(19)
(11)EP 3 125 419 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 14886893.8

(22)Date of filing:  27.03.2014
(51)International Patent Classification (IPC): 
H02M 7/12(2006.01)
H02M 7/48(2007.01)
H02M 3/155(2006.01)
(86)International application number:
PCT/JP2014/058925
(87)International publication number:
WO 2015/145679 (01.10.2015 Gazette  2015/39)

(54)

POWER CONVERSION UNIT, POWER CONVERSION APPARATUS, AND POWER CONVERSION APPARATUS MANUFACTURING METHOD

STROMWANDLEREINHEIT, STROMWANDLERVORRICHTUNG UND STROMWANDLERVORRICHTUNGHERSTELLUNGSVERFAHREN

UNITÉ DE CONVERSION DE PUISSANCE, APPAREIL DE CONVERSION DE PUISSANCE, ET PROCÉDÉ DE FABRICATION D'APPAREIL DE CONVERSION DE PUISSANCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
01.02.2017 Bulletin 2017/05

(73)Proprietor: Hitachi, Ltd.
Chiyoda-ku Tokyo 100-8280 (JP)

(72)Inventors:
  • HATTORI, Yukio
    Tokyo 100-8280 (JP)
  • KAMIZUMA, Hiroshi
    Tokyo 100-8280 (JP)
  • MATSUMOTO, Daisuke
    Tokyo 100-8280 (JP)
  • MIMA, Akira
    Tokyo 100-8280 (JP)
  • KAWASHIMA, Tetsuya
    Tokyo 100-8280 (JP)
  • MABUCHI, Yuuichi
    Tokyo 100-8280 (JP)

(74)Representative: MERH-IP Matias Erny Reichl Hoffmann Patentanwälte PartG mbB 
Paul-Heyse-Strasse 29
80336 München
80336 München (DE)


(56)References cited: : 
WO-A1-2007/113979
JP-A- 2002 300 787
US-A1- 2005 152 100
JP-A- H0 947 036
JP-A- 2012 105 382
US-A1- 2009 219 696
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a circuit for power conversion.

    Background Art



    [0002] In a power converter, a switching operation is speeded up due to technical innovation of power semiconductors used for a power semiconductor module as a primary component of the power converter, and the loss in the power semiconductors is reduced. Accordingly, a cooler for cooling the power semiconductor module can be reduced in size, and resultantly the size reduction of the power converter is realized. Particularly, a UPS (Uninterruptible Power Supply) having the power converters is installed for data centers in suburbs of cities where land prices are high, therefore, it is required that the installation area is small. In order to effectively use the area of installation, respective power converters in the UPS are installed in a state where side surfaces closely contact one another and rear surfaces closely contact a wall. Accordingly, it is desirable that instruments and parts mounted in the apparatus are accessible from the front of the apparatus in consideration of workability at the time of maintenance.

    [0003] A power converter for improving workability is known. In Patent Literature 1, a power module unit in which plural semiconductor devices are mounted in a cooling block provided with a cooler such as a cooling fin and a capacitor unit are respectively housed in two sections provided in a casing of the power converter. Accordingly, workability is improved. Patent Literature 2 relates to power converters such as power modules, which are configured as inverters and employ modularized approaches. In some aspects, semiconductor devices are thermally coupled directly to thermally conductive substrates without intervening dielectric or insulative structures. Patent Literature 3 relates to a power conversion device in which a positive side arm unit includes IGBT modules, a coupling diode module, a cooling plate on which the modules are mounted, and a first laminated bus bar connected to the respective modules . A negative side arm unit includes IGBT modules, a coupling diode module, a cooling plate on which the modules are mounted, and a second laminated bus bar connected to the respective modules, and both the laminated bus bars and the capacitors are connected to one another by a third laminatedbus bar.

    Citation List


    Patent Literature



    [0004] 

    Patent Literature 1: JP-A-8-294266

    Patent Literature 2: US 2005/0152100 A1

    Patent Literature 3: US 2009/0219696 A1


    Summary of Invention


    Technical Problem



    [0005] However, as the power module unit and the capacitor unit are housed in sections different from each other in the power converter described in Patent Literature 1, an inductance of a bus bar connecting these units is increased. As a ripple current with resonance is increased accordingly, a capacitor with a large capacity is required for allowing the ripple current, which leads to size increase of the power converter. Though workability of connecting the units with each other is improved, accessibility with respect to power modules and capacitors in the unit is not considered.

    Solution to Problem



    [0006] The invention is as set out in the independent claims.
    In order to solve the above problems, the power converter according to an embodiment of the present invention includes a circuit connection part including a positive electrode conductor, a negative electrode conductor and an AC conductor, a power semiconductor module positioned in a particular direction with respect to the circuit connection part and connected to the positive electrode conductor, the negative electrode conductor and the AC conductor, and a capacitor positioned in the particular direction with respect to the circuit connection part and connected to the positive electrode conductor and the negative electrode conductor. The positive electrode conductor is connected to a positive electrode conductor of another power conversion unit through a unit connection part positioned in an opposite direction of the particular direction with respect to the circuit connection part. The negative electrode conductor is connected to a negative electrode conductor of another power conversion unit through the unit connection part.

    Advantageous Effects of Invention



    [0007]  According to an embodiment of the present invention, it is possible to improve accessibility with respect to a power conversion unit in a power converter.

    Brief Description of Drawings



    [0008] 

    [Fig. 1] Fig. 1 shows a configuration of a UPS according to an embodiment.

    [Fig. 2] Fig. 2 shows a circuit configuration of a converter 11.

    [Fig. 3] Fig. 3 shows a circuit configuration of an inverter 12.

    [Fig. 4] Fig. 4 shows a circuit configuration of a boost chopper 13.

    [Fig. 5] Fig. 5 shows a configuration of a power conversion unit 101.

    [Fig. 6] Fig. 6 is a perspective view showing a structure of a power conversion part 2a.

    [Fig. 7] Fig. 7 is an exploded perspective view showing a structure of the power conversion part 2a.

    [Fig. 8] Fig. 8 is a front view showing a structure of the power conversion part 2a.

    [Fig. 9] Fig. 9 is a right side view showing a structure of the power conversion unit 101.

    [Fig. 10] Fig. 10 is a perspective view showing a structure of the power conversion unit 101.

    [Fig. 11] Fig. 11 is an exploded perspective view showing a structure of a front surface of the power conversion unit 101.

    [Fig. 12] Fig. 12 is an exploded perspective view showing a structure of a back surface of the power conversion unit 101.

    [Fig. 13] Fig. 13 is a perspective view showing a structure of a front surface of a main-circuit bus bar assembly 151.

    [Fig. 14] Fig. 14 is a perspective view showing a structure of a back surface of the main-circuit bus bar assembly 151.

    [Fig. 15] Fig. 15 is an exploded perspective view showing a structure of the front surface of the main-circuit bus bar assembly 151.

    [Fig. 16] Fig. 16 is an exploded perspective view showing a structure of the back surface of the main-circuit bus bar assembly 151.

    [Fig. 17] Fig. 17 is a perspective view showing a structure of a front surface of a unit-interconnect bus bar assembly 161.

    [Fig. 18] Fig. 18 is a perspective view showing a structure of a back surface of the unit-interconnect bus bar assembly 161.

    [Fig. 19] Fig. 19 is an exploded perspective view showing a structure of the front surface of the unit-interconnect bus bar assembly 161.

    [Fig. 20] Fig. 20 is an exploded perspective view showing a structure of the back surface of the unit-interconnect bus bar assembly 161.


    Description of Embodiments



    [0009] Hereinafter, an embodiment of the present invention will be explained with reference to the drawings.

    [0010] An UPS (Uninterruptible Power Supply) will be explained as an embodiment.

    [0011] Fig. 1 shows a configuration of the UPS according to the embodiment.

    [0012] An UPS 2 adopts a continuous inverter power supply system capable of continuing power supply without interruption at the time of power failure. The present invention can be applied not only to the continuous inverter power supply system but also to other systems such as a continuous commercial power supply system.

    [0013] A three-phase AC commercial power supply 3 supplies power to a load 4 via a converter 11 and an inverter 12 at normal operation. Here, the converter 11 converts the three-phase AC commercial power 3 into a DC voltage 5 and supplies the power to the inverter 12. The inverter 12 converts the DC voltage into a three-phase AC power 6. Accordingly, even when voltage fluctuation such as an instantaneous voltage drop occurs in the commercial power supply 3, the power equivalent to the normal commercial power supply can be stably supplied to the load 4 by being controlled by the converter 11 and the inverter 12.

    [0014] On the other hand, at the time of the power failure, the power is supplied to the load 4 from a storage battery 14 through the inverter 12 in a state where the inverter 12 is activated. Accordingly, the UPS 2 can supply the power to the load 4 without interruption. In the embodiment, the total voltage of the storage battery 14 is sufficiently reduced to be lower than the DC voltage applied to the inverter 12 for reducing the volume of the UPS 2. Accordingly, the UPS 2 according to the embodiment is provided with a boost chopper 13 which boosts a low DC voltage outputted by the discharge of the storage battery 14 to a desired DC voltage 5 and outputs the voltage to the inverter 12. The UPS 2 can be applied to a UPS 2 having a high-voltage storage battery 14 which can supply a desired DC voltage without providing the boost chopper 13 when there is no constraint of the volume.

    [0015] In the following description, the converter 11, the inverter 12 and the boost chopper 13 are collectively called a power conversion part 2a.

    [0016] The UPS 2 may further include a cooling mechanism cooling the power conversion part 2a.

    [0017] A bypass circuit 17 bypasses the power conversion part 2a in accordance with an instruction to directly connect the commercial power supply 3 to the load 4. A maintenance bypass circuit 16 bypasses the power conversion part 2a and the bypass circuit 17 in accordance with an instruction for maintaining the power conversion part 2a and the bypass circuit 17 to directly connect the commercial power supply 3 to the load 4.

    [0018] Fig. 2 shows a circuit configuration of the converter 11.

    [0019] The three-phase AC power from the commercial power supply 3 is suppled to AC terminals R, S and T of the converter 11, which is rectified in a switching device 21 and a rectifying device 23 in an upper arm, a switching device 22 and a rectifying device 24 in a lower arm and a capacitor group 120 in respective phases of R, S and T and outputted to DC terminals P and N. In the embodiment, IGBTs (Insulated Gate Bipolar Transistor) are used as the switching devices 21 and 22, and diodes are used as the rectifying devices 23 and 24, however, the present invention is not limited to this, and other types of devices can be adopted.

    [0020] Fig. 3 shows a circuit configuration of the inverter 12.

    [0021] The DC voltage 5 converted by the converter 11 or the boost chopper 13 is supplied to DC terminals P and N of the inverter 12, which is converted in the switching device 21 and the rectifying device 23 in an upper arm, the switching device 22 and the rectifying device 24 in a lower arm and the capacitor group 120 in respective phases of U, V and W into the AC power 6 and outputted to AC terminals U, V and W. The three-phase AC outputted from AC terminals U, V and W is supplied to the load 4.

    [0022] Fig. 4 shows a circuit configuration of the boost chopper 13.

    [0023] An output of the storage battery 14 is supplied to an input terminal Bat. While the switching device 22 in a lower arm is turned on, energy is accumulated in a reactor 15 connected between the input terminal Bat and an AC terminal C. Next, the rectifying device 23 in an upper arm is turned on by counter electromotive voltage generated by the reactor 15 when the switching device 22 in the lower arm is turned off. Accordingly, an added voltage of the DC voltage outputted from the storage voltage 14 and the counter electromotive voltage of the reactor 15 appears at output terminals P and N of the boost chopper 13, and the boosted DC voltage is outputted.

    [0024] As described above, any of the converter 11, the inverter 12 and the boost chopper 13 mounted on the UPS 2 according to the embodiment has at least one basic circuit including a power semiconductor module group 110 as a 2-level half bridge circuit in which the switching device 21 and the rectifying device 23 in the upper arm and the switching device 22 and the rectifying device 24 in the lower arm are connected in series, the capacitor group 120, a positive-electrode side fuse 131 and a negative-electrode side fuse 132. A conversion circuit of 3-level or more may be used instead of the 2-level half bridge circuit.

    [0025] In the embodiment, the basic circuit is realized by a power conversion unit 101, and the converter 11, the inverter 12 and the boost chopper 13 are realized by combination of the power conversion units 101. Accordingly, types of components used for the power conversion part 2a are made common, thereby facilitating assembly and maintenance of the power conversion part 2a.

    [0026]  Fig. 5 shows a configuration of the power conversion unit 101.

    [0027] In the power conversion unit 101, the power semiconductor module group 110 is realized by connecting in parallel a 2-in-1 type first power semiconductor module 111 and a second power semiconductor module 112 which form upper and lower arms respectively. The capacitor group 120 is realized by connecting in parallel a first capacitor 121 and a second capacitor 122. Accordingly, the power semiconductor module group 110 and the capacitor group 120 corresponding to the power required in the power conversion unit 101 can be realized by using plural power semiconductor modules and plural capacitors.

    [0028] Furthermore, the fuse 131 is connected in series in the positive electrode side and the fuse 132 is connected in series in the negative electrode side with respect to the power semiconductor module group 110 and the capacitor group 120 in the power conversion unit 101. A second terminal 131b of the positive-electrode side fuse 131 corresponds to the P-terminal in the converter 11, the inverter 12 and the boost chopper 13. A second terminal 132b of the negative-electrode side fuse 132 corresponds to the N-terminal in the converter 11, the inverter 12 and the boost chopper 13. As the power conversion unit 101 has the fuses 131 and 132, reliability of the power conversion unit 101 at the time of a short-circuit failure can be improved. In the case where the power conversion unit 101 is cut off by a breaker or other cases, any or both of the fuses 131 and 132 may be omitted.

    [0029] Each of the power semiconductor modules 111 and 112 includes the switching device 21 and the rectifying device 23 in the upper arm and the switching device 22 and the rectifying device 24 in the lower arm. Points between the upper arms and the lower arms in respective power semiconductor modules 111 and 112 are connected to an external AC terminal 154T. Gate terminals of the switching devices 21 of the upper arms in respective power semiconductor modules 111 and 112 are connected to a gate terminal 111g. Gate terminals of the switching devices 22 in the lower arms in respective power semiconductor modules 111 and 112 are connected to a gate terminal 112g.

    [0030] Fig. 6 is a perspective view showing a structure of the power conversion part 2a.

    [0031] Hereinafter, coordinates of the UPS 2 are fixed to an X-axis, a Y-axis and a Z-axis. A Y-axis direction indicates a front direction of the UPS 2, a Z-axis direction indicates an upper direction of the UPS 2 and an X-axis direction indicates a left direction of the UPS 2. Here, the power conversion part 2a is provided inside a casing (not shown) of the UPS 2, and an opening and closing door (not shown) which is opened at the time of maintenance of the UPS 2 is provided in the Y-axis direction of the power conversion part 2a, namely, the front of the casing of the UPS 2. It is possible to access easily to the front of the power conversion part 2a by opening the opening and closing door.

    [0032] The power conversion part 2a includes plural power conversion units 101 arranged in the X-axis direction. The converter 11 includes three power conversion units 101 respectively corresponding to three phases of the commercial power supply. The inverter 12 also includes three power conversion units 101 respectively corresponding to three phases.

    [0033] The boost chopper 13 includes two power conversion units 101 connected in parallel. The boost chopper 13 can be one power conversion unit 101. When the power required for the boost chopper 13 exceeds a rated power of the power semiconductor module group 110 provided in the power conversion unit 101, N-pieces of power conversion units 101 are connected in parallel to thereby multiply the allowable power by N-times. For the same purpose, each of the converter 11 and the inverter 12 may have plural power conversion units 101 which are connected in parallel per one phase if necessary.

    [0034] The plural power conversion units 101 in the power conversion part 2a are connected in parallel through a unit-interconnect bus bar assembly 161. Respective longitudinal directions of the plural power conversion units 101 correspond to the Z direction, and the plural power conversion units 101 are arranged in the X direction. A longitudinal direction of the unit-interconnect bus bar assembly 161 corresponds to the X direction, and the unit-interconnect bus bar assembly 161 is arranged in a +Y direction of the plural power conversion units 101. That is, respective longitudinal directions of the plural power conversion units 101 cross the longitudinal direction of the unit-interconnect bus bar assembly 161. Accordingly, the plural power conversion units 101 can be efficiently arranged in a limited volume.

    [0035] Fig. 7 is an exploded perspective view showing a structure of the power conversion part 2a.

    [0036] The unit-interconnect bus bar 161 is assembled to the second terminals 131b of the positive-electrode side fuses 131 and the second terminals 132b of the negative-electrode side fuses 132 arranged in a front surface of a lower part of respective power conversion units 101 by using attaching screws 169.

    [0037] Fig. 8 is a front view showing a structure of the power conversion part 2a.

    [0038] The respective external AC terminals 154T provided on upper edges of the plural power conversion units 101 correspond to R, S and T terminals of the converter 11, U, V and W terminals of the inverter 12 and C, C terminals (common) of the boost chopper 13. In two terminals provided in the left end of the unit-interconnect bus bar assembly 161, an upper terminal corresponds to the P-terminal in the converter 11, the inverter 12 and the boost chopper 13, and a lower terminal corresponds to the N-terminal in the converter 11, the inverter 12 and the boost chopper 13.

    [0039] Fig. 9 is a right side view showing a structure of the power conversion unit 101.

    [0040] The power conversion unit 101 includes the power semiconductor module group 110, the capacitor group 120, the fuses 131 and 132 and a main-circuit bus bar assembly 151 electrically connecting the above. A cooling fin 113 is provided in the back (-Y direction) of the power semiconductor module group 110, which cools the power semiconductor module group 110. These components are arranged in the order of the power semiconductor module group 110, the capacitor group 120, the fuses 131 and 132 in a downward direction (-Z direction) . The casing is designed and the cooling mechanism is provided so that air for cooling the cooling fin 113 flows in an upward direction (+Z direction) on the back side of the main-circuit bus bar assembly 151. The reason of the arrangement is for preventing the capacitor group 120 and so on from receiving a fanned heat from the cooling fan 113 as the cooling fin 113 is positioned in the leeward side of an air passage, namely, on the upper (+Z) side with respect to the capacitor group 120. Though the cooling fin 113 is arranged in the -Y direction in the embodiment, the setting direction of the cooling fin 113 is determined in accordance with the air passage, such that the cooling fin 113 is arranged in +Z direction, for example, when the air passage is in the -Y direction. Moreover, the power semiconductor module group 110 is provided adjacent to the capacitor 120, thereby reducing a parasitic inductance formed in the main-circuit bus bar assembly 151 connecting the power semiconductor module 110 to the capacitor group 120, reducing a surge voltage generating at the time of switching and reducing an impedance generated from the power semiconductor module group 110 inside the power conversion unit 101 of itself to the capacitor group 120 inside an adjacent power conversion unit 101 to the smallest value as described below, therefore, not only the capacitor group 120 of the power conversion unit 101 of itself but also the capacitor groups 120 of other power conversion units 101 can be effectively used. As a result, the capacitance of the capacitor group used per one power conversion unit 101 can be reduced and the volume of the power conversion unit 101 can be also reduced.

    [0041] The power semiconductor module group 110 and the capacitor group 120 having terminals protruding in the front (+Y) direction are arranged in the rear (-Y) direction with respect to the main-circuit bus bar assembly 151. According to the structure, all the terminals of the power semiconductor module group 110 and the capacitor group 120 are positioned in the front surface, which facilitates works such as checks of terminal portions at the maintenance, installation and removal thereof.

    [0042] Fig. 10 is a perspective view showing a structure of the power conversion unit 101.

    [0043] In each of the fuses 131 and 132, one terminal is provided in the rear (-Y) direction and the other terminal is provided in the front (+Y) direction. The fuses 131 and 132 are arranged in the front (+Y) direction with respect to the main-circuit bus bar assembly 151. That is, a first terminal 131a of the positive-electrode side fuse 131 and a first terminal 132a of the negative-electrode side fuse 132 are directed to the rear (-Y) direction and are connected to the main-circuit bus bar assembly 151 by attaching screws 139. On the other hand, the second terminal 131b of the positive-electrode side fuse 131 and the second terminal 132b of the negative-electrode side fuse 132 are directed to the front (+Y) direction. According to the arrangement, the second terminal 131b of the positive-electrode side fuse 131 and the second terminal 132b of the negative-electrode side fuse 132 which are terminals for connecting the power conversion unit 101 of itself to another power conversion unit 101 are positioned in a front surface of the UPS 2, which makes front accessibility at the time of assembly and maintenance good and improves workability. Here, as external terminals included in the power conversion unit 101, the total three terminals which are the second terminal 131b of the positive-electrode side fuse 131, the second terminal 132b of the negative-electrode side fuse 132 connected to the unit-interconnect bus bar assembly 161 for connecting to another power conversion unit 101 and the external AC terminal 154T provided in the main-circuit bus bar assembly 151 as described above.

    [0044] Fig. 11 is an exploded perspective view showing a structure of a front surface of the power conversion unit 101, and Fig. 12 is an exploded perspective view showing a structure of a back surface of the power conversion unit 101.

    [0045] In the embodiment, the power semiconductor modules 111 and 112 which are respectively 2-level half bridge circuits (2-in-1) connected in parallel are mounted on the power semiconductor module group 110. The parallel number of power semiconductor modules in the power conversion unit 101 may be the necessary minimum of the parallel number in which the minimum power can be allowed by using a model requiring the minimum power as a reference in a line-up of power converters such as the UPS and other devices using the power conversion unit 101. This is because desired electric energy can be satisfied with respect to models requiring higher power by arranging the power conversion unit in parallel. The parallel number of the power semiconductor modules is two in the embodiment in consideration of the above point.

    [0046] Respective power semiconductor modules 111 and 112 are provided with positive electrode terminals 111p and 112p, negative electrode terminals 111n and 112n, AC terminals 111ac and 112ac and control terminal groups 111d and 112d. The control terminal groups 111d and 112d respectively include the gate terminals 111g and 112g.

    [0047] The respective positive electrode terminals 111p and 112p in the power semiconductor module group 110 are connected to positive electrode-connection terminals 152p in the main-circuit bus bar assembly 151. The respective negative electrode terminals 111n and 112n in the power semiconductor module group 110 are connected to negative electrode-connection terminals 153n in the main-circuit bus bar assembly 151. The respective AC terminals 111ac and 112ac in the power semiconductor module group 110 are connected to connection terminals 154ac connected to the external AC terminal 154T. These positive electrode terminals 111p and 112p, the negative electrode terminals 111n and 112n, and the AC terminals 111ac and 112ac are respectively connected to the main-circuit bus bar assembly 151 by using connection methods such as welding. These terminals may be connected by screws, clips or the like.

    [0048] In order to reduce the difference between a distance from the capacitor group 120 to the positive electrode terminal 111p and the negative electrode terminal 111n of the power semiconductor module 111 and a distance from the capacitor group 120 to the positive electrode 112p and the negative electrode terminal 112n of the power semiconductor module 112, an arrangement of the positive electrode terminal 111p and the negative electrode terminal 111n aligned in the X-axis direction of one power semiconductor module 111 and an arrangement of the positive electrode 112p and the negative electrode terminal 112n of the other power semiconductor module 112 are reversed. Furthermore, the positive electrode terminal 111p and the negative electrode terminal 111n in the power semiconductor module 111 are closely arranged so as to face each other, and the positive electrode 112p and the negative electrode terminal 112n of the power semiconductor module 112 are closely arranged so as to face each other. According to the arrangement, the difference of impedances generated between the power semiconductor modules 111, 112 and the capacitors 121, 122 is reduced, thereby improving the balance of electric current flowing in the power semiconductor module 111 and the power semiconductor module 112.

    [0049] A positive electrode terminal 121p and a negative electrode terminal 121n included in the capacitor 121 are attached to a capacitor connection point 156 provided in the main-circuit bus bar assembly 151 by using capacitor attaching screws 129. Similarly, a positive electrode terminal 122p and a negative electrode terminal 122n included in the capacitor 122 are attached to a capacitor connection point 157 provided in the main-circuit bus bar assembly 151 by using the capacitor attaching screws 129.

    [0050] Fig. 13 is a perspective view showing a structure of a front surface of the main-circuit bus bar assembly 151 and Fig. 14 is a perspective view showing a back surface of the main-circuit bus bar assembly 151.

    [0051] Capacitor connection parts 156p and 156n are provided on a back surface of the capacitor connecting point 156, and capacitor connection parts 157p and 157n are provided on a back surface of the capacitor connection point 157. In the opposite side of the capacitor connection parts 156p and 156n with respect to the main-circuit bus bar assembly 151, capacitor attaching screw connection parts 156pf and 156nf are respectively provided. In the opposite side of the capacitor connection parts 157p, and 157n with respect to the main-circuit bus bar assembly 151, capacitor attaching screw connection parts 157pf and 157nf are respectively provided. The positive electrode terminal 121p and the negative electrode terminal 121n of the capacitor 121 are respectively fixed to the back surface of the capacitor connection point 156 by using the capacitor attaching screws 129 on the front surface of the capacitor connection point 156. Accordingly, the positive electrode terminal 121p and the negative electrode terminal 121n of the capacitor 121 respectively contact the capacitor connection parts 156p and 156n, and the respective capacitor attaching screws 129 contact the capacitor attaching screw connection parts 156pf and 156nf. Furthermore, the positive electrode terminal 122p and the negative electrode terminal 122n of the capacitor 122 are respectively fixed to the back surface of the capacitor connection point 157 by using the capacitor attaching screws 129 on the front surface of the capacitor connection point 157. Accordingly, the positive electrode terminal 122p and the negative electrode terminal 122n of the capacitor 122 respectively contact the capacitor connection parts 157p and 157n, and the respective capacitor attaching screws 129 respectively contact the capacitor attaching screw connection parts 157pf and 157nf.

    [0052] Fuse connection parts 158 and 159 are provided in the front surface of the main-circuit bus bar assembly 151 and fuse attaching screw connection parts 158b and 159b are provided in the opposite side of the fuse connection parts 158 and 159 with respect to the main-circuit bus bar assembly 151. The first terminal 131a of the positive-electrode side fuse 131 is fixed to a front surface of the fuse connection part 158 by using the fuse attaching screw 139 in a back surface of the fuse attaching screw connection part 158b. Accordingly, the first terminal 131a of the positive-electrode side fuse 131 contacts the fuse connection part 158, and the fuse attaching screw 139 contacts the fuse attaching screw connection part 158b. Furthermore, the first terminal 132a of the negative-electrode side fuse 132 is fixed to a front surface of the fuse connection part 159 by using the fuse attaching screw 139 in a back surface of the fuse attaching screw connection part 159b. Accordingly, the first terminal 132a of the negative-electrode side fuse 132 contacts the fuse connection part 159, and the fuse attaching screw 139 contacts the fuse attaching screw connection part 159b.

    [0053] Fig. 15 is an exploded perspective view showing a structure of the front surface of the main-circuit bus bar assembly 151 and Fig. 16 is an exploded perspective view showing the back surface of the main-circuit bus bar assembly 151.

    [0054] The main-circuit bus bar assembly 151 includes a positive electrode conductor 152, a negative electrode conductor 153, an AC conductor 154 and an insulator 155. The positive electrode conductor 152, the negative electrode conductor 153 and the AC conductor 154 have a flat plate shape. The positive electrode conductor 152 and the negative electrode conductor 153 are laminated so that surfaces facing each other closely contact each other in parallel through the insulator 155 for reducing a parasitic inductance appearing between the power semiconductor module group 110 and the capacitor group 120. Accordingly, a ripple current and an impedance in the main-circuit bus bar assembly 151 can be reduced and the surge voltage generating at the time of switching can be reduced. Furthermore, the insulator 155 covers most part of the positive electrode conductor 152, the negative electrode conductor 153 and the AC conductor 154 which are laminated so that these conductors keep given insulation distances. Here, conductor surfaces in the front surface and the back surface of the main-circuit bus bar assemble 151 may be exposed within a range where the given insulation distances can be kept for improving heat radiation performance. An insulating resin with good flowability or the like is used for the insulator 155.

    [0055] Though the AC conductor 154, the positive electrode conductor 152 and the negative electrode conductor 153 are arranged in this order in the rear (-Y) direction in the embodiment, the parasitic inductance is not affected even when the order of arranging these conductors is changed as long as the positive electrode conductor 152 and the negative electrode conductor 153 are arranged to be closest to each other. These conductors are formed by using materials having high conductivity such as copper and aluminum from a piece of conductor plate by processing such as cutting and folding. The explanation will be made by citing the positive electrode conductor 152 as an example. As a forming method, an opening 152h for allowing all the terminals 111p, 111n, 111ac, 111d, 112p, 112n, 112ac and 112d of the power semiconductor modules 111 and 112 to penetrate therethrough is cut out while leaving portions to be connection terminals 152p for connecting to the positive electrode terminals 111p and 112p inside a plane of the conductor plate based on a piece of conductor plate. Then, the portions left in the plane of the conductive plate to be the connection terminals 152p are folded by 90 degrees in the front (+Y) direction to thereby form the connection terminals 152p. The above forming method is the same with respect to the negative electrode conductor 153 and the AC conductor 154.

    [0056] The positive electrode conductor 152 includes the two connection terminals 152p respectively connected to the positive electrode terminals 111p and 112p of the power semiconductor module group 110. The negative electrode conductor 153 includes the two connection terminals 153n respectively connected to the negative electrode terminals 111n and 112n of the power semiconductor module group 110. The AC conductor 154 includes the two connection terminals 154ac respectively connected to the AC terminals 111ac and 112ac of the power semiconductor module group 110, and the AC terminal 154T connected to the outside.

    [0057]  In the capacitor connection points 156 and 157, the negative electrode terminals 121n and 122n of the capacitors 121 and 122 abut on the capacitor connection parts 156n and 157n provided on a back surface of the negative electrode conductor 153. Furthermore, the capacitor connecting parts 156p and 157p which protrude from the positive electrode conductor 152 in the rear (-Y) direction are provided so that the positive electrode terminals 121p and 122p of the capacitors 121 and 122 abut on the conductor on the same virtual plane as the back surface of the negative electrode conductor 153. The capacitor connection parts 156p and 157p are formed separately from the positive electrode conductor 152, which are connected to the positive electrode conductor 152 by means such as brazing, soldering and caulking. The capacitor connection parts 156p and 157p may also be manufactured by using a means of cutting from a piece of conductor plate so that the capacitor connection parts 156p and 157p remain in a protruding manner, or a means of casting such as die-casting. The capacitor connection parts 156p and 157p are provided with holes for allowing the capacitor attaching screws 129 to penetrate therethrough. Openings 156h and 157h are provided in the negative electrode conductor 153 for avoiding the protruding positive electrode capacitor connection parts 156p and 157p from contacting the negative electrode conductor 153.

    [0058]  Furthermore, in the capacitor connection points 156 and 157, the capacitor attaching screws 129 respectively fixing the positive electrode terminal 121p of the capacitor 121 and the positive electrode terminal 122p of the capacitor 122 abut on the capacitor connecting parts 156pf and 157pf provided on the front surface of the positive electrode conductor 152. Moreover, the capacitor connection parts 156nf and 157nf protruding in the front (+Y) direction from the negative electrode conductor 153 are provided so that the capacitor attaching screws 129 respectively fixing the negative electrode terminal 121n of the capacitor 121 and the negative electrode terminal 122n of the capacitor 122 abut on the conductor on the same virtual plane as the front surface of the positive electrode conductor 152. The capacitor connection parts 156nf and 157nf are formed separately from the negative electrode conductor 153, which are connected to the negative electrode conductor 153 by the same means as the capacitor connection parts 156p and 157p. The capacitor connection parts 156nf and 157nf are provided with holes for allowing the capacitor attaching screws 129 to penetrate therethrough. The openings 156h and 157h are provided in the positive electrode conductor 152 for avoiding the protruding negative electrode capacitor connection parts 156nf and 157nf from contacting the positive electrode conductor 152.

    [0059]  In a connection point between the main-circuit bus bar assembly 151 and the fuses 131, 132, the first terminal 131a of the positive-electrode side fuse 131 abuts on the fuse connection part 158 provided in the front surface of the positive electrode conductor 152. Furthermore, the fuse connection part 159 protruding in the front (+Y) direction from the negative electrode conductor 153 is provided so that the first terminal 132a of the negative-electrode side fuse 132 abuts on the conductor on the same virtual plane (second virtual plane) as the front surface of the positive electrode conductor 152. The fuse connection part 159 is formed separately from the negative electrode conductor 153, which is connected to the negative electrode conductor 153 by the same means as the capacitor connection parts 156p and 157p. The fuse connection part 159 is provided with a hole for allowing the fuse attaching screw 139 to penetrate therethrough. An opening 159h is provided in the positive electrode conductor 152 for avoiding the protruding negative electrode fuse connection part 159 from contacting the positive electrode conductor 152.

    [0060] The first terminal 131a of the positive-electrode side fuse 131 and the first terminal 132a of the negative-electrode side fuse 132 abut on the main-circuit bus bar assembly 151 on the same virtual plane, thereby facilitating attachment of the fuses 131 and 132 as well as facilitating handling of the main-circuit bus bar assembly 151.

    [0061] Furthermore, in the connection point between the main-circuit bus bar assembly 151 and the fuses 131, 132, the fuse attaching screw 139 fixing the first terminal 132a of the negative-electrode side fuse 132 abuts on the fuse connection part 158 provided in the back surface of the negative electrode conductor 153. Furthermore, the fuse connection part 158b protruding in the rear (-Y) direction from the negative electrode conductor 153 is provided so that the fuse attaching screw 139 fixing the first terminal 131a of the positive-electrode side fuse 131 abuts on the conductor on the same virtual plane as the back surface of the negative electrode conductor 153. The fuse connection part 158b is formed separately from the positive electrode conductor 152, which is connected to the positive electrode conductor 152 by the same means as the capacitor connection parts 156p and 157p. The fuse connection part 158b is provided with a hole for allowing the fuse attaching screw 139 to penetrate therethrough. An opening 158h is provided in the negative electrode conductor 153 for avoiding the protruding positive-electrode fuse connection part 158b from contacting the negative electrode conductor 153.

    [0062] Fig. 17 is a perspective view showing a structure of a front surface of the unit-interconnect bus bar assembly 161, Fig. 18 is a perspective view showing a structure of a back surface of the unit-interconnect bus bar assembly 161, Fig. 19 is an exploded perspective view showing a structure of the front surface of the unit-interconnect bus bar assembly 161 and Fig. 20 is an exploded perspective view showing a structure of the back surface of the unit-interconnect bus bar assembly 161.

    [0063] The unit-interconnect bus bar assembly 161 includes a positive electrode conductor 162, a negative electrode conductor 163 and an insulator 164. The positive electrode conductor 162 and the negative electrode conductor 163 have a flat plate shape. An external positive electrode terminal 162T and an external negative electrode terminal 163T connected to the outside of the power conversion part 2a are respectively provided in the left end of the positive electrode conductor 162 and the negative electrode conductor 163. The external positive electrode terminal 162T and the external negative electrode terminal 163T respectively correspond to the P-terminal and the N-terminal. The positive electrode conductor 162 and the negative electrode conductor 163 are laminated through the insulator 164 so that surfaces facing each other closely contact each other in parallel for reducing a parasitic inductance appearing between a fuse of the power conversion unit 101 of itself and a fuse of an adjacent power conversion unit 101. Accordingly, a current ripple and an impedance in the unit-interconnect bus bar assembly 161 are reduced, an impedance from the power semiconductor module 110 of the power conversion unit 101 of itself to the capacitor group 120 included in an adjacent power conversion unit 101 can be reduced to the smallest value, therefore, not only the capacitor group 120 of the power conversion unit 101 of itself but also the capacitor groups 120 of other power conversion units 101 can be effectively used. As a result, the capacitance of the capacitor group 120 per one power conversion unit 101 can be reduced and the volume of the power conversion unit 101 can be reduced. The insulator 164 covers most part of the positive electrode conductor 162 and the negative electrode conductor 163 which are laminated so that these conductors keep a given insulation distance. Here, conductor surfaces in the front surface and the back surface of the unit-interconnect bus bar assemble 161 may be exposed within a range where the given insulation distance can be kept for improving heat radiation performance. An insulating resin with good flowability or the like is used for the insulator 164.

    [0064] Though the negative electrode conductor 163 and the positive electrode conductor 162 are arranged in this order in the rear (-Y) direction in the embodiment, the parasitic inductance is not affected even when the order of arranging these conductors is changed as long as the positive electrode conductor 162 and the negative electrode conductor 13 are arranged to be closest to each other. These conductors are formed by using materials having high conductivity such as copper and aluminum from a piece of conductor plate by processing such as cutting.

    [0065] In a connection point between the unit-interconnect bus bar assembly 161 and the fuses 131, 132, the second terminals 131b of the positive-electrode side fuses 131 abut on connection parts 165 provided in a back surface of the positive electrode conductor 162. Furthermore, connection parts 166 protruding in the rear (-Y) direction from the negative electrode conductor 163 are provided so that the second terminals 132b of the negative-electrode side fuses 132 abut on the negative electrode conductor on the same virtual plane (first virtual plane) as the back surface of the positive electrode conductor 162. The connection parts 166 are formed separately from the negative electrode conductor 163, which are connected to the negative electrode conductor 163 by the same means as the capacitor connection parts 156p and 157p in the main-circuit bus bar assembly 151. The connection parts 166 are provided with holes for allowing the attaching screws 169 to penetrate therethrough. Openings 166h are provided in the positive electrode conductor 162 for avoiding the protruding negative electrode connection parts 166 from contacting the positive electrode conductor 162.

    [0066] The second terminals 131b of the positive-electrode side fuses 131 and the second terminals 132b of the negative-electrode side fuses 132 abut on the unit-interconnect bus bar assembly 161 on the same virtual plane, thereby facilitating attachment of the fuses 131 and 132 as well as facilitating handling of the unit-interconnect bus bar assembly 161.

    [0067] Furthermore, in connection points between the unit-interconnect bus bar assembly 161 and the fuses 131, 132, attaching screws 169 fixing the second terminals 132b of the negative-electrode side fuses 132 abut on connection parts 166f provided on a front surface of the negative electrode conductor 163. Moreover, connection parts 165f protruding in the front (+Y) direction from the positive electrode conductor 162 are provided so that the attaching screws 169 fixing the second terminals 131b of the positive-electrode side fuses 131 abut on the positive electrode conductor on the same virtual plane as the front surface of the negative electrode conductor 163. The connection parts 165f are formed separately from the positive electrode conductor 162, and are connected to the positive electrode conductor 162 by the same means as the capacitor connection parts 156p and 157p of the main-circuit bus bar assembly 151. The connection parts 165f are provided with holes for allowing the attaching screws 169 to penetrate therethrough. Openings 165h are provided in the negative electrode conductor 163 for avoiding the protruding positive electrode connection parts 165f from contacting the negative electrode conductor 163.

    [0068] According to the structure of the above embodiment, various power converters such as the converter 11, the inverter 12 and the boost chopper 13 can be arbitrarily constructed by connecting the appropriate number of power conversion units 101 in parallel in accordance with the desired electric energy and the number of phases. The power conversion unit 101 is manufactured as a minimum configuration unit, thereby standardizing components in many kinds of power converters, which can reduces costs. Moreover, when the standardized power conversion units 101 are used, an orderly layout can be obtained when they are arranged in parallel, which improves the easiness of connection wiring between units and the entire assemblability. As the terminal groups of the power semiconductor modules, the capacitor terminals, the fuse terminals included in the power conversion unit 101, and the unit-interconnect bus bar assembly 161 connecting the power conversion units 101 to one another exist on the front surfaces of the power converters, the accessibility to the front surfaces is excellent at the time of assembly and maintenance, which improves workability.

    [0069] A method of manufacturing the power conversion part 2a will be explained. First, a manufacturing worker arranges plural power conversion unit 101 in the +X direction and arranges the unit-interconnect bus bar assembly 161 in the +Y direction with respect to the plural power conversion units 101. After that, the manufacturing worker connects the plural positive electrode conductors 152 respectively included in the plural power conversion unit 101 through the positive electrode conductor 162 included in the unit-interconnect bus bar assembly 161 and connects the plural negative electrode conductors respectively included in the plural power conversion unit 101 through the negative electrode conductor 163 included in the unit-interconnect bus bar assembly 161. Accordingly, the power conversion part 2a can be manufactured. It is also possible to manufacture the converter 11, the inverter 12, the boost chopper 13 and the like by using plural power conversion units 101. The manufacturing worker can also manufacture the UPS 2 by connecting the storage battery 14, the maintenance bypass circuit 16, the bypass circuit 17 and so on to plural AC terminals 154T respectively included in plural power conversion units 101.

    [0070] Terms will be explained. A power conversion unit corresponds to the power conversion unit 101 or the like. A positive electrode conductor corresponds to the positive electrode conductor 152 or the like. A negative electrode conductor corresponds to the negative electrode conductor 153 or the like. An AC conductor corresponds to the AC conductor 154 or the like. A circuit connection part corresponds to the main-circuit bus bar assembly 151 or the like. A power semiconductor module corresponds to the power semiconductor module group 110 or the like. A capacitor corresponds to the capacitor group 120 or the like. A unit connection part corresponds to the unit-interconnect bus bar assembly 161 or the like. A positive electrode connection conductor corresponds to the positive electrode conductor 162 or the like. A negative electrode connection conductor corresponds to the negative electrode conductor 163 or the like. Two 2-level half bridge circuits correspond to the power semiconductor modules 111, 112 or the like. Two capacitors correspond to the capacitors 121, 122 or the like. A positive electrode fuse corresponds to the fuse 131 or the like. A negative electrode fuse corresponds to the fuse 132 or the like. Power converters correspond to the converter 11, the inverter 12, the boost chopper 13, the power conversion part 2a, the UPS 2 and the like. A unit corresponds to the power conversion unit 101 or the like. A positive electrode connection terminal corresponds to the second terminal 131b and so on. A negative electrode connection terminal corresponds to the second terminal 132b or the like. A laminated bus bar plate corresponds to the unit-interconnect bus bar assembly 161 or the like. A laminated plate corresponds to the main-circuit bus bar assembly 151 or the like. One-side terminal of the first power semiconductor module corresponds to the positive electrode terminal 111p or the like. The other side terminal of the first power semiconductor module corresponds to the AC terminal 111ac or the like. One-side terminal of the second power semiconductor module corresponds to the AC terminal 112ac or the like. The other-side terminal of the second power semiconductor module corresponds to the negative electrode terminal 112n or the like.

    [0071] The present invention is not limited to the above embodiment and may be altered to other various forms within a scope not departing from the invention.

    Reference Signs List



    [0072] 1: power converter, 2: UPS (Uninterruptible Power Supply), 11: converter, 12: inverter, 13: boost chopper, 101: power conversion unit, 110: power semiconductor module group, 111, 112: power semiconductor module, 113: cooling fin, 120: capacitor group, 121, 122: capacitor, 131, 132: fuse, 151: main-circuit bus bar assembly, 152: positive electrode conductor, 153: positive electrode conductor, 154: AC conductor, 154T: external AC terminal, 155: insulator, 161: unit-interconnect bus bar assembly, 162: positive electrode conductor, 162T: external positive electrode terminal, 163: negative electrode conductor, 163T: external negative electrode terminal, 164: insulator


    Claims

    1. A power conversion unit comprising:

    a circuit connection part (151) including a positive electrode conductor (152), a negative electrode conductor (153) and an AC conductor (154);

    a power semiconductor module (110) positioned in a particular direction with respect to the circuit connection part (151), namely in a rear (-Y) direction with respect to the circuit connection part (151), and connected to the positive electrode conductor (152), the negative electrode conductor (153) and the AC conductor (154); and

    a capacitor (120) positioned in the particular direction with respect to the circuit connection part (151) and connected to the positive electrode conductor (152) and the negative electrode conductor (153),

    wherein the power semiconductor module (110) is provided adjacently to the capacitor (120),

    the positive electrode conductor (152) is connected to a positive electrode conductor (152) of another power conversion unit (101) through a unit connection part (161) positioned in an opposite direction of the particular direction with respect to the circuit connection part (151), and

    the negative electrode conductor (153) is connected to a negative electrode conductor (153) of another power conversion unit (101) through the unit connection part (161) .


     
    2. The power conversion unit according to claim 1,
    wherein the positive electrode conductor (152), the negative electrode conductor (153) and the AC conductor (154) are insulated to one another through an insulator (155), and are laminated in the particular direction.
     
    3. The power conversion unit according to claim 1 or 2,
    wherein a longitudinal direction of the circuit connection part (151) crosses a longitudinal direction of the unit connection part (161).
     
    4. The power conversion unit according to any one of claims 1 to 3, further comprising:

    a positive electrode terminal (131b) connected to the positive electrode conductor (152); and

    a negative electrode terminal (132b) connected to the negative electrode conductor (153),

    wherein the positive electrode terminal (131b) and a positive electrode terminal (131b) of another power conversion unit (101) as well as the negative electrode terminal (132b) and a negative electrode terminal (132b) of another power conversion unit (101) abut on the unit connection part (161) in a first virtual plane perpendicular to the particular direction.


     
    5. The power conversion unit according to claim 4,
    wherein the power semiconductor module (110) includes a 2-level half bridge circuit (111, 112).
     
    6. The power conversion unit according to claim 5,
    wherein the power semiconductor module (110) includes two 2-level half bridge circuits (111, 112) connected to each other in parallel, and
    the capacitor (120) includes two capacitors (121, 122) connected to each other in parallel.
     
    7. The power conversion unit according to any one of claims 4 to 6, further comprising:

    a positive electrode fuse (131) which is the fuse connected between the positive electrode conductor (152) and the positive electrode terminal (131b);

    a negative electrode fuse (132) which is the fuse connected between the negative electrode conductor (153) and the negative electrode terminal (132b).


     
    8. The power conversion unit according to claim 7,
    wherein a first fuse terminal (131a) as the terminal on a first conductor's (158) side in a first fuse in the positive electrode fuse (131) and the negative electrode fuse (132), which is connected to a first conductor (158) positioned in the opposite direction of the particular direction in the positive electrode conductor (152) and the negative electrode conductor (153) abuts on the first conductor (158) within a second virtual plane perpendicular to the particular direction,
    the first conductor (158) includes an opening penetrating in the particular direction,
    the circuit connection part (151) includes a fuse connection conductor as the conductor extending in the opposite direction of the particular direction from a second conductor (159) positioned in the particular direction in the positive electrode conductor (152) and the negative electrode conductor (153) through the opening of the first conductor (158), and
    a second fuse terminal (132a) as the terminal on circuit connection part's (151) side in a second fuse connected to the second conductor (159) in the positive electrode fuse (131) and the negative electrode fuse (132) abuts on the fuse connection conductor inside the second virtual plane.
     
    9. The power conversion unit according to any one of claims 4 to 8,
    wherein the unit connection part (161) includes a positive electrode connection conductor (162) which is the conductor connected to the positive electrode conductor (152) and a negative connection conductor (163) which is the conductor connected to the negative electrode conductor (153), and
    the positive electrode connection conductor (162) and the negative electrode connection conductor (163) are insulated from each other through an insulator (164) and are laminated in the particular direction.
     
    10. The power conversion unit according to claim 9,
    wherein a first terminal in the positive electrode terminal (131b) and the negative electrode terminal (132b) which is connected to a first connection conductor positioned in the particular direction in the positive electrode connection conductor (162) and the negative electrode connection conductor (163) abuts on the first connection conductor inside the first virtual plane,
    the first connection conductor includes openings penetrating in the particular direction,
    the unit connection part (161) includes a unit connection conductor which is the conductor extending in the particular direction from a second connection conductor positioned in the opposite direction of the particular direction in the positive electrode connection conductor (162) and the negative electrode connection conductor (163) through the opening of the first connection conductor, and
    a second terminal connected to the second connection conductor in the positive electrode terminal (131b) and the negative electrode terminal (132b) abuts on the unit connection conductor within the first virtual plane.
     
    11. A power converter comprising:

    a plurality of power conversion units (101); and

    a unit connection part (161) connecting the plurality of power conversion units (101),

    wherein each of the plurality of power conversion units (101) has

    a circuit connection part (151) including a positive electrode conductor (152), a negative electrode conductor (153) and an AC conductor (154),

    a power semiconductor module (110) positioned in a particular direction with respect to the circuit connection part (151), namely in a rear (-Y) direction with respect to the circuit connection part (151), and connected to the positive electrode conductor (152), the negative electrode conductor (153) and the AC conductor (154), and

    a capacitor (120) being provided adjacently to the power semiconductor module (110) is positioned in the particular direction with respect to the circuit connection part (151) and connected to the positive electrode conductor (152) and the negative electrode conductor (153), and

    the unit connection part (161) is positioned in the opposite direction of the particular direction with respect to the circuit connection part (151), connecting between a plurality of positive electrode conductors (152) respectively included in the plurality of power conversion units (101) and connecting between plurality of negative electrode conductors (153) respectively included in the plurality of power conversion units (101).


     
    12. A method of manufacturing a power converter including a plurality of power conversion units (101), each of which has
    a circuit connection part (151) including a positive electrode conductor (152), a negative electrode conductor (153) and an AC conductor (154),
    a power semiconductor module (110) positioned in a particular direction with respect to the circuit connection part (151), namely in a rear (-Y) direction with respect to the circuit connection part (151); and connected to the positive electrode conductor (152), the negative electrode conductor (153) and the AC conductor (154), and
    a capacitor (120) being provided adjacently to the power semiconductor module (110) is positioned in the particular direction with respect to the circuit connection part (151) and connected to the positive electrode conductor (152) and the negative electrode conductor (153), the method comprising:

    arranging the plurality of power conversion units (101) in a direction perpendicular to the particular direction;

    connecting a plurality of positive electrode conductors (152) respectively included in the plurality of power conversion units (101) through a unit connection part (161) positioned in the opposite direction of the particular direction with respect to the plurality of power conversion units (101); and

    connecting a plurality of negative electrode conductors (153) respectively included in the plurality of power conversion units (101) through the unit connection part (161) .


     
    13. The power converter according to claim 11:

    wherein an inverter is configured by at least two of the plurality of power conversion units (101),

    a converter is configured by at least two of the plurality of power conversion units (101),

    the power conversion units (101) are aligned in a direction crossing a longitudinal direction of the power conversion units (101), and

    positive electrode connection terminals (131b) of respective positive electrode conductors (152) of the power conversion units (101) and negative electrode connection terminals (132b) of respective negative electrode conductors (153) of the power conversion units (101) are both positioned on side faces on the same side with respect to the power conversion units (101).


     
    14. The power converter according to claim 11:
    wherein the positive electrode conductor (152), the negative electrode conductor (153) and the AC conductor (154) form a laminated plate.
     
    15. The power conversion unit according to claim 1:

    wherein the positive electrode conductor (152), the negative electrode conductor (153) and the AC conductor (154) form a laminated plate including the positive electrode conductor (152) as a layer, the negative electrode conductor (153) as a layer and the AC conductor (154) as a layer,

    the positive electrode conductor (152) is connected to one side terminal of a first power semiconductor module (111p),

    the AC conductor (154) is connected to the other side terminal of the first power semiconductor module (lilac) and is connected to one side terminal of a second power semiconductor module (112ac),

    the negative electrode conductor (153) is connected to the other side terminal of the second power semiconductor module (112n).


     


    Ansprüche

    1. Leistungsumsetzungseinheit, die Folgendes umfasst:

    ein Schaltungsverbindungsteil (151), das einen positiven Elektrodenleiter (152), einen negativen Elektrodenleiter (153) und einen Wechselstromleiter (154) enthält;

    ein Leistungshalbleitermodul (110), das in einer bestimmten Richtung bezüglich des Schaltungsverbindungsteils (151), und zwar in einer Rückwärtsrichtung (-Y) bezüglich des Schaltungsverbindungsteils (151), positioniert ist und mit dem positiven Elektrodenleiter (152), dem negativen Elektrodenleiter (153) und dem Wechselstromleiter (154) verbunden ist; und

    einen Kondensator (120), der in der bestimmten Richtung bezüglich des Schaltungsverbindungsteils (151) positioniert ist und mit dem positiven Elektrodenleiter (152) und dem negativen Elektrodenleiter (153) verbunden ist,

    wobei das Leistungshalbleitermodul (110) neben dem Kondensator (120) vorgesehen ist,

    der positive Elektrodenleiter (152) mit einem positiven Elektrodenleiter (152) einer anderen Leistungsumsetzungseinheit (101) durch ein Einheitenverbindungsteil (161) verbunden ist, das in einer Richtung, die der bestimmten Richtung entgegengesetzt ist, bezüglich des Schaltungsverbindungsteils (151) positioniert ist, und

    der negative Elektrodenleiter (153) mit einem negativen Elektrodenleiter (153) einer anderen Leistungsumsetzungseinheit (101) durch das Einheitenverbindungsteil (161) verbunden ist.


     
    2. Leistungsumsetzungseinheit nach Anspruch 1,
    wobei der positive Elektrodenleiter (152), der negative Elektrodenleiter (153) und der Wechselstromleiter (154) durch einen Isolator (155) voneinander isoliert sind, und in der bestimmten Richtung geschichtet sind.
     
    3. Leistungsumsetzungseinheit nach Anspruch 1 oder 2,
    wobei eine Längsrichtung des Schaltungsverbindungsteils (151) eine Längsrichtung des Einheitenverbindungsteils (161) kreuzt.
     
    4. Leistungsumsetzungseinheit nach einem der Ansprüche 1 bis 3, die ferner Folgendes umfasst:

    einen Anschluss (131b) der positiven Elektrode, der mit dem positiven Elektrodenleiter (152) verbunden ist; und

    einen Anschluss (132b) der negativen Elektrode, der mit dem negativen Elektrodenleiter (153) verbunden ist,

    wobei der Anschluss (131b) der positiven Elektrode und ein Anschluss (131b) der positiven Elektrode einer anderen Leistungsumsetzungseinheit (101) sowie der Anschluss (132b) der negativen Elektrode und ein Anschluss (132b) der negativen Elektrode einer anderen Leistungsumsetzungseinheit (101) in einer ersten virtuellen Ebene, die senkrecht zu der bestimmten Richtung verläuft, an das Einheitenverbindungsteil (161) angrenzen.


     
    5. Leistungsumsetzungseinheit nach Anspruch 4,
    wobei das Leistungshalbleitermodul (110) eine Zweipunkt-Halbbrückenschaltung (111, 112) enthält.
     
    6. Leistungsumsetzungseinheit nach Anspruch 5,
    wobei das Leistungshalbleitermodul (110) zwei Zweipunkt-Halbbrückenschaltungen (111, 112) enthält, die zueinander parallel geschaltet sind, und
    der Kondensator (120) zwei Kondensatoren (121, 122) enthält, die zueinander parallel geschaltet sind.
     
    7. Leistungsumsetzungseinheit nach einem der Ansprüche 4 bis 6, die ferner Folgendes umfasst:

    eine Sicherung (131) der positiven Elektrode, die der Sicherung entspricht, die zwischen dem positiven Elektrodenleiter (152) und dem Anschluss (131b) der positiven Elektrode verbunden ist;

    eine Sicherung (132) der negativen Elektrode, die der Sicherung entspricht, die zwischen dem negativen Elektrodenleiter (153) und dem Anschluss (132b) der negativen Elektrode verbunden ist.


     
    8. Leistungsumsetzungseinheit nach Anspruch 7,
    wobei ein erster Sicherungsanschluss (131a) als der Anschluss an eine Seite des ersten Leiters (158) in einer ersten Sicherung in der Sicherung (131) der positiven Elektrode und der Sicherung (132) der negativen Elektrode, die mit einem ersten Leiter (158) verbunden ist, der in einer Richtung, die der bestimmten Richtung entgegengesetzt ist, in dem positiven Elektrodenleiter (152) und dem negativen Elektrodenleiter (153) positioniert ist, in einer zweiten virtuellen Ebene, die senkrecht zu der bestimmten Richtung verläuft, angrenzt,
    der erste Leiter (158) eine Öffnung aufweist, die ihn in der bestimmten Richtung durchdringt,
    das Schaltungsverbindungsteil (151) einen Sicherungsverbindungsleiter als den Leiter enthält, der sich in der Richtung, die der bestimmten Richtung entgegengesetzt ist, von einem zweiten Leiter (159), der in der bestimmten Richtung in dem positiven Elektrodenleiter (152) und dem negativen Elektrodenleiter (153) positioniert ist, durch die Öffnung des ersten Leiters (158) erstreckt, und
    ein zweiter Sicherungsanschluss (132a) als der Anschluss an einer Seite des Schaltungsverbindungsteils (151) in einer zweiten Sicherung, die mit dem zweiten Leiter (159) in der Sicherung (131) der positiven Elektrode und der Sicherung (132) der negativen Elektrode verbunden ist, in der zweiten virtuellen Ebene an den Sicherungsverbindungsleiter angrenzt.
     
    9. Leistungsumsetzungseinheit nach einem der Ansprüche 4 bis 8,
    wobei das Einheitenverbindungsteil (161) einen positiven Elektrodenverbindungsleiter (162), der dem Leiter entspricht, der mit dem positiven Elektrodenleiter (152) verbunden ist, und einen negativen Elektrodenverbindungsleiter (163), der dem Leiter entspricht, der mit dem negativen Elektrodenleiter (153) verbunden ist, enthält und
    der positive Elektrodenverbindungsleiter (162) und der negative Elektrodenverbindungsleiter (163) voneinander durch einen Isolator (164) isoliert sind und in der bestimmten Richtung geschichtet sind.
     
    10. Leistungsumsetzungseinheit nach Anspruch 9,
    wobei ein erster Anschluss in dem Anschluss (131b) der positiven Elektrode und dem Anschluss (132b) der negativen Elektrode, der mit einem ersten Verbindungsleiter, der in der bestimmten Richtung in dem positiven Elektrodenverbindungsleiter (162) und dem negativen Elektrodenverbindungsleiter (163) positioniert ist, in der ersten virtuellen Ebene an den ersten Verbindungsleiter angrenzt,
    der erste Verbindungsleiter Öffnungen enthält, die ihn in der bestimmten Richtung durchdringen,
    das Einheitenverbindungsteil (161) einen Einheitenverbindungsleiter enthält, der dem Leiter entspricht, der sich in der bestimmten Richtung von einem zweiten Verbindungsleiter, der in der Richtung, die der bestimmten Richtung entgegengesetzt ist, in dem positiven Elektrodenverbindungsleiter (162) und dem negativen Elektrodenverbindungsleiter (163) positioniert ist, durch die Öffnung des ersten Verbindungsleiters erstreckt, und
    ein zweiter Anschluss, der mit dem zweiten Verbindungsleiter in dem Anschluss (131b) der positiven Elektrode und dem Anschluss (132b) der negativen Elektrode verbunden ist, in der ersten virtuellen Ebene an den Einheitenverbindungsleiter angrenzt.
     
    11. Leistungsumsetzer, der Folgendes umfasst:

    mehrere Leistungsumsetzungseinheiten (101); und

    ein Einheitenverbindungsteil (161), das die mehreren Leistungsumsetzungseinheiten (101) verbindet,

    wobei jede der mehreren Leistungsumsetzungseinheiten (101) Folgendes aufweist:

    ein Schaltungsverbindungsteil (151), das einen positiven Elektrodenleiter (152), einen negativen Elektrodenleiter (153) und einen Wechselstromleiter (154) enthält;

    ein Leistungshalbleitermodul (110), das in einer bestimmten Richtung bezüglich des Schaltungsverbindungsteils (151), und zwar in einer Rückwärtsrichtung (-Y) bezüglich des Schaltungsverbindungsteils (151), positioniert ist und mit dem positiven Elektrodenleiter (152), dem negativen Elektrodenleiter (153) und dem Wechselstromleiter (154) verbunden ist, und

    einen Kondensator (120), der neben dem Leistungshalbleitermodul (110) vorgesehen ist, der in der bestimmten Richtung bezüglich des Schaltungsverbindungsteils (151) positioniert ist und mit dem positiven Elektrodenleiter (152) und dem negativen Elektrodenleiter (153) verbunden ist, und

    das Einheitenverbindungsteil (161) in der Richtung, die der bestimmten Richtung entgegengesetzt ist, bezüglich des Schaltungsverbindungsteils (151) positioniert ist, das zwischen mehreren positiven Elektrodenleitern (152), die jeweils in den mehreren Leistungsumsetzungseinheiten (101) enthalten sind, verbindet und zwischen mehreren negativen Elektrodenleitern (153), die jeweils in den mehreren Leistungsumsetzungseinheiten (101) enthalten sind, verbindet.


     
    12. Verfahren zum Herstellen eines Leistungsumsetzers, der mehrere Leistungsumsetzungseinheiten (101) enthält, wovon jede Folgendes aufweist:

    ein Schaltungsverbindungsteil (151), das einen positiven Elektrodenleiter (152), einen negativen Elektrodenleiter (153) und einen Wechselstromleiter (154) enthält;

    ein Leistungshalbleitermodul (110), das in einer bestimmten Richtung bezüglich des Schaltungsverbindungsteils (151), und zwar in einer Rückwärtsrichtung (-Y) bezüglich des Schaltungsverbindungsteils (151), positioniert ist und mit dem positiven Elektrodenleiter (152), dem negativen Elektrodenleiter (153) und dem Wechselstromleiter (154) verbunden ist, und

    einen Kondensator (120), der neben dem Leistungshalbleitermodul (110) vorgesehen ist, der in der bestimmten Richtung bezüglich des Schaltungsverbindungsteils (151) positioniert ist und mit dem positiven Elektrodenleiter (152) und dem negativen Elektrodenleiter (153) verbunden ist, wobei das Verfahren Folgendes umfasst:

    Anordnen der mehreren Leistungsumsetzungseinheiten (101) in einer Richtung, die senkrecht zu der bestimmten Richtung ist;

    Verbinden mehrerer positiver Elektrodenleiter (152), die jeweils in den mehreren Leistungsumsetzungseinheiten (101) enthalten sind, durch ein Einheitenverbindungsteil (161), das in der Richtung, die der bestimmten Richtung entgegengesetzt ist, bezüglich der mehreren Leistungsumsetzungseinheiten (101) positioniert ist; und

    Verbinden mehrerer negativer Elektrodenleiter (153), die jeweils in den mehreren Leistungsumsetzungseinheiten (101) enthalten sind, durch das Einheitenverbindungsteil (161).


     
    13. Leistungsumsetzer nach Anspruch 11:

    wobei ein Wechselrichter durch mindestens zwei der mehreren Leistungsumsetzungseinheiten (101) konfiguriert ist,

    die Leistungsumsetzungseinheiten (101) in einer Richtung ausgerichtet sind, die eine Längsrichtung der Leistungsumsetzungseinheiten (101) kreuzt, und

    sowohl positive Elektrodenverbindungsanschlüsse (131b) der jeweiligen positiven Elektrodenleiter (152) der Leistungsumsetzungseinheiten (101) als auch negative Elektrodenverbindungsanschlüsse (132b) der jeweiligen negativen Elektrodenleiter (153) der Leistungsumsetzungseinheiten (101) auf Seitenflächen auf derselben Seite bezüglich der Leistungsumsetzungseinheiten (101) positioniert sind.


     
    14. Leistungsumsetzer nach Anspruch 11:
    wobei der positive Elektrodenleiter (152), der negative Elektrodenleiter (153) und der Wechselstromleiter (154) eine mehrschichtige Platte bilden.
     
    15. Leistungsumsetzungseinheit nach Anspruch 1:

    wobei der positive Elektrodenleiter (152), der negative Elektrodenleiter (153) und der Wechselstromleiter (154) eine mehrschichtige Platte bilden, die den positiven Elektrodenleiter (152)als eine Schicht, den negativen Elektrodenleiter (153) als eine Schicht und den Wechselstromleiter (154) als eine Schicht enthält,

    der positive Elektrodenleiter (152) mit einem Seitenanschluss eines ersten Leistungshalbleitermoduls (111p) verbunden ist,

    der Wechselstromleiter (154) mit dem anderen Seitenanschluss des ersten Leistungshalbleitermoduls (111ac) verbunden ist und mit einem Seitenanschluss eines zweiten Leistungshalbleitermoduls (112ac) verbunden ist,

    der negative Elektrodenleiter (153) mit dem anderen Seitenanschluss des zweiten Leistungshalbleitermoduls (112n) verbunden ist.


     


    Revendications

    1. Unité de conversion de puissance comprenant :

    une partie de connexion de circuit (151) incluant un conducteur formant électrode positive (152), un conducteur formant électrode négative (153) et un conducteur de courant alternatif CA (154) ;

    un module semi-conducteur de puissance (110) positionné dans une direction particulière par rapport à la partie de connexion de circuit (151), à savoir dans une direction vers l'arrière (-Y) par rapport à la partie de connexion de circuit (151), et connecté au conducteur formant électrode positive (152), au conducteur formant électrode négative (153) et au conducteur CA (154) ; et

    un condensateur (120) positionné dans la direction particulière par rapport à la partie de connexion de circuit (151) et connecté au conducteur formant électrode positive (152) et au conducteur formant électrode négative (153),

    dans laquelle le module semi-conducteur de puissance (110) est prévu de manière adjacente au condensateur (120),

    le conducteur formant électrode positive (152) est connecté à un conducteur formant électrode positive (152) d'une autre unité de conversion de puissance (101) via une partie de connexion d'unité (161) positionnée dans une direction opposée à la direction particulière par rapport à la partie de connexion de circuit (151), et

    le conducteur formant électrode négative (153) est connecté à un conducteur formant électrode négative (153) d'une autre unité de conversion de puissance (101) via la partie de connexion d'unité (161).


     
    2. Unité de conversion de puissance selon la revendication 1,
    dans laquelle le conducteur formant électrode positive (152), le conducteur formant électrode négative (153) et le conducteur CA (154) sont isolés les uns des autres via un isolateur (155), et sont stratifiés dans la direction particulière.
     
    3. Unité de conversion de puissance selon la revendication 1 ou 2,
    dans laquelle une direction longitudinale de la partie de connexion de circuit (151) croise une direction longitudinale de la partie de connexion d'unité (161).
     
    4. Unité de conversion de puissance selon l'une quelconque des revendications 1 à 3, comprenant en outre :

    une borne d'électrode positive (131b) connectée au conducteur formant électrode positive (152) ; et

    une borne d'électrode négative (132b) connectée au conducteur formant électrode positive (153),

    dans laquelle la borne d'électrode positive (131b) et une borne d'électrode positive (131 b) d'une autre unité de conversion de puissance (101), de même que la borne d'électrode négative (132b) et une borne d'électrode négative (132b) d'une autre unité de conversion de puissance (101) viennent buter sur la partie de connexion d'unité (161) dans un premier plan virtuel perpendiculaire à la direction particulière.


     
    5. Unité de conversion de puissance selon la revendication 4,
    dans laquelle le module semi-conducteur de puissance (110) inclut un circuit en demi-pont (111, 112) à deux niveaux.
     
    6. Unité de conversion de puissance selon la revendication 5,
    dans laquelle le module semi-conducteur de puissance (110) inclut deux circuits en demi-pont (111, 112) à deux niveaux connectés l'un à l'autre en parallèle, et
    le condensateur (120) inclut deux condensateurs (121, 122) connectés l'un à l'autre en parallèle.
     
    7. Unité de conversion de puissance selon l'une quelconque des revendications 4 à 6, comprenant en outre :

    un fusible d'électrode positive (131) qui est le fusible connecté entre le conducteur formant électrode positive (152) et la borne d'électrode positive (131b);

    un fusible d'électrode négative (132) qui est le fusible connecté entre le conducteur formant électrode négative (153) et la borne d'électrode négative (132b).


     
    8. Unité de conversion de puissance selon la revendication 7,
    dans laquelle une première borne de fusible (131a) en tant que borne sur un côté du premier conducteur (158) dans un premier fusible dans le fusible d'électrode positive (131) et le fusible d'électrode négative (132), qui est connecté à un premier conducteur (158) positionné dans la direction opposée à la direction particulière dans le conducteur formant électrode positive (152) et le conducteur formant électrode négative (153), vient buter sur le premier conducteur (158) à l'intérieur d'un second plan virtuel perpendiculaire à la direction particulière,
    le premier conducteur (153) inclut une ouverture qui pénètre dans la direction particulière,
    la partie de connexion de circuit (151) inclut un conducteur de connexion de fusible en tant que conducteur s'étendant dans la direction opposée à la direction particulière depuis un second conducteur (159) positionné dans la direction particulière dans le conducteur formant électrode positive (152) et le conducteur formant électrode négative (153) à travers l'ouverture du premier conducteur (158), et
    une seconde borne de fusible (132a) en tant que borne sur le côté de la partie de connexion de circuit (151) dans un second fusible connecté au second conducteur (159) dans le fusible d'électrode positive (131) et le fusible d'électrode négative (132), vient buter sur le premier conducteur de connexion de fusible à l'intérieur du second plan virtuel.
     
    9. Unité de conversion de puissance selon l'une quelconque des revendications 4 à 8,
    dans laquelle la partie de connexion d'unité (161) inclut un conducteur de connexion d'électrode positive (162) qui est le conducteur connecté au conducteur formant électrode positive (152) et un conducteur de connexion d'électrode négative (163) qui est le conducteur connecté au conducteur formant électrode négative (153), et
    le conducteur de connexion d'électrode positive (162) et le conducteur de connexion d'électrode négative (163) sont isolés l'un de l'autre via un isolateur (164) et sont stratifiés dans la direction particulière.
     
    10. Unité de conversion de puissance selon la revendication 9,
    dans laquelle une première borne dans la borne d'électrode positive (131b) et la borne d'électrode négative (132b) qui est connectée à un premier conducteur de connexion positionné dans la direction particulière dans le conducteur de connexion d'électrode positive (162) et le conducteur de connexion d'électrode négative (163) vient buter sur le premier conducteur de connexion à l'intérieur du premier plan virtuel,
    le premier conducteur de connexion inclut des ouvertures qui pénètrent dans la direction particulière,
    la partie de connexion d'unité (161) inclut un conducteur de connexion d'unité qui est le conducteur s'étendant dans la direction particulière depuis un second conducteur de connexion positionné dans la direction opposée à la direction particulière dans le conducteur de connexion d'électrode positive (162) et le conducteur de connexion d'électrode négative (163) à travers l'ouverture du premier conducteur de connexion, et
    une seconde borne connectée au second conducteur de connexion dans la borne d'électrode positive (131b) et la borne d'électrode négative (132b) vient buter sur le conducteur de connexion d'unité à l'intérieur du premier plan virtuel.
     
    11. Convertisseur de puissance comprenant :

    une pluralité d'unités de conversion de puissance (101) ; et

    une partie de connexion d'unité (161) qui connecte la pluralité d'unités de conversion de puissance (101),

    dans lequel chacune de la pluralité d'unités de conversion de puissance (101) comprend :

    - une partie de connexion de circuit (151) incluant un conducteur formant électrode positive (152), un conducteur formant électrode négative (153) et un conducteur CA (154),

    - un module semi-conducteur de puissance (110) positionné dans une direction particulière par rapport à la partie de connexion de circuit (151), à savoir dans une direction vers l'arrière (-Y) par rapport à la partie de connexion de circuit (151), et connecté au conducteur formant électrode positive (152), au conducteur formant électrode négative (153) et au conducteur CA (154), et

    - un condensateur (120) qui est prévu de manière adjacente au module semi-conducteur de puissance (110) est positionné dans la direction particulière par rapport à la partie de connexion de circuit (151) et est connecté au conducteur formant électrode positive (152) et au conducteur formant électrode négative (153), et

    la partie de connexion d'unité (161) est positionnée dans la direction opposée à la direction particulière par rapport à la partie de connexion de circuit (151), en assurant une connexion entre une pluralité de conducteurs formant électrodes positives (152) respectivement inclus dans la pluralité d'unités de conversion de puissance (101), et assurant une connexion entre la pluralité de conducteurs formant électrodes négatives (153) respectivement inclus dans la pluralité d'unités de conversion de puissance (101).


     
    12. Procédé de fabrication d'un convertisseur de puissance incluant une pluralité d'unités de conversion de puissance (101), chacune de celles-ci ayant :

    - une partie de connexion de circuit (151) incluant un conducteur formant électrode positive (152), un conducteur formant électrode négative (153) et un conducteur CA (154),

    - un module semi-conducteur de puissance (110) positionné dans une direction particulière par rapport à la partie de connexion de circuit (151), à savoir dans une direction vers l'arrière (-Y) par rapport à la partie de connexion de circuit (151), et connecté au conducteur formant électrode positive (152), au conducteur formant électrode négative (153), et au conducteur CA (154), et

    - un condensateur (120) qui est prévu de manière adjacente au module semi-conducteur de puissance (110) est positionné dans la direction particulière par rapport à la partie de connexion de circuit (151) et est connecté au conducteur formant électrode positive (152) et au conducteur formant électrode négative (153), le procédé comprenant les étapes consistant à :

    agencer la pluralité d'unités de conversion de puissance (101) dans une direction perpendiculaire à la direction particulière ;

    connecter une pluralité de conducteurs formant électrodes positives (152) respectivement inclus dans la pluralité d'unités de conversion de puissance (101) via une partie de connexion d'unité (161) positionnée dans la direction opposée à la direction particulière par rapport à la pluralité d'unités de conversion de puissance (101) ; et

    connecter une pluralité de conducteurs formant électrodes négatives (153) respectivement inclus dans la pluralité d'unités de conversion de puissance (101) via la partie de connexion d'unité (161).


     
    13. Convertisseur de puissance selon la revendication 11,
    dans lequel un onduleur est configuré par au moins deux de la pluralité d'unités de conversion de puissance (101),
    un convertisseur est configuré par au moins deux de la pluralité d'unités de conversion de puissance (101),
    les unités de conversion de puissance (101) sont alignées dans une direction qui croise une direction longitudinale des unités de conversion de puissance (101), et
    des bornes de connexion d'électrode positive (131b) de conducteurs respectifs formant électrode positive (152) des unités de conversion de puissance (101) et des bornes de connexion d'électrode négative (132b) de conducteurs respectifs formant électrode négative (153) des unités de conversion de puissance (101) sont positionnées toutes les deux sur des faces latérales du même côté par rapport aux unités de conversion de puissance (101).
     
    14. Convertisseur de puissance selon la revendication 11,
    dans lequel le conducteur formant électrode positive (152), le conducteur formant électrode négative (153) et le conducteur CA (154) forment une plaque stratifiée.
     
    15. Unité de conversion de puissance selon la revendication 1,
    dans lequel le conducteur formant électrode positive (152), le conducteur formant électrode négative (153) et le conducteur CA (154) forment une plaque stratifiée incluant le conducteur formant électrode positive (152) en tant que couche, le conducteur formant électrode négative (153) en tant que couche, et le conducteur CA (154) en tant que couche,
    le conducteur formant électrode positive (152) est connecté à une borne latérale d'un premier module semi-conducteur de puissance (111p),
    le conducteur CA (154) est connecté à l'autre borne latérale du premier module semi-conducteur de puissance (111ac) et est connecté à une borne latérale d'un second module semi-conducteur de puissance (112ac),
    le conducteur formant électrode négative (153) est connecté à l'autre borne latérale du second module semi-conducteur de puissance (112n).
     




    Drawing

































































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description