(19)
(11)EP 3 123 588 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 15770033.7

(22)Date of filing:  26.03.2015
(51)International Patent Classification (IPC): 
H02J 5/00(2016.01)
H01Q 1/22(2006.01)
H02J 50/27(2016.01)
H01Q 9/28(2006.01)
(86)International application number:
PCT/IL2015/050331
(87)International publication number:
WO 2015/145451 (01.10.2015 Gazette  2015/39)

(54)

NOVEL PROBES ARRANGEMENT

NEUARTIGE SONDENANORDNUNG

NOUVEL ARRANGEMENT DE SONDES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.03.2014 US 201461971279 P
30.12.2014 US 201462097750 P

(43)Date of publication of application:
01.02.2017 Bulletin 2017/05

(73)Proprietor: Humavox Ltd.
4464008 Kfar Saba (IL)

(72)Inventor:
  • MANOVA-ELSSIBONY, Asaf
    4922357 Petah-Tikva (IL)

(74)Representative: Balder IP Law, S.L. 
Castellana 93
28046 Madrid
28046 Madrid (ES)


(56)References cited: : 
CN-A- 103 312 051
US-A1- 2012 153 745
US-A1- 2013 147 427
US-A1- 2014 008 992
KR-A- 20120 128 099
US-A1- 2012 200 158
US-A1- 2013 324 041
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention is related to a novel probes arrangement for improving RF coupling between a transmitting unit and a receiving unit in wireless charging systems, in general and in a conductive closed/half closed chamber and near field conditions in particular.

    BACKGROUND



    [0002] Wireless charging systems and wireless charging devices are well known in the art. Some examples of such charging systems and devices that are using electromagnetic energy for charging are described in details in international patent publications Nos. WO 2013/118116, WO 2013/179284, and WO 2015/022690 of the same inventor.

    [0003] US2013/147427A1 discloses a wireless electric field power transmission system and method. The receiver must be positioned in the same orientation as the transmitter to align it with the direction of the field lines between the transmitter boards.

    [0004] US2014/008992A1 discloses the use of an antenna array in a receiver. The antenna at the receiver covers a certain area of transmission. In addition to the pickup area of the antenna, the antenna should match the polarity of the field that reaches it.

    [0005] The basic condition for successful and efficient charging in all wireless charging systems based on electromagnetic radiation transmission is to achieve high coupling and high transfer efficiency between the transmitting probe and the receiving probe, i.e. between the transmitting unit of the wireless charging device and the receiving unit of the device under charge (denoted herein after :"DUC").

    [0006] High coupling between the transmitting probe and a receiving probe is usually obtained in stable unchanging systems where the position and location of the probes are fixed. However, in wireless charging systems, there is a need to allow a certain amount of flexibility and freedom of movement between the transmitting component and the receiving component, so as to maintain high transfer efficiency between the probes regardless of the position and orientation of the chargeable device, since a user may position the device under charge onto/within the wireless charging device in each charging session in a different position and/or orientation.

    [0007] When using a single probe the ground plat of the receiving unit is used as a RF ground to the receiving probe. However, this ground is significantly small and thus, any environmental changes are influencing the electromagnetic field lines distribution between the probe and the ground, i.e. the sensitivity of the receiving probe as to changes in its position and/or orientation is high.

    [0008] The sensitivity of a single probe to elements around it is further enhanced when charging is conducted in a close/partially close conductive structure. In such scenario, the charging system is usually designed to obtain high coupling and to have high efficiency of energy transfer at certain position of the transmitting probe relative to the receiving probe as the receiving probe is referenced to specific ground point in the charging system. Upon changing the position and/orientation of the DUC within the charging zone, the steady state of the wireless charging system as designed is breached as the interaction of the receiving probe with the elements around it, such as but not limited to, the walls of the conductive charging device and the transmitting probe changes. This change breach the conditions required to obtain high coupling between the transmitting and the receiving units as the electromagnetic field lines distribution between the receiving probe and the RF ground are being change and interact with other elements in the surrounding, and consequently, the transfer efficiency between the units significantly decreases.

    [0009] The present invention is aimed to provide a novel probes arrangement configured and operable to improve the stability and the flexibility of the coupling between the charging device and the device under charge by enhancing the stability of the RF coupling between the transmitting and the receiving units and maintaining high transfer efficiency between the units, in a dynamic charging system where the position and the orientation of the device under charge changes from one charging session to the other. The novel probes arrangement may be used in different environments including wireless charging systems within a close/half close charging chamber and open near field environments.

    SUMMARY OF THE INVENTION



    [0010] The invention is set out in the appended claims. Preferred embodiments are specified in the dependent claims.

    [0011] The subject matter disclosed herein is directed to a novel probes arrangement configured to be attached to a receiving unit of a device under charge positioned onto or within a conductive charging structure having a transmitting unit for transmitting RF energy, wherein said probes arrangement comprises at least two probes configured to create a closed electromagnetic field lines between them so as to allow improved coupling between said transmitting unit and said receiving unit regardless of the position and/or the orientation of the device under charge relative to the conductive charging structure.

    [0012] The improved coupling between the receiving unit attached to the probes arrangement and the transmitting unit of the conductive charging structure allows a high RF transfer efficiency between said units.

    [0013] The conductive charging structure having a transmitting unit is adapted to confine the transmitted RF energy to a charging zone, and said probes arrangement is configured to increase the dimensions of the charging zone relative to at least one of the following characters: (a) the number of probes in the probes arrangement; and (b) the structure and/or the positioning of the entire probes arrangement projection over X-Y-Z axis.

    [0014] In some embodiments of the invention, the at least two probes have a similar structure and/or length, while in some other embodiments of the invention, the at least two probes differ from the other probe/s in structure and/or length. In some other embodiments of the invention, at least one probe may be branched.

    [0015] The at least two probes may create a two dimensional or a three dimensional structure over axis X-Y-Z wherein, the lines of the electromagnetic field are arranged between and/or around them so as to create a microenvironment between and/or around them configured to minimize changes in the electromagnetic field occurring as a result of changes in the position and/or orientation of the device under charge.

    [0016] The subject matter disclosed herein is further directed to a wireless chargeable device comprising the novel probes arrangement as described above.

    [0017] The invention is further directed to a wireless chargeable device comprising at least a probes arrangement functionally attached to a receiving unit, said probes arrangement comprises at least two probes configured to create a closed electromagnetic field between them so as to allow improved coupling between said transmitting unit and said receiving unit regardless of the position and/or the orientation of the wireless chargeable device relative to the conductive charging structure, and a receiving unit. The improved coupling between the receiving unit attached to the probes arrangement and the transmitting unit of the conductive charging structure allows a high RF transfer efficiency between said units.

    [0018] The conductive charging structure having a transmitting unit is adapted to confine the transmitted RF energy to a charging zone, and said probes arrangement is configured to increase the dimensions of the charging zone relative to at least one of the following characters: (a) the number of probes in the arrangement; and (b) the structure and/or the positioning of the entire probes arrangement projection over X-Y-Z axis. In some embodiments, the at least two probes have a similar structure and/or length, while in other embodiments, the at least two probes differ from the other probe/s in structure and length. In some embodiments, at least one probe may be branched. In further embodiments of the invention, the at least two probes may create a two dimensional or a three dimensional structure over axis X-Y-Z, wherein lines of the electromagnetic field are arranged between and/or around them so as to create a microenvironment around them configure to minimize changes in the electromagnetic field occurring as a result of changes in the position and/or orientation of the device under charge.

    [0019] The probes arrangement of the wireless chargeable device is preferably attached to the receiving unit and configured to stabilize the receiving unit in a manner that the dimensions of the charging zone created increase, such that efficient charging of the chargeable device is maintained regardless of the position and/or orientation of the chargeable device. Additionally and/or alternatively, the probes arrangement attached to the receiving unit are configured to minimize electromagnetic influence created by the conductive charging device and/or reflected from the surroundings for obtaining high RF energy transfer efficiency to the receiving unit of the wireless chargeable device.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] Examples illustrative of embodiments of the disclosure are described below with reference to figures attached hereto. In the figures, identical structures, elements or parts that appear in more than one figure are generally labeled with the same numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. Many of the figures presented are in the form of schematic illustrations and, as such, certain elements may be drawn greatly simplified or not-to-scale, for illustrative clarity. The figures are not intended to be production drawings.

    [0021] The figures (Figs.) are listed below.

    Figure 1 is a schematic illustration of an example of a novel probe arrangement configured and operable to allow improved coupling range and stability between receiving and transmitting units of a wireless charging system and the close electromagnetic filed lines distribution between the two probes.

    Figure 2 is a schematic illustration of another example of a novel probe arrangement for improving the coupling range and stability between receiving and transmitting units of a wireless charging system and the close electromagnetic filed lines distribution between the two probes.

    Figure 3 is a schematic illustration of one another example of a novel probe arrangement for improving the coupling range and stability between receiving and transmitting units of a wireless charging system, wherein the device under charge that comprises the receiving antenna is a hearing aid device.


    DESCRIPTION OF VARIATIONS OF THE INVENTION



    [0022] In the following description, various aspects of novel probes arrangement configured and operable to allow improved coupling between receiving and transmitting units of a wireless charging system is described. For the purpose of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the arrangement.

    [0023] Although various features of the disclosure may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the disclosure may be described herein in the context of separate embodiments for clarity, the disclosure may also be implemented in a single embodiment. Furthermore, it should be understood that the disclosure can be carried out or practiced in various ways, and that the disclosure can be implemented in embodiments other than the exemplary ones described herein below. The descriptions, examples and materials presented in the description, as well as in the claims, should not be construed as limiting, but rather as illustrative.

    [0024] Terms for indicating relative direction or location, such as "right" and "left", "up" and "down", "top" and "bottom", "horizontal" and "vertical", "higher" and "lower", and the like, may also be used, without limitation.

    [0025] In accordance with embodiments of the invention, the novel probes arrangement provided herein comprises at least two probes configured to improve the flexibility of the coupling effect and to allow high transfer efficiency of RF energy between the transmitting probe of a wireless charging device and the receiving probe of a DUC, by enhancing the stability of the RF coupling between the transmitting probe and the receiving probe and minimizing the surroundings effect on the coupling between the probes.

    [0026] The increased stability of the charging system and the flexibility to changes in the electromagnetic field resulting from different positioning of the DUC within the charging zone is mainly obtained by the addition of at least one additional receiving probe to the receiving unit so as to provide the first probe a constant influence in its vicinity in order to minimize the influence of other elements in the surroundings on the first probe that may breaches the steady state of the charging system, decrease the coupling between the transmitting and the receiving units and lead to decreasing of energy transfer efficiency between the units.

    [0027] When using a single probe, any change in the position and/or orientation between the transmitting probe and the DUC as well as electromagnetic influences from the surroundings (in near field conditions) and/or from the walls of the conductive charging device (either closed or partially closed chamber) affect the coupling between the transmitting unit and the receiving unit that is relatively unstable and as such, leads to poor and unstable charging of the DUC as the primary conditions that were settled for obtaining high coupling between the probes and high transfer efficiency of RF energy between the transmitting probe and the receiving probe are breached.

    [0028] In accordance with the novel probes arrangement provided herein, the reference point of the receiving probe remains stable in spite of electromagnetic changes that occur in the charging zone due to surroundings effects. This is achieved thanks to the addition of at least one another probe to the receiving probe in a manner that creates a stable "micro-environment" between and/or around the probes arrangement as the lines of the electromagnetic field are now being closed between the at least two probes of the probes arrangement. Thus, any changes in the position and/or orientation of the DCU with the novel probe that may lead to changes in the electromagnetic field around the receiving probe due to changes in the interaction of the receiving probe with the transmitting probe and/or the influence of the walls of the conductive charging device are minimized as these changes also influence the additional probe/s and since the influence on both probes is mutual, the lines of the electromagnetic field between the receiving probes is maintained in spite of the changes occurred. Thus, the outer influences on the receiving probe are now being minimized as the addition of the at least one another probe to the first probe creates a constant influence on the first probe and thus, the stability of the receiving unit attached to the novel probes arrangement increase.

    [0029] Thus, the novel probes arrangement of the invention is aimed to enhance the stability of the receiving unit regardless to the position and orientation of the DUC onto or within the charging device, and allows high transfer efficiency of RF energy between the transmitting probe and the receiving probes arrangement.

    [0030] Additionally, with the novel probes arrangement of the invention, the efficiency of the rectifying unit relative to the efficiency achieved when using a single probe at the same parameters also increase. Therefore, the novel probes arrangement allows improved wireless charging process in dynamic, flexible charging conditions.

    [0031] The novel probes arrangement may be used in different wireless charging environments including a closed conductive charging chamber, partially closed conductive charging chamber, and in open near field environments.

    [0032] Reference is now made to the figures.

    [0033] Figures 1 and 2 are schematic illustrations of two examples of a novel probes arrangement configured and operable to allow improved coupling between a receiving unit of a DUC and a transmitting unit of a wireless charging device in wireless charging system in accordance with variations of the invention. In addition to the improved coupling, the novel probes arrangement provided herein is further configured and operable to provide an enhanced flexibility as to the positioning of the receiving unit relative to the transmitting unit compared to prior art probes in which improved coupling may be obtained only upon restrict relations between the location of the transmitting unit with reference to the receiving unit, and any movement of one of the units effects the coupling between the units and decrease the transfer efficiency of RF energy between them. The novel probes arrangement is aimed to overcome this problem.

    [0034] In Figure 1, the novel probes arrangement comprises at least two probes 102 and 104, wherein first probe 102 is configured to be connected to a positive (+) input 103 of a receiving unit 109. The other probe 104 in the probe arrangement configured to be connected a negative (-) input 105 of receiving unit 109.

    [0035] As illustrated in the figure, the close electromagnetic field lines 140 are distributed around and between the two probes 102 and 104, thus, a stable microenvironment is created around the receiving probes arrangement that minimize the influence of changes in the electromagnetic field that may occur due to changes in the position of the DUC relative to the transmitting probe that in a single probe structure would breach the steady state of charging system and decrease or even avoid the coupling between the transmitting probe and the receiving probe. The created "micro-environment" further minimize additional influences that may occur due to the change in the position of the DUC such as interference in the electromagnetic field resulting from close vicinity of the DUC to the conductive walls of the wireless charging device or from the surrounding in near field conditions, and influence that may occur due to the change in the position of the DUC relative to the transmitting probe.

    [0036] In some embodiments of the invention the novel probes arrangement may comprise three or more probes (not shown). In such embodiments, several parallel circuits comprised in the receiving unit may be referenced to the same negative (-) or positive (+) probes of the probes arrangement.

    [0037] The specific configuration of the probes may vary at least in the following parameters: the structure of the two probes, their length, the angle in-between them, and the connection of each one of them to the receiving unit according to the space available in the device under charge (DUC).

    [0038] Another configuration of the novel probes arrangement is illustrated in Figure 2, wherein probe 202 is connected to a positive (+) input 203 of a receiving unit 209 of a DUC, while probe 204 is connected to a negative (-) input 205 of the receiving unit 209. The lines of the electromagnetic field 240 are arranged between the probes as denoted in the figure and increase the stability of the receiving unit to changes in the electromagnetic field that may occur due to changes in the position and/or orientation of the DUC relative to the transmitting unit of the charging device.

    [0039] In some embodiments of the invention, the novel probes arrangement provided may comprises two identical probes. In some other embodiments of the invention, the novel probes arrangement may comprise different receiving probes as illustrated below with reference to figure 3.

    [0040] Figures 3A-3C are schematic isometric view, front view and top view illustrations of one another example of a novel probes arrangement 300 configured to improve the coupling between receiving and transmitting units of a wireless charging system. Probe arrangement 300 is adapted for use in hearing aids. In this example, probes arrangement 300 comprises a first probe 302 connected to a positive (+) input 303, and a second probe 304 connected to negative (-) input 305. First and second probes 302, 304 are printed on a flex PCB 310 that among other things comprises a receiving unit 309. Flex PCB 309 further serves as a supporting structure for the first and the second probes that in this specific example have various dimensions over axis Z-Y-Z and are also branched. The usage of flexible electronics, is a new technology that allows assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as but not limited to polyimide, PEEK or transparent conductive polyester (http://en.wikipedia.org/wiki/Flexible_electronics).

    [0041] It should be clear that the description of the embodiments and attached Figures set forth in this specification serves only for a better understanding of the invention, without limiting its scope. It should also be clear that a person skilled in the art, after reading the present specification could make adjustments or amendments to the attached Figures and above described embodiments that would still be covered by the present invention.


    Claims

    1. A probes arrangement (100, 200, 300), configured to be attached to a receiving unit (109, 209, 309) of a device under charge positioned onto or within a close or half close conductive charging structure or in near field environment having a transmitting unit for transmitting RF energy, characterized in that said probes arrangement (100, 200, 300) comprises at least two probes (102, 104; 202, 204; 302, 304) configured to create closed electromagnetic field lines (140, 240) between them so as to allow high coupling between said transmitting unit and said receiving unit regardless of the position and/or the orientation of the device under charge relative to the conductive charging structure or the near field environment, wherein said at least two probes (102, 104; 202, 204; 302, 304) are disposed to create a two dimensional or a three dimensional structure over axis X-Y-Z and wherein, lines of the electromagnetic field are arranged between them, said closed electromagnetic field lines (140, 240) create a microenvironment between said at least two probes, to minimize changes in the electromagnetic field occurring as a result of changes in the position and/or orientation of the device under charge.
     
    2. A probes arrangement (100, 200, 300) according to claim 1, wherein said high coupling between the receiving unit (109, 209, 309) attached to the probes arrangement (100, 200, 300) and the transmitting unit of the conductive charging structure or near field environment allows a high RF transfer efficiency between said units by enhancing the stability of the RF coupling between the probes (102, 104; 202, 204; 302, 304) and minimizing the surroundings effect on the coupling between the probes (102, 104; 202, 204; 302, 304).
     
    3. A probes arrangement (100, 200, 300) according to claim 1 or 2, wherein said conductive charging structure or near field environment having a transmitting unit is adapted to confine the transmitted RF energy to a charging zone, and said probes arrangement (100, 200, 300) is configured to increase the dimensions of the charging zone relative to at least one of the following characters: (a) the number of probes in the probes arrangement (100, 200, 300); and (b) the structure and/or the positioning of the entire probes arrangement (100, 200, 300) projection over X-Y-Z axis.
     
    4. A probes arrangement (100, 200, 300) according to any of the preceding claims wherein said at least two probes (102, 104; 202, 204; 302, 304) have a similar structure and/or length.
     
    5. A probes arrangement (100, 200, 300) according to any of the preceding claims wherein said at least two probes (102, 104; 202, 204; 302, 304) differ from the other probe/s in structure and/or length.
     
    6. A probes arrangement (100, 200, 300) according to any of the preceding claims wherein at least one probe is branched.
     
    7. A wireless chargeable device comprising the probes arrangement (100, 200, 300) of any of the preceding claims.
     
    8. A wireless chargeable device configured to be charge by a close or half close conductive charging structure or in near field environment, the wireless chargeable device comprising a receiving unit and at least a probes arrangement (100, 200, 300) according to any of claims 1-6, the probes arrangement (100, 200, 300) being functionally attached to the receiving unit, said probes arrangement comprising at least two probes (102, 104; 202, 204; 302, 304) configured to create a closed electromagnetic field (140, 240) between them so as to allow high coupling between the transmitting unit of the conductive charging structure or near field environment and said receiving unit regardless of the position and/or the orientation of the wireless chargeable device relative to the conductive charging structure or near field environment, , wherein said high coupling between the receiving unit attached to the probes arrangement (100, 200, 300) and the transmitting unit of the conductive charging structure or near field environment allows a high RF transfer efficiency between said units.
     
    9. A wireless chargeable device according to claim 7 or 8, wherein said conductive charging structure or near field environment having a transmitting unit is adapted to confine the transmitted RF energy to a charging zone, and said probes arrangement (100, 200, 300) is configured to increase the dimensions of the charging zone relative to at least one of the following characteristics: (a) the number of probes in the arrangement; and (b) the structure and/or the positioning of the entire probes arrangement projection over X-Y-Z axis.
     
    10. A wireless chargeable device according to any of claims 7-9, wherein said at least two probes (102, 104; 202, 204; 302, 304) have at least one of the following characteristics:

    (a) said at least two probes (102, 104; 202, 204; 302, 304) have a similar structure and/or length;

    (b) said at least two probes (102, 104; 202, 204; 302, 304) differ from the other probe/s in structure and length;

    (c) at least one of said at least two probes (102, 104; 202, 204; 302, 304) is branched.


     
    11. A wireless chargeable device according to any of claims 7-10, wherein said probes arrangement attached to the receiving unit is configured to stabilize the receiving unit by increasing the dimensions of the charging zone created, such that efficient charging of the chargeable device is maintained regardless of the position and/or orientation of the chargeable device.
     
    12. A wireless chargeable device according to any of claims 7-11, wherein said closed electromagnetic field lines created by said at least two probes (102, 104; 202, 204; 302, 304) of said probes arrangement attached to the receiving unit minimizing electromagnetic influence created by the conductive charging device and/or reflected from the near field surroundings for obtaining high RF energy transfer efficiency to the receiving unit of the wireless chargeable device.
     
    13. A wireless chargeable device according to any of claims 7-12, wherein the wireless chargeable device comprising the receiving unit is a hearing aid device.
     
    14. A wireless chargeable device according to claim 13, wherein the probes arrangement consists of two probes (302, 304), wherein a first probe (302) of said two probes is connected to a positive input (303) of the receiving unit (309) and a second probe (304) of said two probes is connected to a negative input (305) of the receiving unit (309), the first and second probes (302, 304) being printed on a flex PCB (310) also comprising said receiving unit (309), the first and second probes (302, 304) being branched and having various dimensions over axis X-Y-Z.
     
    15. A charging system for near field environment or for a close or half close conductive charging chamber, the charging system comprising a conductive charging structure or a near field environment having a transmitting unit for transmitting RF energy, and a wireless chargeable device according to any one of claims 7-14, configured to be positioned onto or within said conductive charging structure or in near field environment with respect to said conductive charging structure or near field environment.
     


    Ansprüche

    1. Sondenanordnung (100, 200, 300), die konfiguriert ist, um an einer Aufnahmeeinheit (109, 209, 309) einer ladenden Vorrichtung befestigt zu werden, die auf oder innerhalb einer geschlossenen oder halb geschlossenen leitfähigen Ladestruktur positioniert ist oder in Nahfeldumgebung mit einer Sendeeinheit zum Übertragen von HF-Energie, dadurch gekennzeichnet, dass die Sondenanordnung (100, 200, 300) umfasst
    mindestens zwei Sonden (102, 104; 202, 204; 302, 304), die konfiguriert sind, um geschlossene elektromagnetische Feldlinien (140, 240) zwischen sich zu erzeugen, um so eine hohe Kopplung zu ermöglichen zwischen der genannten Sendeeinheit und der genannten Empfangseinheit unabhängig von der Position und/oder der Ausrichtung der ladenden Vorrichtung in Bezug auf die leitende Ladestruktur oder der Nahfeldumgebung, wobei die mindestens zwei Sonden (102, 104; 202, 204; 302, 304) angeordnet sind, um eine zweidimensionale oder dreidimensionale Struktur über Achse X-Y-Z zu erzeugen, und wobei Linien des elektromagnetischen Feldes zwischen ihnen angeordnet sind, die genannten geschlossenen elektromagnetischen Feldlinien (140, 240) erzeugen eine Mikroumgebung zwischen den genannten mindestens zwei Sonden, um Änderungen des elektromagnetischen Feldes zu minimieren, die sich aus Änderungen der Position und/oder Ausrichtung des ladenden Geräts ergeben.
     
    2. Sondenanordnung (100, 200, 300) nach Anspruch 1, wobei die hohe Kopplung zwischen der an den Sonden (100, 200, 300) angebrachten Empfangseinheit (109, 209, 309) und der Sendeeinheit der leitfähigen Ladestruktur oder Nahfeldumgebung eine hohe HF-Übertragungseffizienz ermöglicht zwischen den genannten Einheiten durch Erhöhung der Stabilität der HF-Kopplung zwischen den Sonden (102, 104; 202, 204; 302, 304) und Minimierung der Umgebungseinwirkung auf die Kopplung zwischen den Sonden (102, 104; 202, 204; 302, 304).
     
    3. Sondenanordnung (100, 200, 300) nach Anspruch 1 oder 2, worin die genannten leitfähige Ladestruktur oder Nahfeldumgebung mit einer Sendeeinheit angepasst ist, um die übertragene HF-Energie auf eine Ladezone zu beschränken, und die genannte Sondenanordnung (100, 200, 300) konfiguriert ist, um die Abmessungen der Ladezone in Bezug auf mindestens eines der folgenden Zeichen zu erhöhen: a) die Anzahl der Sonden in der Sondenanordnung (100, 200, 300); und (b) die Struktur und/oder die Positionierung der gesamten Sondenanordnung (100, 200, 300)-Projektion auf X-Y-Z-Achse.
     
    4. Sondenanordnung (100, 200, 300) nach einem der vorhergehenden Ansprüche, wobei die mindestens zwei Sonden (102, 104; 202, 204; 302, 304) eine ähnliche Struktur und/oder Länge aufweisen.
     
    5. Sondenanordnung (100, 200, 300) nach einem der vorhergehenden Ansprüche, wobei sich mindestens zwei Sonden (102, 104; 202, 204; 302, 304) von der/n anderen Sonden unterscheiden in Struktur und/oder Länge.
     
    6. Sondenanordnung (100, 200, 300) nach einem der vorhergehenden Ansprüche, wobei mindestens eine Sonde verzweigt ist.
     
    7. Drahtlos aufladbare Vorrichtung, umfassend die Sondenanordnung (100, 200, 300) eines der vorhergehenden Ansprüche.
     
    8. Drahtlos aufladbare Vorrichtung, die konfiguriert ist, um durch eine geschlossene oder halb geschlossene leitfähige Ladestruktur oder in Nahfeldumgebung geladen zu werden, wobei die drahtlose aufladbare Vorrichtung eine Empfangseinheit und mindestens eine Sondenanordnung (100, 200, 300) nach einem der Ansprüche 1-6 umfasst, wobei die Sondenanordnung (100, 200, 300) funktionell an der Empfangseinheit befestigt ist, die genannte Sondenanordnung mindestens zwei Sonden (102, 104; 202, 204; 302, 304) umfasst, die konfiguriert sind, um ein geschlossenes elektromagnetisches Feld (140, 240) zwischen sich zu erzeugen, um eine hohe Kopplung zwischen der Sendeeinheit der leitenden Ladestruktur oder der Nahfeldumgebung und der genannten Empfangseinheit zu ermöglichen unabhängig von der Position und/oder der Ausrichtung der drahtlosen aufladbaren Vorrichtung in Bezug auf die leitende Ladestruktur oder die Nahfeldumgebung, wobei die genannte hohe Kopplung zwischen der Empfangseinheit, die an der Sondenanordnung (100, 200, 300) befestigt ist, und der Sendeeinheit der leitenden Ladestruktur oder Nahfeldumgebung eine hohe HF-Übertragungseffizienz zwischen den genannten Einheiten ermöglicht.
     
    9. Drahtlos aufladbare Vorrichtung nach Anspruch 7 oder 8, wobei die eine Sendeeinheit aufweisende leitfähige Ladestruktur oder Nahfeldumgebung angepasst ist, die übertragene HF-Energie auf eine Ladezone zu beschränken, und die genannte Sondenanordnung (100, 200, 300) konfiguriert ist, um die Abmessungen der Ladezone in Bezug auf mindestens eine der folgenden Eigenschaften zu erhöhen: (a) die Anzahl der Sonden in der Anordnung; und (b) die Struktur und/oder die Positionierung der gesamten Sondenanordnung-Projektion auf X-Y-Z-Achse.
     
    10. Drahtlos aufladbare Vorrichtung nach einem der Ansprüche 7-9, wobei die genannten mindestens zwei Sonden (102, 104; 202, 204; 302, 304) mindestens eine der folgenden Eigenschaften aufweisen:

    (a) die mindestens zwei Sonden (102, 104; 202, 204; 302, 304) haben eine ähnliche Struktur und/oder Länge;

    (b) die genannten mindestens zwei Sonden (102, 104; 202, 204; 302, 304) unterscheiden sich von der/n anderen Sonden in Struktur und Länge;

    (c) mindestens eine der genannten mindestens zwei Sonden (102, 104; 202, 204; 302, 304) ist verzweigt.


     
    11. Drahtlos aufladbare Vorrichtung nach einem der Ansprüche 7-10, wobei die genannte an der Empfangseinheit angebrachte Sondenanordnung konfiguriert ist, um die Empfangseinheit durch Vergrößern der Abmessungen der erzeugten Ladezone zu stabilisieren, so dass eine effiziente Ladung der ladbaren Vorrichtung unabhängig von der Position und/oder Ausrichtung der ladbaren Vorrichtung aufrechterhalten wird.
     
    12. Drahtlos aufladbare Vorrichtung nach einem der Ansprüche 7-11, wobei die genannten geschlossenen elektromagnetischen Feldlinien, die durch die genannten mindestens zwei Sonden (102, 104; 202, 204; 302, 304) der genannten Sondenanordnung erzeugt werden, die an der Empfangseinheit angebracht ist, die elektromagnetischen Einflüsse minimieren, die durch die leitfähige Ladevorrichtung erzeugt und/oder von der Nahfeldumgebung reflektiert werden, um eine hohe HF-Energieübertragungseffizienz auf die Empfangseinheit der drahtlos ladbaren Vorrichtung zu erreichen.
     
    13. Drahtlos ladbare Vorrichtung nach einem der Ansprüche 7-12, wobei die drahtlos ladbare Vorrichtung, die die Empfangseinheit umfasst, eine Hörgerätevorrichtung ist.
     
    14. Drahtlos aufladbare Vorrichtung nach Anspruch 13, wobei die Sondenanordnung aus zwei Sonden (302, 304) besteht, wobei eine erste Sonde (302) der genannten beiden Sonden verbunden ist mit einem positiven Eingang (303) der Empfangseinheit (309) und eine zweite Sonde (304) der beiden genannten Sonden mit einem negativen Eingang (305) der Empfangseinheit (309) verbunden ist, wobei die erste und zweite Sonde (302, 304) auf einer flexiblen Leiterplatte (310) gedruckt sind, die auch die genannte Empfangseinheit (309) umfasst, wobei die erste und zweite Sonde (302, 304) verzweigt sind und verschiedene Abmessungen über Achse X-Y-Z haben..
     
    15. Ladesystem für eine Nahfeldumgebung oder für eine geschlossene oder halb geschlossene leitfähige Ladekammer, wobei das Ladesystem umfasst eine leitende Ladestruktur oder eine Nahfeldumgebung mit einer Sendeeinheit zum Übertragen von HF-Energie und eine drahtlos aufladbare Vorrichtung nach einem der Ansprüche 7-14, die konfiguriert ist, um auf oder innerhalb der leitfähigen Ladestruktur oder in einer Nahfeldumgebung in Bezug auf die leitende Ladestruktur oder Nahfeldumgebung positioniert zu werden.
     


    Revendications

    1. Arrangement de sondes (100, 200, 300), configuré pour être fixé à une unité de réception (109, 209, 309) d'un dispositif en charge positionné sur ou à l'intérieur d'une structure de charge conductrice proche ou semi-proche, ou dans un environnement en champ proche, ayant une unité de transmission pour transmettre de l'énergie RF, caractérisé en ce que ledit arrangement de sondes (100, 200, 300) comprend au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) configurées pour créer entre elles des lignes en champ électromagnétique fermées (140, 240) de manière à permettre un couplage élevé entre l'unité de transmission et l'unité de réception indépendamment de la position et/ou de l'orientation du dispositif en charge par rapport à la structure de charge conductrice ou de l'environnement en champ proche, lesdites au moins deux sondes (102, 104 ; 202, 204; 302, 304) étant disposées pour créer une structure bidimensionnelle ou tridimensionnelle sur l'axe X-Y-Z, et des lignes du champ électromagnétique étant disposées entre celles-ci, lesdites lignes en champ électromagnétique fermées (140, 240) créant un microenvironnement entre lesdites au moins deux sondes, pour minimiser les changements dans le champ électromagnétique se produisant en raison de changements dans la position et/ou l'orientation du dispositif en charge.
     
    2. Arrangement de sondes (100, 200, 300) selon la revendication 1, dans lequel ledit couplage élevé entre l'unité de réception (109, 209, 309) fixée au dispositif de sondes (100, 200, 300) et l'unité de transmission de la structure de charge conductrice ou l'environnement en champ proche permet une efficacité de transfert RF élevée entre lesdites unités tout en améliorant la stabilité du couplage RF entre les sondes (102, 104 ; 202, 204 ; 302, 304) et en minimisant l'effet de la zone environnante sur le couplage entre les sondes (102, 104 ; 202, 204 ; 302, 304).
     
    3. Arrangement de sondes (100, 200, 300) selon la revendication 1 ou 2, dans lequel la structure de charge conductrice ou l'environnement en champ proche ayant une unité de transmission est adapté(e) pour confiner l'énergie RF transmise dans une zone de charge, et l'arrangement de sondes (100, 200, 300) est configuré pour augmenter les dimensions de la zone de charge du point de vue d'au moins l'une des caractéristiques suivantes : (a) le nombre de sondes dans l'arrangement de sondes (100, 200, 300) ; et (b) la structure et/ou le positionnement de l'ensemble de la projection de l'arrangement de sondes (100, 200, 300) sur l'axe X-Y-Z.
     
    4. Arrangement de sondes (100, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel lesdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) ont une structure et/ou une longueur similaire(s).
     
    5. Arrangement de sondes (100, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel lesdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) diffèrent de l'autre ou des autres sonde(s) par leur structure et/ou leur longueur.
     
    6. Arrangement de sondes (100, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel au moins l'une sonde est ramifiée.
     
    7. Dispositif rechargeable sans fil comprenant l'arrangement de sondes (100, 200, 300) selon l'une quelconque des revendications précédentes.
     
    8. Dispositif rechargeable sans fil configuré pour être rechargé par une structure de charge conductrice proche ou semi-proche ou dans un environnement en champ proche, le dispositif rechargeable sans fil comprenant une unité de réception et au moins un arrangement de sondes (100, 200, 300) selon l'une quelconque des revendications 1-6, l'arrangement de sondes (100, 200, 300) étant fixé de manière fonctionnelle à l'unité de réception, l'arrangement de sondes comprenant au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) configurées pour créer un champ électromagnétique fermé (140, 240) entre elles de manière à permettre un couplage élevé entre l'unité de transmission de la structure de charge conductrice ou l'environnement en champ proche et l'unité de réception indépendamment de la position et/ou de l'orientation du dispositif rechargeable sans fil par rapport à la structure de charge conductrice ou à l'environnement en champ proche, le couplage élevé entre l'unité de réception fixée à l'arrangement de sondes (100, 200, 300) et l'unité de transmission de la structure de charge conductrice ou l'environnement en champ proche permettant une efficacité élevée du transfert RF entre lesdites unités.
     
    9. Dispositif rechargeable sans fil selon la revendication 7 ou 8, dans lequel la structure de charge conductrice ou l'environnement en champ proche ayant une unité de transmission est adapté€ pour confiner l'énergie RF transmise à une zone de charge, et l'arrangement de sondes (100, 200, 300) est configuré pour augmenter les dimensions de la zone de charge du point de vue d'au moins une des caractéristiques suivantes : (a) le nombre de sondes dans l'arrangement ; et (b) la structure et/ou le positionnement de l'ensemble de la projection de l'arrangement de sondes sur l'axe X-Y-Z.
     
    10. Dispositif rechargeable sans fil selon l'une quelconque des revendications 7-9, dans lequel lesdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) présentent au moins l'une des caractéristiques suivantes :

    (a) lesdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) ont une structure et/ou une longueur similaire(s) ;

    (b) lesdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) diffèrent de l'autre ou des autres sonde(s) par leur structure et longueur ;

    (c) au moins l'une desdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) est ramifiée.


     
    11. Dispositif rechargeable sans fil selon l'une quelconque des revendications 7-10, dans lequel l'arrangement de sondes fixé à l'unité de réception est configuré pour stabiliser l'unité de réception en augmentant les dimensions de la zone de charge créée, de sorte que le rechargement efficace du dispositif rechargeable est maintenu indépendamment de la position et/ou l'orientation du dispositif rechargeable.
     
    12. Dispositif rechargeable sans fil selon l'une quelconque des revendications 7-11, dans lequel lesdites lignes en champ électromagnétique fermées créées par lesdites au moins deux sondes (102, 104 ; 202, 204 ; 302, 304) de l'arrangement de sondes fixé à l'unité de réception minimisant l'influence électromagnétique créée par le dispositif de charge conducteur et/ou réfléchie par le champ proche environnant pour obtenir une efficacité de transfert d'énergie RF élevée vers l'unité de réception du dispositif rechargeable sans fil.
     
    13. Dispositif rechargeable sans fil selon l'une quelconque des revendications 7-12, dans lequel le dispositif rechargeable sans fil comprenant l'unité de réception est un dispositif d'aide auditive.
     
    14. Dispositif rechargeable sans fil selon la revendication 13, dans lequel l'arrangement de sondes est constitué de deux sondes (302, 304), une première sonde (302) desdites deux sondes étant connectée à une entrée positive (303) de l'unité de réception (309) et une seconde sonde (304) desdites deux sondes étant connectée à une entrée négative (305) de l'unité de réception (309), les première et deuxième sondes (302, 304) étant imprimées sur un circuit imprimé flexible (310) comprenant également l'unité de réception (309), les première et deuxième sondes (302, 304) étant ramifiées et ayant différentes dimensions sur l'axe X-Y-Z.
     
    15. Système de charge pour un environnement en champ proche ou pour une chambre de charge conductrice proche ou semi-proche, le système de charge comprenant une structure de charge conductrice ou un environnement en champ proche ayant une unité de transmission pour transmettre de l'énergie RF, et un dispositif rechargeable sans fil selon l'une quelconque des revendications 7-14, configuré pour être placé sur ou dans ladite structure de charge conductrice ou dans l'environnement en champ proche par rapport à ladite structure de charge conductrice ou à l'environnement en champ proche.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description