(19)
(11)EP 3 122 507 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15701065.3

(22)Date of filing:  06.01.2015
(51)International Patent Classification (IPC): 
B23K 9/10(2006.01)
B23K 9/32(2006.01)
(86)International application number:
PCT/US2015/010250
(87)International publication number:
WO 2015/147953 (01.10.2015 Gazette  2015/39)

(54)

INVERTER-BASED GENERATOR AND WELDING SYSTEM

WECHSELRICHTER BASIERENDER GENERATOR UND SCHWEISSSYSTEM

GENERATEUR D'INVERSEUR ET SYSTÈME DE SOUDAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.03.2014 US 201414229353

(43)Date of publication of application:
01.02.2017 Bulletin 2017/05

(73)Proprietor: Hobart Brothers Company
Troy, Ohio 45373 (US)

(72)Inventors:
  • ROZMARYNOWSKI, Scott Ryan
    Glenview, IL 60025 (US)
  • SICKELS, Darrell Lee
    Glenview, IL 60025 (US)

(74)Representative: Trinks, Ole 
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Postfach 10 26 05
86016 Augsburg
86016 Augsburg (DE)


(56)References cited: : 
WO-A1-2009/029360
US-A1- 2006 037 953
US-A1- 2003 164 645
US-A1- 2011 006 046
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The invention relates generally to welding systems and, more particularly, to inverter-based welding systems.

    [0002] A system as defined in the preamble of claim 1 is known from US 2011/006 046 A1.

    [0003] Welding is a process that has become increasingly ubiquitous in various industries and applications. As such, a variety of welding applications, such as construction and shipbuilding, may require welding devices that are portable and can easily be transported to a remote welding location. Accordingly, in some cases, it is often desirable for such welding devices to be operable as standalone units remote from a power grid or other primary power source. Therefore, a variety of welding systems utilizing alternate power sources, such as small gasoline-fueled engines, have been developed. However, certain welding tasks such as welding performed off-road or remotely to quickly repair certain equipment and/or other machinery, for example, may include load demands that are very small as compared to other larger welding tasks. It may be useful to provide a more compact and efficient portable welding system.

    BRIEF DESCRIPTION



    [0004] According to the present invention, a system comprises a portable, self-contained power supply unit configured to be hand-carried by a single operator, wherein the portable, self-contained power supply unit comprises an engine configured to drive a generator to produce a first power output, wherein the engine comprises a power rating of approximately 7,5 kW (10 horsepower) or less; a first inverter configured to convert the first power output into a second power output; and a second inverter configured to convert the first power output into a third power output, wherein the third power output comprises a welding power output. The portable, self-contained power supply unit further comprises a direct current (DC) bus including a bridge rectifier connected to a bus capacitance, wherein the DC bus is configured to provide DC power from the rectified first power output; wherein the first inverter is electrically coupled to the DC bus and configured to convert the rectified first power output into the second power output; herein the second inverter is electrically coupled to the DC bus and configured to convert the rectified first power output into the third power output, and wherein the power supply unit is configured to produce the second power output and the third power output substantially simultaneously.

    DRAWINGS



    [0005] These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

    FIG. 1 is a perspective view of an inverter-based power supply unit, which functions to power, control, and provide consumables to a welding operation and/or auxiliary equipment;

    FIG. 2 is a schematic diagram of the inverter-based power supply unit of FIG. 1 including a welding circuit, in accordance with present embodiments; and

    FIG. 3 is a series of plots illustrating the power conversion techniques and outputs of the inverter-based power supply unit of FIG. 1, in accordance with present embodiments.


    DETAILED DESCRIPTION



    [0006] Present embodiments relate to an inverter-based generator and welding system. In certain embodiments, the inverter-based generator and welding system may be useful in permitting the system to be moved from place to place relatively easily, or may be designed as a generally stationary system. Moreover, the inverter-based generator and welding system may be designed for field operation, in which case it may include an engine-generator unit within the enclosure that provides the necessary power for a given welding operation. Thus, the inverter-based generator and welding system may be designed for use in various applications and locations (e.g., remote locations, locations away from typical work areas or workstations, off-road locations, and so forth) in which one or more sources of utility power may be at least temporarily inaccessible. Furthermore, in certain embodiments, the inverter-based generator and welding system may be configured to operate as a standalone generator, a standalone welder, or concurrently as a standalone generator and as a standalone welder. In this manner, the inverter-based generator and welding system may provide an operator with the advantage of having sufficient power for auxiliary equipment (e.g., lighting at a campsite or other off-road worksite) as well as sufficient power to perform one or more welding operations (e.g., at the campsite or the off-road worksite).

    [0007] With the foregoing in mind, an embodiment of a generator and welding system, such as an inverter-based generator and welding system 10, is illustrated in FIG. 1. The inverter-based welding system 10 may provide power and control for a welding operation and/or auxiliary equipment. The inverter-based welding system 10 may include a power supply unit 12 enclosed in a cabinet or enclosure 14. As previously noted, in certain embodiments, the inverter-based welding system 10 may be useful in enabling the power supply unit 12 to be moved from place to place relatively easily, or may be designed as a generally stationary system. Moreover, the inverter-based welding system 10 may be designed for field operation, in which case it may include, for example, one or more of an engine-generator unit, a fuel cell, and an energy storage device within the enclosure 14 that provide the necessary power for a given welding operation or other application. In certain embodiments, the inverter-based welding system 10 may be designed for use in various locations (e.g., remote locations, locations away from typical work areas or workstations, off-road locations, and so forth) in which one or more sources of utility power may be at least temporarily inaccessible. Thus, the power supply unit 12 may operate as a standalone unit, generating the power necessary for a welding operation and/or auxiliary operations while isolated from additional power sources.

    [0008] As further illustrated by FIG. 1, the power supply unit 12 may include a control panel 16, through which an operator may, for example, control the machine operational characteristics, such as power, weld output, and so forth, for a welding operation via dials and switches 18. The control panel 16 may also include an auxiliary power output receptacle 20 and welding power output connectors 21 for outputting alternating current (AC) and/or direct current (DC) output power, respectively. As the operator adjusts operating parameters via the control panel 16, signals may be generated and received by one or more control circuits that may be included within the power supply unit 12. The power supply unit 12 controller may implement the desired welding operation in accordance with these inputs. For example, in one embodiment, the controller may implement a constant current regime for use with a shielded metal arc welding (SMAW) or stick welding operation and/or process type.

    [0009] In certain embodiments, an electrode assembly 22 may extend from the welding power output connectors 21 of the power supply unit 12 to the location of the weld. A first cable 24 and a welding torch 26 may be coupled to the power supply unit 12 as components of the electrode assembly 22. The welding torch 26 may be used to secure a welding electrode suitable for shielded metal arc welding (SMAW) (e.g., stick welding) operations. A work assembly 28 extending from the welding power output connectors 21 of the power supply unit 12 to the weld includes a second cable 30 terminating in a work lead clamp 32. During, for example, a weld operation, the work lead clamp 32 may be coupled to a workpiece 34 to create a circuit between the welding torch 26, the workpiece 34, and the power supply unit 12. That is, as the welding operator, for example, contacts or closely approaches the tip of the electrode of the welding torch 26 to the workpiece 34, an electrical circuit is completed through the cables 24 and 30, the welding torch 26, the workpiece 34, and the work lead clamp 32 to generate an electrical arc between the electrode tip and the workpiece 34 to perform a weld of the workpiece 34.

    [0010] In certain embodiments, as further illustrated by FIG. 1, a detachable (e.g., removable) receptacle 36 may be included as part of the power supply unit 12. The detachable receptacle 36 may be useful in storing one or more components of the inverter-based welding system 10. For example, the detachable receptacle 36 may be a pouch, a tote, or similar receptacle that may couple to an exterior portion of the power supply unit 12. As the inverter-based welding system 10 may be used as a portable (e.g., capable of being hand-carried by a single operator or transported from place to place by a single operator) generator and/or welding generator, the detachable receptacle 36 may be provided to facilitate the portability of the inverter-based welding system 10. For example, the detachable receptacle 36 may be used by an operator of the inverter-based welding system 10 to package or store one or more components (e.g., the cable 24, the welding torch 26, and so forth) of the electrode assembly 22 and/or components (e.g., the cable 30, the work lead clamp 32, and so forth) of the work assembly 28.

    [0011] FIG. 2 illustrates a schematic embodiment of the inverter-based power supply unit 12 of FIG. 1. As illustrated, the inverter-based power supply unit 12 may include an engine 38, a generator 40, a DC bus 42, inverters 43 and 44, a step-down and/or isolation transformer 46, output circuits 47 and 48, and control circuitry 50 all enclosed within the single enclosure 14. In certain embodiments, the inverter-based power supply unit 12 may be used to generate commanded power output levels for an auxiliary operation and/or welding operation, as described in detail below. Such commanded power output levels may be commanded based on one or more of amperage, voltage, wire type, wire feed speed, electrode diameter, and so forth. As such, the engine 38 may be used to drive the generator 40 to produce power (e.g., electrical power), which may be utilized to provide an auxiliary power output 52 (e.g., AC electrical output), to power an additional device or other auxiliary equipment (e.g., lights, grinding equipment, cutting tools, and so forth) and/or to produce a welding power output 54 (e.g., DC electrical output).

    [0012] The engine 38 may include a fuel source useful in providing power to the generator 40. The engine 38 may include a combustion engine powered by gasoline, diesel, LP fuel, natural gas, or other fuels, and may be configured to drive one or more rotating drive shafts. For example, in one embodiment, the engine 38 may include an industrial gas/diesel engine having a power rating of below approximately 15 hp, below approximately 10 hp, or below approximately 5 hp. Thus, at the aforementioned power ratings and physical size, the engine 38 may be referred to as a small industrial engine. The generator 40 coupled to the engine 38 may convert the power output (e.g., mechanical energy) of the engine 38 into electrical power, producing an alternating current (AC) voltage output. In certain embodiments, the generator 40 may be rated at less than approximately 1000 watts (W), less than approximately 2000 W, less than approximately 3000 W, less than approximately 4000 W, or otherwise up to approximately 5000 W.

    [0013] As previously noted, the power supply unit 12 includes the DC bus 42 and the inverters 43 and 44. The DC bus 42 includes a bridge rectifier 56 connected to a bus capacitance 58 (Cbus). In certain embodiments, the bridge rectifier 56 may include a configuration (e.g., an H-bridge configuration) of diodes (e.g., D1, D2, D3, and D4) for converting (e.g., rectifying) the incoming AC voltage signal (e.g., 115V, 120V, 200V, 208V, 230V, or similar voltage rating) generated via the generator 40 into a filtered direct current (DC) voltage signal. If a low AC voltage is supplied by the generator 40, a boost circuit could be incorporated into the DC bus 42 to raise the voltage to the desired operational level. The rectified and filtered DC voltage signal may then be transmitted to power switches 60 (e.g., semiconductor switches Q1, Q2, Q3, Q4) of the auxiliary inverter 43 or to power switches 62 (e.g., semiconductor switches Q5, Q6, Q7, Q8) of the welding power inverter 44 to respectively produce the AC auxiliary power output 52 and the DC welding power output 54.

    [0014] Specifically, the power switches 60 (e.g., switches Q1, Q2, Q3, Q4) may convert the rectified and filtered DC voltage signal into an AC voltage signal, which may be then filtered via an inductor 64 and capacitor 66 of the output circuit 47 to produce a constant AC auxiliary power output 52. It should be appreciated that the power switches 60 and 62 may include any configuration of integrated power electronic switching devices such as insulated gate bipolar transistors (IGBTs), field-effect transistors (FETs), and so forth, which may be controlled (e.g., by the control circuitry 50) to switch from "ON" (e.g., activated) and "OFF" (e.g., deactivated) states to control the power conversion via the inverter 43 and/or inverter 44, and by extension, the AC auxiliary power output 52 and the DC welding power output 54.

    [0015] For example, in a similar manner, the power switches 62 (e.g., switches Q5, Q6, Q7, Q8) may convert the rectified and filtered DC voltage signal into an AC voltage signal, which may be then reduced (e.g., stepped down) via a step-down and/or isolation transformer 46 to a voltage level (e.g., approximately 70VAC, or other similar voltage rating) suitable for producing a welding power output. The transformer 46 may be any device capable of reducing the AC voltage signal produced, for example, by the power switches 62 of the inverter 44 to a voltage level suitable for producing a welding power output to supply to the welding torch 26. The transformer 46 may also be used to isolate the welding-specific circuitry of the inverter-based power supply unit 12 from the AC auxiliary power output 52 circuitry of the power supply unit 12. The output circuit 48 may then convert the welding-level AC voltage signal received from the transformer 46 back into a DC voltage signal via an output rectifier 68. The new DC voltage signal may be then useful for supporting various welding operations and/or processes (e.g., a SMAW welding process).

    [0016] Although not illustrated, as previously noted, it should be appreciated that the AC auxiliary power output 52 may be used to power another external device and/or other auxiliary equipment. For example, the inverter-based power supply unit 12 may supply the voltage AC auxiliary power output 52 to external lighting equipment, grinding equipment, cutting tools, and so forth. Likewise, as noted above, the inverter-based power supply unit 12 may also be used to generate a welding power output, for example, to perform one or more welding operations. Furthermore, by providing the inverters 43 and 44 in conjunction with the engine 38 and generator 40, the inverter-based power supply unit 12 may operate markedly quieter than other generator and/or welding systems.

    [0017] In certain embodiments, as further illustrated by FIG. 2, the engine 38, the generator 40, the DC bus 42, and the inverters 43 and 44 may each be controlled and/or commanded by the control circuitry 50. The control circuitry 50 may include an analog control circuit, or it may include a processor 70 and/or other data processing circuitry that may be communicatively coupled to a memory 72 to execute instructions to control, for example, one or more parameters of the engine 38, the generator 40, and the bridge rectifier 56, and the power switches 60 and 62 of the respective inverters 43 and 44. These instructions may be encoded in programs or code stored in tangible non-transitory computer-readable medium, such as the memory 72 and/or other storage. The processor 70 may be a general purpose processor, system-on-chip (SoC) device, application-specific integrated circuit (ASIC), or other processor configuration. Similarly, the memory 72 may include, for example, random-access memory (RAM), read-only memory (ROM), flash memory (e.g., NAND), and so forth.

    [0018] In one embodiment, the control circuitry 50 may be useful in controlling the power switches 60 and 62 of the respective inverters 43 and 44, or other components of the inverter-based power supply unit 12 to produce a stabilized AC power output (e.g., AC auxiliary power output 52) to power auxiliary equipment and/or a stabilized DC welding power output to support one or more welding operations and/or processes. For example, the inverter-based power supply unit 12 may be used to support a stick (SMAW) welding process, which may generally use a constant current (CC) welding power output controlled by the control circuitry 50. In such an embodiment, the control circuitry 50 may control the amperage output (e.g., amperage of an electrical arc generated via the welding torch 26) to a predetermined CC value by adjusting voltage and/or amperage feedback signals detected at the output stage of the inverter 44. In other embodiments, the inverter-based power supply unit 12 may be used to perform other user-selected welding processes, such as a flux cored welding process, a metal inert gas (MIG) welding process, and the like.

    [0019] In certain embodiments, the welding power output 54 may be generated in place of, in addition to, or concurrently (e.g., at the same time) with the AC auxiliary power output 52. That is, the power supply unit 12 may produce the AC auxiliary power output 52 and the DC welding power output 54 substantially simultaneously (e.g., occurring at substantially the same time) and/or concurrently (e.g., occurring in parallel or at substantially the same time). For example, during operation, if the power supply unit 12 is operating at an output power rating of, for example, approximately 3000 W, the power supply unit 12 may provide 3000 W of power as the AC auxiliary power output 52, 3000 W of power as the DC welding power output 54, or concurrently provide 1500 W for each of the AC auxiliary power output 52 and the DC welding power output 54 at substantially the same time.

    [0020] Nevertheless, it should be appreciated that the power provided as the respective power outputs 52 and 54 may be dependent upon the specific auxiliary equipment receiving the power output 52 and/or the specific welding operation or task being performed via the power output 54. Thus, when the power supply unit 12 supplies the power outputs 52 and 54 concurrently, the total power output (e.g., 1000W, 2000 W, 3000 W, 3500 W, and so forth) may or may not be divided evenly between the respective power outputs 52 and 54. Furthermore, as the present embodiments of the inverter-based power supply unit 12 may be designed for use in various locations (e.g., remote locations, locations away from typical work areas or stations, off-road locations, and so forth), having the ability to operate as a standalone generator, a standalone welder, or concurrently as a standalone generator and as a standalone welder may allow an operator the advantage of having sufficient power for auxiliary equipment (e.g., lighting at a campsite or other off-road worksite) as well as sufficient power to perform one or more welding operations (e.g., at the campsite or the off-road worksite).

    [0021] FIG. 3 depicts a series of waveform plots 76, 78, 80, and 82 illustrating examples of the previously discussed power conversion and control techniques of the inverter-based power supply unit 12 implemented using, for example, the control circuitry 30. As illustrated by plot 76 of FIG. 3, the control circuitry 50 may generate a reference sine wave AC voltage signal 86 (e.g., modulating signal) to be compared against a generated triangular wave AC voltage signal 84 (e.g., saw-tooth carrier signal). Similarly, the control circuitry 50 may also compare an inversion of the sine wave AC voltage signal 86 against the triangular wave AC voltage signal 84. The AC voltage signal 86 may also be totally synthesized within software stored in the memory 72 of the in the control circuitry 50. The signals 84 and 86 may then be used to drive and/or control the power switches 60 of the inverter 43 and/or the power switches 62 of the inverter 44. The resultant output voltage signal of the inverter 43 and/or the inverter 44 may be a pulse-width modulated (PWM) inverted signal 90 as illustrated by plot 78. To produce the auxiliary power output 52, the signal 90 may be then filtered (e.g., filtered via the AC output circuit 47) to produce a filtered (e.g., "clean" and stabilized) AC voltage signal as the auxiliary power output 52, as illustrated by plot 80. As previously noted, the auxiliary power output 52 may be provided at the power receptacle 20 of the inverter-based power supply unit 12 to which an external device and/or other auxiliary equipment (e.g., lighting equipment, grinding equipment, cutting tools, and so forth) may be coupled.

    [0022] In a similar manner, to produce the welding power output 54, a volt amp signal 91 of plot 82 may be reduced (e.g., stepped down) via the transformer 46 and converted via the DC output circuit 48 to produce a DC welding voltage signal (e.g., CC welding output) as the welding power output 54, as illustrated by plot 82. As also previously noted, the welding power output 54 may be provided to the welding torch 26 of the inverter-based power supply unit 12, which may be then used to generate an electrical arc to perform one or welding operations and/or processes. It should again be appreciated that the inverter-based power supply unit 12 produces the auxiliary power output 52 and the welding power output 54 simultaneously (e.g., in parallel) or may produce them individually.

    [0023] While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes.


    Claims

    1. A system (10), comprising:
    a portable, self-contained power supply unit (12) configured to be hand-carried by a single operator, wherein the portable, self-contained power supply unit (12) comprises:

    an engine (38) configured to drive a generator (40) to produce a first power output, wherein the engine (38) comprises a power rating of approximately 7,5 kW (10 horsepower) or less;

    a first inverter (43) configured to convert the first power output into a second power output; and

    a second inverter (44) configured to convert the first power output into a third power output, wherein the third power output comprises a welding power output (54),

    characterized in that

    the portable, self-contained power supply unit (12) further comprises a direct current (DC) bus (42) including a bridge rectifier (56) connected to a bus capacitance (58), wherein the DC bus (42) is configured to provide DC power from the rectified first power output;

    wherein the first inverter (43) is electrically coupled to the DC bus (42) and configured to convert the rectified first power output into the second power output;

    wherein the second inverter (44) is electrically coupled to the DC bus (42) and configured to convert the rectified first power output into the third power output, and

    wherein the power supply unit (12) is configured to produce the second power output and the third power output simultaneously.


     
    2. The system of claim 1, wherein the generator (40) comprises a power rating of approximately 3500 W or less.
     
    3. The system of claim 1 or 2, wherein the first inverter (43) and the second inverter (44) each comprises a plurality of power switches (60, 62) configured to invert the rectified first power output in parallel.
     
    4. The system of one of the preceding claims, comprising a welding torch (26), wherein the welding power output (54) comprises a direct current (DC) welding power output delivered to the welding torch (26).
     
    5. The system of one of the preceding claims, wherein the first inverter (43) is configured to provide the second power output to an auxiliary device coupled to the system, wherein the second power output comprises an alternating current (AC) auxiliary power output (52).
     
    6. The system of one of the preceding claims, comprising:

    a transformer (46) coupled to the second inverter (44), wherein the transformer (46) is configured to reduce the third power output; and

    a welding output circuit (48) coupled to the transformer (46), wherein the welding output circuit (48) is configured to rectify the third power output to provide a direct current (DC) output as the welding power output (54).


     
    7. The system of one of claims 4 to 6, comprising the welding torch (26) and a work lead clamp (32), wherein the welding torch (26) is configured to receive the welding power output (54) to generate a welding arc.
     
    8. The system of one of the preceding claims, comprising control circuitry (50), wherein the control circuitry (50) is configured to adjust the welding power output (54) according to a user-selected welding process type.
     
    9. The system of claim 8, wherein the user-selected welding process type comprises a shielded metal arc welding (SMAW) process.
     
    10. The system of one of the preceding claims, wherein the first inverter (43) is configured to convert the first power output into the second power output and to provide the second power output to an auxiliary device coupled to the welding power supply unit (12), wherein the second power output comprises the alternating current (AC) auxiliary power output (52).
     
    11. The system of one of the preceding claims, comprising a receptacle (36) detachably coupled to the power supply unit (12), wherein the receptacle (36) comprises a pouch or a tote configured to detachably couple to an external portion of the power supply unit (12).
     
    12. The system of claim one of the preceding claims, comprising one or more components configured to detachably couple to the system to perform an operation, wherein the one or more components comprises a welding cable (24, 30), a welding torch (26), a work lead clamp (32), an auxiliary device, or any combination thereof.
     


    Ansprüche

    1. System (10), Folgendes umfassend:
    eine portable, in sich abgeschlossene Stromversorgungseinheit (12), die dafür eingerichtet ist, von einem einzelnen Benutzer von Hand getragen zu werden, wobei die portable, in sich abgeschlossene Stromversorgungseinheit (12) Folgendes umfasst:

    einen Motor (38), der dafür eingerichtet ist, einen Generator (40) anzutreiben, um eine erste Leistung zu erzeugen, wobei der Motor (38) eine Nennleistung von ungefähr 7,5 kW (10 PS) oder weniger aufweist;

    einen ersten Wechselrichter (43), der dafür eingerichtet ist, die erste Leistung in eine zweite Leistung umzuwandeln; und

    einen zweiten Wechselrichter (44), der dafür eingerichtet ist, die erste Leistung in eine dritte Leistung umzuwandeln, wobei die dritte Leistung eine Schweißleistung (54) umfasst,

    dadurch gekennzeichnet, dass

    die portable, in sich abgeschlossene Stromversorgungseinheit (12) außerdem einen Gleichstrom-Bus (42) umfasst, welcher einen an eine Buskapazität (58) angeschlossenen Brückengleichrichter (56) enthält, wobei der Gleichstrom-Bus (42) dafür eingerichtet ist, Gleichstrom von der gleichgerichteten ersten Leistung zu liefern;

    wobei der erste Wechselrichter (43) mit dem Gleichstrom-Bus (42) elektrisch gekoppelt und dafür eingerichtet ist, die gleichgerichtete erste Leistung in die zweite Leistung umzuwandeln;

    wobei der zweite Wechselrichter (44) mit dem Gleichstrom-Bus (42) elektrisch gekoppelt und dafür eingerichtet ist, die gleichgerichtete erste Leistung in die dritte Leistung umzuwandeln, und

    wobei die Stromversorgungseinheit (12) dafür eingerichtet ist, die zweite Leistung und die dritte Leistung gleichzeitig zu erzeugen.


     
    2. System nach Anspruch 1, wobei der Generator (40) eine Nennleistung von ungefähr 3500 W oder weniger aufweist.
     
    3. System nach Anspruch 1 oder 2, wobei der erste Wechselrichter (43) und der zweite Wechselrichter (44) jeweils eine Mehrzahl von Leistungsschaltern (60, 62) umfassen, welche dafür eingerichtet sind, die gleichgerichtete erste Leistung parallel zu wechselrichten.
     
    4. System nach einem der vorhergehenden Ansprüche, welches einen Schweißbrenner (26) umfasst, wobei die Schweißleistung (54) eine Gleichstrom-Schweißleistung umfasst, die an den Schweißbrenner (26) abgegeben wird.
     
    5. System nach einem der vorhergehenden Ansprüche, wobei der erste Wechselrichter (43) dafür eingerichtet ist, die zweite Leistung an ein an das System angeschlossenes Zusatzgerät abzugeben, wobei die zweite Leistung eine Wechselstrom-Hilfsleistung (52) umfasst.
     
    6. System nach einem der vorhergehenden Ansprüche, Folgendes umfassend:

    einen mit dem zweiten Wechselrichter (44) gekoppelten Transformator (46), wobei der Transformator (46) dafür eingerichtet ist, die dritte Leistung zu vermindern; und

    einen mit dem Transformator (46) gekoppelten Schweiß-Ausgangsstromkreis (48), wobei der Schweiß-Ausgangsstromkreis (48) dafür eingerichtet ist, die dritte Leistung gleichzurichten, um eine Gleichstromausgangsleistung als die Schweißleistung (54) zu bieten.


     
    7. System nach einem der Ansprüche 4 bis 6, den Schweißbrenner (26) und eine Erdungskabelklemme (32) umfassend, wobei der Schweißbrenner (26) dafür eingerichtet ist, die Schweißleistung (54) aufzunehmen, um einen Schweißbogen zu erzeugen.
     
    8. System nach einem der vorhergehenden Ansprüche, eine Steuerschaltung (50) umfassend, wobei die Steuerschaltung (50) dafür eingerichtet ist, die Schweißleistung (54) gemäß einem benutzergewählten Schweißverfahrenstyp einzustellen.
     
    9. System nach Anspruch 8, wobei der benutzergewählte Schweißverfahrenstyp ein Lichtbogenhandschweißen-Verfahren ("shielded metal arc welding", SMAW) umfasst.
     
    10. System nach einem der vorhergehenden Ansprüche, wobei der erste Wechselrichter (43) dafür eingerichtet ist, die erste Leistung in die zweite Leistung umzuwandeln und die zweite Leistung an ein an die Schweiß-Stromversorgungseinheit (12) angeschlossenes Zusatzgerät abzugeben, wobei die zweite Leistung die Wechselstrom-Hilfsleistung (52) umfasst.
     
    11. System nach einem der vorhergehenden Ansprüche, einen abnehmbar mit der Stromversorgungseinheit (12) gekoppelten Behälter (36) umfassend, wobei der Behälter (36) einen Beutel oder eine Tragetasche umfasst, der bzw. die dafür eingerichtet ist, abnehmbar an einem äußeren Teil der Stromversorgungseinheit (12) befestigt zu werden.
     
    12. System nach einem der vorhergehenden Ansprüche, ein oder mehrere Komponenten umfassend, die dafür eingerichtet sind, abnehmbar am System angeschlossen zu werden, um eine Funktion auszuführen, wobei die ein oder mehreren Komponenten ein Schweißkabel (24, 30), einen Schweißbrenner (26), eine Erdungskabelklemme (32), ein Zusatzgerät oder jegliche beliebige Kombination davon umfassen.
     


    Revendications

    1. Système (10) comprenant :
    une unité d'alimentation électrique autonome portable (12) configurée pour être portée à la main par un seul opérateur, dans lequel l'unité d'alimentation électrique autonome portable (12) comprend :

    un moteur (38), configuré pour entraîner un générateur (40) pour produire une première puissance de sortie, dans lequel le moteur (38) comprend une puissance nominale égale ou inférieure à approximativement 7,5 kW (10 chevaux-vapeurs) ;

    un premier onduleur (43) configuré pour convertir la première puissance de sortie en une deuxième puissance de sortie ; et

    un second onduleur (44) configuré pour convertir la première puissance de sortie en une troisième puissance de sortie, dans lequel la troisième puissance de sortie comprend une puissance de sortie de soudage (54),

    caractérisé en ce que l'unité d'alimentation électrique autonome portable (12) comprend en outre un bus à courant continu (CC) (42) comprenant un redresseur en pont (56) raccordé à une capacité de bus (58), dans lequel le bus CC (42) est configuré pour fournir une puissance CC à partir de la première puissance de sortie redressée ;

    dans lequel le premier onduleur (43) est couplé électriquement au bus CC (42) et configuré pour convertir la première puissance de sortie redressée en la deuxième puissance de sortie ;

    dans lequel le second onduleur (44) est couplé électriquement au bus CC (42) et configuré pour convertir la première puissance de sortie redressée en la troisième puissance de sortie, et

    dans lequel l'unité d'alimentation électrique (12) est configurée pour produire la deuxième puissance de sortie et la troisième puissance de sortie en même temps.


     
    2. Système selon la revendication 1, dans lequel le générateur (40) comprend une puissance nominale égale ou inférieure à approximativement 3 500 W.
     
    3. Système selon la revendication 1 ou 2, dans lequel le premier onduleur (43) et le second onduleur (44) comprennent chacun une pluralité d'interrupteurs d'alimentation (60, 62) configurés pour inverser la première puissance de sortie redressée en parallèle.
     
    4. Système selon l'une des revendications précédentes, comprenant une torche de soudage (26), dans lequel la puissance de sortie de soudage (54) comprend une puissance de sortie de soudage en courant continu (CC) délivrée à la torche de soudage (26).
     
    5. Système selon l'une des revendications précédentes, dans lequel le premier onduleur (43) est configuré pour fournir la deuxième puissance de sortie à un dispositif auxiliaire couplé au système, dans lequel la deuxième puissance de sortie comprend une puissance de sortie auxiliaire à courant alternatif (CA) (52) .
     
    6. Système selon l'une des revendications précédentes, comprenant :

    un transformateur (46) couplé au second onduleur (44), dans lequel le transformateur (46) est configuré pour réduire la troisième puissance de sortie ; et

    un circuit de sortie de soudage (48) couplé au transformateur (46), dans lequel le circuit de sortie de soudage (48) est configuré pour redresser la troisième puissance de sortie pour fournir une sortie de courant continu (CC) en tant que puissance de sortie de soudage (54).


     
    7. Système selon l'une des revendications 4 à 6, comprenant la torche de soudage (26) et une pince de travail en plomb (32), dans lequel la torche de soudage (26) est configurée pour recevoir la puissance de sortie de soudage (54) pour générer un arc de soudage.
     
    8. Système selon l'une des revendications précédentes, comprenant un ensemble de circuits de commande (50), dans lequel l'ensemble de circuits de commande (50) est configuré pour ajuster la puissance de sortie de soudage (54) en fonction d'un type de processus de soudage sélectionné par l'utilisateur.
     
    9. Système selon la revendication 8, dans lequel le type de processus de soudage sélectionné par l'utilisateur comprend un processus de soudage à l'arc électrique avec électrode métallique enrobée (SMAW).
     
    10. Système selon l'une des revendications précédentes, dans lequel le premier onduleur (43) est configuré pour convertir la première puissance de sortie en la deuxième puissance de sortie et pour fournir la deuxième puissance de sortie à un dispositif auxiliaire couplé à l'unité d'alimentation électrique de soudage (12), dans lequel la deuxième puissance de sortie comprend la puissance de sortie auxiliaire à courant alternatif (CA) (52).
     
    11. Système selon l'une des revendications précédentes, comprenant un réceptacle (36) couplé de manière amovible à l'unité d'alimentation électrique (12), dans lequel le réceptacle (36) comprend un sac ou un grand sac configuré pour être couplé de manière amovible à une partie externe de l'alimentation électrique (12).
     
    12. Système selon l'une des revendications précédentes, comprenant un ou plusieurs composants configurés pour être couplés de manière amovible au système pour effectuer une opération, dans lequel le ou les composants comprennent un câble de soudage (24, 30), une torche de soudage (26), une pince de travail en plomb (32), un dispositif auxiliaire ou n'importe quelle combinaison de ces derniers.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description