
     
    3. Verfahren nach Anspruch 1, wobei jede der ersten und zweiten Rohrlänge (2) jeder Reihe ein einzelnes Rohr ist.
     
    4. Verfahren nach Anspruch 1, ferner umfassend den Schritt des Anbringens eines ersten Sammelrohrs an einem Ende der ersten Rohrlänge (2) jeder Reihe an einer Seite des Kernstapels (4) und des Anbringens eines zweiten Sammelrohrs (7) an einem Ende der zweiten Rohrlänge (2) jeder Reihe an der einen Seite des Kernstapels (4), vor dem Löten.
     
    5. Verfahren nach Anspruch 4, wobei das Biegen des monolithischen Wärmetauscherkerns (10) das erste Sammelrohr (6) relativ zum zweiten Sammelrohr (7) verschiebt.
     
    6. Verfahren nach Anspruch 1, wobei der Schritt des Schlitzens der Materialfolie (20) kein Material aus der Folie entfernt.
     
    7. Verfahren nach Anspruch 6, wobei mindestens ein Teil des ersten Abschnitts (13) in Bezug auf den zweiten Abschnitt (14) verschoben wird.
     
    8. Wärmetauscher (1), welcher gemäß einem Verfahren nach einem der vorhergehenden Ansprüche hergestellt ist, umfassend: eine erste Mehrzahl von parallel angeordneten Rohren, welche sich entlang eines ersten bogenförmigen Pfads (31) erstrecken, wobei jedes der ersten Mehrzahl von parallel angeordneten Rohren eine oder mehrere Fluidleitungen aufweisen, welche sich durch dieselben erstrecken; eine zweite Mehrzahl von parallel angeordneten Rohren, welche sich entlang eines zweiten bogenförmigen Pfads (32) erstrecken, wobei jedes der zweiten Mehrzahl von parallel angeordneten Rohren eine oder mehrere Fluidleitungen aufweisen, welche sich durch dieselben erstrecken, wobei jedes der Mehrzahl von parallel angeordneten Rohren in einer gemeinsamen Ebene (33) mit einem entsprechenden der ersten Mehrzahl von parallel angeordneten Rohren ausgerichtet ist; eine Mehrzahl von wellenförmigen Rippensegmenten (3), welche in Räumen zwischen angrenzenden parallel angeordneten Rohren angeordnet sind,
    dadurch gekennzeichnet, dass
    jeder der wellenförmigen Rippensegmente (3) eine erste Reihe von Flanken, welche abwechselnde Höhen und Tiefen verbinden, welche mit breiten und flachen Oberflächen der ersten Mehrzahl von parallel angeordneten Rohren und eine zweite von Flanken aufweist, welche abwechselnde Höhen und Tiefen verbinden, welche mit breiten und flachen Oberflächen der zweiten Mehrzahl von parallel angeordneten Rohren verbinden; und ein gemeinsames Sammelrohr (8) die eine oder mehrere Fluidleitungen jedes der zweiten Mehrzahl von parallel angeordneten Rohren und die eine oder die mehreren Fluidleitungen jedes entsprechenden der ersten Mehrzahl von parallel angeordneten Rohren fluidisch verbindet.
     
    9. Wärmetauscher (1) nach Anspruch 8, wobei die erste Reihe von Flanken jedes wellenförmigen Rippensegments (3) von der zweiten Reihe von Flanken des wellenförmigen Rippensegments (3) über mindestens einen Großteil des Rippensegments (3) getrennt ist.
     
    10. Wärmetauscher (1) nach Anspruch 8, wobei der erste bogenförmige Pfad (31) eine erste Achse und einen ersten Radius definiert, wobei der zweite bogenförmige Pfad (32) eine zweite Achse und einen zweiten Radius definiert, die zweite Achse mit der ersten Achse ausgerichtet ist und der zweite Radius nicht gleich dem ersten Radius ist.
     
    11. Wärmetauscher (1) nach Anspruch 10, ferner umfassend ein erstes Eingangs/Ausgangs-Sammelrohr (6), welches mit Enden der ersten Mehrzahl von parallel angeordneten Rohren verbunden ist, und ein zweites Eingangs/Ausgangs-Sammelrohr (7), welches mit Enden der zweiten Mehrzahl von parallel angeordneten Rohren verbunden ist.
     
    12. Wärmetauscher (1) nach Anspruch 11, wobei eine Schwerpunktachse des ersten Eingangs/Ausgangs-Sammelrohrs (6), eine Schwerpunktachse des zweiten Eingangs/Ausgangs-Sammelrohrs (7), und die ausgerichteten ersten und zweiten Achsen näherungsweise in einer gemeinsamen Ebene (33) angeordnet sind.
     
    13. Wärmetauscher (1) nach Anspruch 11, wobei der zweite Radius größer als der erste Radius ist und ein Bereich der zweiten Mehrzahl von parallel angeordneten Rohren, die unmittelbar an dem zweiten Eingangs/Ausgangs-Sammelrohr (7) angrenzen, frei von der zweiten Reihe von Flanken ist, welche abwechselnde Höhen und Tiefen verbinden.
     
    14. Wärmetauscher (1) nach Anspruch 8, wobei die wellenförmigen Rippensegmente (3) eine Kerntiefe definieren und der erste und der zweite bogenförmige Pfad (31, 32) einen ersten und einen zweiten Biegeradius definieren, wobei jeder des ersten und zweiten Biegeradius nicht größer als zehnmal die Kerntiefe ist.
     


    Revendications

    1. Procédé de fabrication d'un échangeur de chaleur (1), comprenant : la fente d'une feuille de matériau (20) dans une direction longitudinale permettant de définir une première section (13) et une seconde section (14), la première et la seconde section (13, 14) étant jointes ensemble au niveau de points de raccordement espacés (12, 19) le long de la direction longitudinale ; la formation de la feuille de matériau (20) permettant de définir des ondulations en forme de serpentin ; la séparation de la feuille formée de matériau (20) en une pluralité de segments d'ailettes (3), chaque segment d'ailette (3) présentant une pluralité d'ondulations et un ou plusieurs des points de raccordement (12, 19) ; l'agencement des segments d'ailette (3) en alternance entre des rangées de tubes plats permettant de définir une pile centrale (4), chaque rangée comprenant une première longueur de tube (2) et une seconde longueur de tube (2) en relation côte à côte ; le brasage des segments d'ailette agencés (3) et des tubes plats permettant de former un noyau d'échangeur de chaleur monolithique (10), des pics et des creux des ondulations dans la première section (13) de chacun des segments d'ailette étant joints à l'une de la première et de la seconde longueur de tube (2) dans une première rangée adjacente et à l'une de la première et de la seconde longueur de tube (2) dans une seconde rangée adjacente, des pics et des creux des ondulations dans la seconde section (14) de chacun des segments d'ailette (3) étant joints à l'autre de la première et de la seconde longueur de tube (2) dans la première rangée adjacente et l'autre de la première et de la seconde longueur de tube (2) dans la seconde rangée adjacente ;
    caractérisé par
    la flexion du noyau d'échangeur de chaleur monolithique (10) en une forme arquée présentant une direction radiale, de sorte qu'un de la première et de la seconde longueur de tube (2) de chaque rangée soit située de manière radiale vers l'intérieur de l'autre de la première et de la seconde longueur de tube (2) de chaque rangée, dans lequel la flexion du noyau d'échangeur de chaleur monolithique (10) sépare au moins un des points de raccordement (12, 19) de chaque segment d'ailette (3).
     
    2. Procédé selon la revendication 1, comprenant en outre l'étape consistant à assembler un collecteur commun (8) à des extrémités de la première et de la seconde longueur de tube (2) de chaque rangée de tubes plats d'un côté de la pile centrale (4) avant le brasage.
     
    3. Procédé selon la revendication 1, dans lequel chacune de la première et de la seconde longueur de tube (2) de chaque rangée est un tube individuel.
     
    4. Procédé selon la revendication 1, comprenant en outre l'étape consistant à assembler un premier collecteur à une extrémité de la première longueur de tube (2) de chaque rangée d'un côté de la pile centrale (4), et à assembler un second collecteur (7) à une extrémité de la seconde longueur de tube (2) de chaque rangée sur ledit un côté de la pile centrale (4), avant le brasage.
     
    5. Procédé selon la revendication 4, dans lequel la flexion du noyau d'échangeur de chaleur monolithique (10) déplace le premier collecteur (6) relativement au second collecteur (7).
     
    6. Procédé selon la revendication 1, dans lequel l'étape de fente de la feuille de matériau (20) n'enlève pas de matériau de la feuille.
     
    7. Procédé selon la revendication 6, dans lequel au moins une partie de la première section (13) est déplacée par rapport à la seconde section (14).
     
    8. Échangeur de chaleur (1) fabriqué selon le procédé selon l'une quelconque des revendications précédentes comprenant : une première pluralité de tubes agencés de manière parallèle s'étendant le long d'un premier chemin arqué (31), chacun de la première pluralité de tubes agencés de manière parallèle présentant un ou plusieurs conduit(s) de fluide s'étendant à travers eux ; une seconde pluralité de tubes agencés de manière parallèle s'étendant le long d'un second chemin arqué (32), chacune de la seconde pluralité de tubes agencés de manière parallèle présentant un ou plusieurs conduit(s) de fluide s'étendant à travers eux, chacun de la seconde pluralité de tubes agencés de manière parallèle étant aligné dans un plan commun (33) avec un tube correspondant de la première pluralité de tubes agencés parallèles ; une pluralité de segments d'ailettes ondulés (3) agencés dans des espaces entre certains desdits tubes agencés parallèles,
    caractérisé en ce que
    chacun des segments d'ailette ondulés (3) présentant une première série de côtés reliant une alternance de crêtes et de creux joints à des surfaces larges et planes de la première pluralité de tubes agencés parallèles et une seconde série de côtés reliant une alternance de crêtes et de creux joints à des surfaces larges et planes de la seconde pluralité de tubes agencés parallèles ; et un collecteur commun (8) joignant de manière fluidique le ou les conduit(s) de fluide de chacun de la seconde pluralité de tubes agencés parallèles et le ou les conduit(s) de fluide de chacun du tube correspondant de la première pluralité de tubes agencés parallèles.
     
    9. Échangeur de chaleur (1) selon la revendication 8, dans lequel la première série de côtés de chaque segment d'ailette ondulé (3) est débranchée de la seconde série de côtés de ce segment d'ailette ondulé (3) sur au moins une majorité du segment d'ailette (3).
     
    10. Échangeur de chaleur (1) selon la revendication 8, dans lequel le premier chemin arqué (31) définit un premier axe et un premier rayon, le second chemin arqué (32) définit un second axe et un second rayon, le second axe est aligné avec le premier axe, et le second rayon n'est pas égal au premier rayon.
     
    11. Échangeur de chaleur (1) selon la revendication 10, comprenant en outre un premier collecteur d'entrée/sortie (6) joint aux extrémités de la première pluralité de tubes agencés parallèles, et un second collecteur d'entrée/sortie (7) joint aux extrémités de la seconde pluralité de tubes agencés parallèles.
     
    12. Échangeur de chaleur (1) selon la revendication 11, dans lequel un axe centroïde du premier collecteur d'entrée/sortie (6), un axe centroïde du second collecteur d'entrée/sortie (7) et le premier et le second axe alignés sont approximativement agencés dans un plan commun (33).
     
    13. Échangeur de chaleur (1) selon la revendication 11, dans lequel le second rayon est supérieur au premier rayon et une région de la seconde pluralité de tubes agencés parallèles immédiatement adjacents au second collecteur d'entrée/sortie (7) est dénué de la seconde série de côtés reliant une alternance de crêtes et de creux.
     
    14. Échangeur de chaleur (1) selon la revendication 8, dans lequel les segments d'ailette ondulés (3) définissent une profondeur de noyau et le premier et le second chemin arqué (31, 32) définissent un premier et un second rayon de courbure, chacun du premier et du second rayon de courbure ne dépassant pas dix fois la profondeur du noyau.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description