(19)
(11)EP 3 126 740 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.08.2020 Bulletin 2020/34

(21)Application number: 15714107.8

(22)Date of filing:  18.03.2015
(51)Int. Cl.: 
F23R 3/14  (2006.01)
F23R 3/28  (2006.01)
(86)International application number:
PCT/US2015/021130
(87)International publication number:
WO 2015/153115 (08.10.2015 Gazette  2015/40)

(54)

AIR FUEL PREMIXER FOR LOW EMISSIONS GAS TURBINE COMBUSTOR

LUFT-KRAFTSTOFF-VORMISCHER FÜR GASTURBINENBRENNKAMMER MIT NIEDRIGEN EMISSIONEN

DISPOSITIF DE PRÉMÉLANGE AIR-CARBURANT POUR CHAMBRE DE COMBUSTION DE TURBINE À GAZ À FAIBLES ÉMISSIONS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.04.2014 US 201414243951

(43)Date of publication of application:
08.02.2017 Bulletin 2017/06

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • LI, Suhui
    Niskayuna, NY 12309 (US)
  • JOSHI, Narendra Digamber
    Niskayuna, NY 12309 (US)
  • MCMANUS, Keith Robert
    Niskayuna, NY 12309 (US)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
US-A- 5 675 971
US-A1- 2006 021 350
US-A- 6 141 967
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The invention relates generally to an air fuel mixer for the combustor of a gas turbine engine and, in particular, to an air fuel mixer which uniformly mixes fuel and air so as to reduce NOx formed by the ignition of the fuel-air mixture and minimizes auto-ignition and flashback therein.

    [0002] Generally, an air-fuel mixer for a gas turbine combustor which provides gaseous and/or liquid fuel to the mixing duct so as to be mixed with air to form a uniform air/fuel mixture. Each of the air-fuel mixers includes a mixing duct, a centerbody fuel injector located within the mixing duct, a set of inner and outer counter-rotating swirlers adjacent to the upstream end of the mixing duct, and a hub separating the inner and outer swirlers to allow independent rotation of the air flow therethrough. However, air flow passing the inner swirler expands and forms a recirculation bubble zone (vortex) around the centerbody. The fuel injected into the recirculation bubble zone tends to have a long residence time allowing liquid fuel to mix with the air flow and causes auto-ignition, thereby damaging components of the air-fuel premixer. Moreover, these dual fuel mixer designs do not include features to adequately extend fuel residence time in the mixing duct for increased fuel-air premixing for low NOx emission without causing auto-ignition or flashback. Thus, while the fuel residence time in the mixing duct must be increased for better fuel-air premixing for low NOx emission, the recirculation bubble zone must be eliminated for preventing auto-ignition and/or flashback from occurring at high power operating conditions.

    [0003] US 5 675 971 A and US 6 141 967 A each describe a system and method for premixing fuel and air prior to combustion in a gas turbine engine. The systems include a mixing duct having a circular cross-section defined by a wall, a centerbody fuel injector located along a central axis of the mixing duct and extending substantially the full length of the mixing duct, an outer annular swirler located adjacent an upstream end of the mixing duct and including multiple circumferentially spaced vanes oriented so as to swirl air flowing therethrough in a first swirl direction, and an inner annular swirler located adjacent of the mixing duct upstream end and including multiple circumferentially spaced vanes oriented so as to swirl air flowing therethrough in a second swirl direction opposite of the first swirl direction. A hub separates the inner and outer annular swirlers to permit independent rotation of an air stream therethrough, and multiple hollow paths are located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler, wherein the multiple hollow paths are configured to allow a flow of sweeping air over the surface of the centerbody. The two-part form of claim 1 is based on US 5 675 971 A.

    [0004] US 2006/021350 A1 discloses a similar system for premixing fuel and air prior to combustion in a gas turbine engine without specifying the swirl direction of the inner and outer swirlers.

    [0005] There is therefore a desire for a system and method premixing fuel and air prior to combustion in a gas turbine engine which better addresses the problems of auto-ignition and flashback while maintaining an emphasis on uniformly mixing liquid and/or gaseous fuel with air so as to reduce NOx formed by the ignition of the air/fuel mixture.

    BRIEF DESCRIPTION



    [0006] In accordance with 2. the invention, a system for premixing fuel and air prior to combustion in a gas turbine engine includes a mixing duct having a circular cross-section defined by a wall. The system also includes a centerbody fuel injector located along a central axis of the mixing duct and extending substantially the full length of said mixing duct. Further, the system includes an outer annular swirler located adjacent an upstream end of the mixing duct and including multiple circumferentially spaced vanes oriented so as to swirl air flowing therethrough in a first swirl direction and an inner annular swirler located adjacent of the mixing duct upstream end and including multiple circumferentially spaced vanes oriented so as to swirl air flowing therethrough in a second swirl direction opposite of the first swirl direction. The system includes a hub separating said inner and outer annular swirlers to permit independent rotation of an air stream therethrough and multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler. The multiple hollow paths are configured to allow a flow of sweeping air over the surface of the centerbody fuel injector for removing any formation of recirculation zones about the centerbody fuel injector. The plurality of hollow paths comprise a plurality of holes disposed on an inner radial portion of the vanes of the inner annular swirler.

    [0007] In accordance with the invention, a method for premixing fuel and air prior to combustion in a gas turbine engine includes directing a first flow of compressed air into a mixing duct in a first swirl direction from an outer annular swirler located adjacent an upstream end of the mixing duct. The method also includes directing a second flow of compressed air into the mixing duct in a second swirl direction opposite the first swirl direction from an inner annular swirler located adjacent an upstream end of the mixing duct. Further, the method includes injecting fuel into the mixing duct from a centerbody fuel injector located along a central axis of the mixing duct. Furthermore, the method includes passing a flow of sweeping air over the surface of the centerbody fuel injector into the mixing duct from a plurality of hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler for preventing formation of recirculation zone around the centerbody fuel injector wherein the plurality of hollow paths comprise a plurality of holes disposed on an inner radial portion of the vanes of the inner annular swirler.

    [0008] In accordance with the invention, a gas turbine includes an air fuel premixer including a mixing duct having a circular cross-section defined by a wall. The air fuel premixer includes a centerbody fuel injector located along a central axis of the mixing duct and extending substantially the full length of said mixing duct, an outer annular swirler located adjacent an upstream end of the mixing duct and including a plurality of circumferentially spaced vanes oriented so as to swirl air flowing therethrough in a first swirl direction, an inner annular swirler located adjacent of the mixing duct upstream end and including a plurality of circumferentially spaced vanes oriented so as to swirl air flowing therethrough in a second swirl direction opposite of the first swirl direction and a hub separating said inner and outer annular swirlers to permit independent rotation of an air stream therethrough. The air fuel premixer also includes multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler. The multiple hollow paths are configured to allow a flow of sweeping air over the surface of the centerbody fuel injector for removing any formation of recirculation zones about the centerbody fuel injector. The plurality of hollow paths comprise a plurality of holes disposed on an inner radial portion of the vanes of the inner annular swirler.

    DRAWINGS



    [0009] These and other features, aspects, and advantages of the invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

    FIG. 1 shows a partial cross-sectional view through a single annular combustor structure including an air-fuel mixer in in accordance with an example of the invention;

    FIG. 2 is an enlarged, partial cross-sectional view of the air-fuel mixer and combustor dome portion depicted in FIG. 1 in accordance with an example of the invention;

    FIG. 3 shows a graph depicting a comparison of flow velocity profiles of fluids in the mixing duct around the centerbody fuel injector (shown in FIG. 1, FIG. 2) in accordance with an example of the invention;

    FIG. 4 is a perspective view of the air-fuel mixer 12 in accordance with an example of the invention;

    FIG. 5 is a front view of an air- fuel mixer 12 not in accordance with the invention;

    FIG. 6 is a front view of the air-fuel mixer 12 in accordance with another example of the invention;

    FIG. 7 is a flow chart 100 of a method for premixing fuel and air prior to combustion in a gas turbine engine.


    DETAILED DESCRIPTION



    [0010] When introducing elements of various embodiments of the present technology, the articles "a," "an," "the," and "said" are intended to mean that there are one or more of the elements. The terms "comprising," "including," and "having" are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters are not exclusive of other parameters of the disclosed examples.

    [0011] In FIG. 1, shows a partial cross-sectional view through a single annular combustor apparatus 10 of the type suitable for use in a gas turbine engine including an air-fuel mixer 12 in in accordance with an example of the invention. The combustion apparatus 10 includes a hollow body 14 which defines a combustion chamber 16 therein. The hollow body 14 is generally annular in form and is comprised of an outer liner 18, an inner liner 20, and a domed end or dome 22. The domed end 22 of hollow body 14 includes a swirl cup 24, having disposed therein the air-fuel mixer 12 to promote the uniform mixing of fuel and air therein and the subsequent introduction of the fuel/air mixture into combustion chamber 16 with the minimal formation of pollutants caused by the ignition thereof. Further, a shroud 26 is provided which surrounds air-fuel mixer 12 at the upstream end thereof.

    [0012] As shown, the air fuel mixer 12 includes a mixing duct 28 having a circular cross-section defined by an annular wall 30, an inner annular swirler 32 and an outer annular swirler 34 which are brazed or otherwise set in swirl cup 24. The mixing duct 28 allows uniform mixing of a high pressure air from a compressor (not shown) flowing through the inner and outer annular swirlers 32, 34 with fuel injected from the centerbody fuel injector 44. Inner and outer annular swirlers 32 and 34 are configured with vanes 36 and 38 (shown in FIG. 2), respectively, so as to promote counter-rotation to an air flow provided thereto (see FIG. 2). A hub 40 is utilized to separate inner and outer annular swirlers 32 and 34, which allows them to be co-annular and still separately rotate air 42 entering the upstream ends thereof. The air-fuel mixer 12 also includes a centerbody fuel injector 44 located along a central axis 46 of the mixing duct 28 and extending substantially the full length of the mixing duct 28. In one example, the centerbody fuel injector 44 is in fluid communication with a fuel supply 48 and a purge air supply 50. In another example, a portion of air 42 from the compressor may be utilized to supply air into the centerbody fuel injector 44.

    [0013] The air-fuel mixer 12 also includes multiple hollow paths 52 located radially outward around the centerbody fuel injector 44 and at a radially inward side of the inner annular swirler 32. The multiple hollow paths 52 are configured to allow a flow of sweeping air over the surface of the centerbody fuel injector for removing any formation of recirculation zones about the centerbody fuel injector 44. In an example not in accordance with the invention, the multiple hollow paths 52 are formed by multiple straight vanes 80 (shown in FIG. 5) disposed between the inner annular swirler 32 and the centerbody fuel injector 44. In accordance with the invention, the multiple hollow paths 52 comprises multiple holes 90 (shown in FIG. 6) disposed on an inner radial portion of the vanes 36 (as shown in FIG. 2) of the inner annular swirler 32.

    [0014] FIG. 2 is an enlarged, partial cross-sectional view of the air-fuel mixer 12 in accordance with an example of the invention. The centerbody fuel injector 44 has a centerbody forward section 54 which is substantially parallel to longitudinal axis 46 passing through the air fuel mixer 12 and a centerbody aft section 56 which converges substantially uniformly to a downstream tip 58 of the centerbody fuel injector 44. The centerbody fuel injector 44 preferably includes a passage 60 through the downstream tip 58 in order to admit air of a relatively high axial velocity into combustion chamber 14 (shown in FIG.1) adjacent the downstream tip 58. This design decreases the local fuel/air ratio to help push the flame downstream of downstream tip 58.

    [0015] The centerbody fuel injector 44 further includes multiple fuel orifices 62 positioned immediately upstream of the centerbody aft section 56 from which fuel also can be injected into mixing duct 28 (shown in FIG.1). In one example, the multiple fuel orifices 62 are preferably positioned upstream of the centerbody forward section 54. The injection of fuel through the multiple fuel orifices 62 upstream in the mixing duct 28 (shown in FIG. 1), may cause increased residence time of the fuel-air mixture, leading to sufficient mixing of fuel and air necessary for reduced NOx emission.

    [0016] Further, the multiple fuel orifices 62 are spaced circumferentially about the centerbody forward section 54 and while the number and size of the multiple fuel orifices 62 is dependent on the amount of fuel supplied thereto, the pressure of the fuel, and the number and particular design of swirlers 32 and 34, it has been found that 4 to 12 orifices work adequately. Fuel is supplied to the multiple fuel orifices 62 through a fuel passage 64 within an upstream portion of the centerbody fuel injector 44. The fuel passage 64 is in turn in flow communication with a fuel supply 48 and a control mechanism, such as by means of a fuel nozzle entering the upstream portion of the centerbody fuel injector 44. It will be understood that if gaseous and liquid fuel are to be injected within fuel air mixer 12, the gas fuel will preferably be injected through passages in outer swirler 34 and the liquid fuel will be injected through the multiple fuel orifices 62.

    [0017] Further, the fuel passage 64 is also associated with a air supply 51 so that air will flow through an opening 65 (shown in FIG. 4) around each of the multiple fuel orifices 62 acting as a shield layer to prevent fuel from entering the centerbody recirculation bubble zone and from staying on the surface of the centerbody fuel injector 44. When liquid fuel is not injected into the fuel passage 64, either air or gaseous fuel will be injected therein to replace liquid fuel. As shown, the air-fuel mixer 12 also includes hollow paths 52 for providing a flow of sweeping air over the surface of the centerbody fuel injector 44 for removing completely or partially any formation of recirculation bubble zones about the centerbody fuel injector 44.

    [0018] FIG. 3 shows a graph 70 depicting a comparison of axial flow velocity profiles of fluids at the swirler exit in the mixing duct between the present invention with multiple hollow paths located radially outward around the centerbody fuel injector and a fuel air mixer without multiple hollow paths. The major difference is around the centerbody fuel injector 44 surface (shown in FIG. 1, FIG. 2) in accordance with an example of the invention. The graph 70 includes an axial velocity of fluids in the mixing duct in X-axis. Non-dimensional radial height of inner annular swirler and outer annular swirler are shown in Y-axis having the zero of Y-axis at centerbody surface. In absence of the hollow paths 52 (as shown in FIG. 1, FIG. 2) in a fuel air mixer, there is a formation of recirculation zone due to which there is a negative velocity profile 72 of fluids flowing around the centerbody fuel injector 44, whereas, the flow velocity profile 74 of fluids in the mixing duct 28 clearly show a positive flow velocity (going downstream of the mixing duct). This is due to the presence of the hollow paths 52 in the air-fuel mixer 12 that provides a flow of sweeping air over the surface of the centerbody fuel injector 44 thereby removing completely any formation of recirculation bubble zones about the centerbody fuel injector 44.

    [0019] In operation, compressed air from a compressor (not shown) is injected into the upstream end of fuel air mixer 12 where it passes through inner and outer swirlers 32 and 34 and enters the mixing duct 28. Fuel is injected into an air flow stream exiting swirlers 32 and 34 (which includes intense shear layers in the middle area of mixing duct 28 and boundary layers along the centerbody fuel injector 44 and mixing duct wall, respectively) from fuel orifices 62 in centerbody 42. At the downstream end of mixing duct 28, the premixed fuel/air flow is supplied into a mixing region of combustor chamber 14 which is bounded by inner and outer liners 18 and 16 (shown in FIG. 1). The premixed fuel/air flow is then mixed with recirculating hot burnt gases in combustion chamber 14 (shown in FIG. 1). In one example, the angle of the multiple fuel orifices 62 is aligned to the inner-swirling air flow angle that facilitates a fuel jets to be carried into the shear layers, thereby, promoting fuel-air mixing for reduced NOx emission.

    [0020] FIG. 4 is a perspective view of the air-fuel mixer 12 in accordance with an example of the invention. As shown, the centerbody fuel injector 44 includes multiple fuel orifices 62. Each of the multiple fuel orifices 62 includes the opening 65 (shown in FIG. 4) around each of the multiple fuel orifices 62 acting as a shield layer to prevent fuel from entering the centerbody recirculation bubble zone and from staying on the surface of the centerbody fuel injector 44. This prevents auto-ignition and possible flame-holding in the mixing duct 28.

    [0021] FIG. 5 is a front view of the air-fuel mixer 12 not in accordance with the invention. As shown, the air-fuel mixer 12 includes the multiple hollow paths 52 are formed by multiple straight vanes 80 circumferentially placed between the inner swirler 32 and the centerbody fuel injector 44.

    [0022] FIG. 6 is a front view of the air-fuel mixer 12 in accordance with another example of the invention. As shown, the air-fuel mixer 12 includes the multiple hollow paths 90 that are multiple holes circumferentially disposed on an inner radial portion of the vanes 36 of the inner annular swirler 32.

    [0023] As discussed, both the multiple hollow paths 52 formed by multiple straight vanes 80 (FIG. 5) and the multiple holes 90 (FIG. 6) provide a flow of sweeping air over the surface of the centerbody fuel injector 44 for removing completely or partially any formation of recirculation bubble zones about the centerbody fuel injector 44.

    [0024] FIG. 7 is a flow chart 100 of a method of for premixing fuel and air prior to combustion in a gas turbine engine. At step 102, the method includes directing a first flow of compressed air into a mixing duct in a first swirl direction from an outer annular swirler located adjacent an upstream end of the mixing duct. At step 104, the method includes directing a second flow of compressed air into the mixing duct in a second swirl direction opposite the first swirl direction from an inner annular swirler located adjacent an upstream end of the mixing duct. At step 106, the method includes injecting fuel into the mixing duct from a centerbody fuel injector located along a central axis of the mixing duct. The injection of the fuel into the mixing duct is from multiple orifices disposed in the centerbody fuel injector. Each of the multiple orifices includes an injection angle that is aligned with an inner swirl vane angle of the inner annular swirler for enabling fuel penetration into a shearing layer of flows of air from the inner and outer annular swirlers. Finally at step 108, the method includes passing a flow of sweeping air over the surface of the centerbody fuel injector into the mixing duct from multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler for preventing formation of recirculation zone around the centerbody fuel injector. The multiple hollow paths include multiple holes disposed on an inner radial portion of the vanes of the inner annular swirler.

    [0025] Advantageously, the present invention ensures sufficient fuel air mixing in the mixing duct thereby reducing NOx emissions. Further, the present invention prevents formation of recirculation bubble zones around the centerbody fuel injector due to the flow of sweeping air from the multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler. By eliminating the recirculation bubble zone, fuel orifices on the centerbody fuel injector are located upstream for better fuel air mixing. This extends the residence time of fuel inside the fuel-air mixer so that good fuel-air premixing can be achieved without causing fuel staying in the recirculation zone and preventing autoignition. The multiple hollow paths tunes the axial velocity profiles in the near-centerbody region by increasing positive axial velocity and thus eliminates the recirculation zone.

    [0026] Furthermore, the skilled artisan will recognize the interchangeability of various features from different examples. Similarly, the various methods and features described, as well as other known equivalents for each such methods and feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with the invention. Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular example. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or improves one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.

    [0027] While only certain features of the technology have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the 2. scope of the claims.


    Claims

    1. A system for premixing fuel and air prior to combustion in a gas turbine engine, comprising:

    a mixing duct (28) having a circular cross-section defined by a wall;

    a centerbody fuel injector (44) located along a central axis of the mixing duct and extending substantially the full length of said mixing duct,

    an outer annular swirler (34) located adjacent an upstream end of the mixing duct and including a plurality of circumferentially spaced vanes (38) oriented so as to swirl air flowing therethrough in a first swirl direction;

    an inner annular swirler (32) located adjacent of the mixing duct upstream end and including a plurality of circumferentially spaced vanes (36) oriented so as to swirl air flowing therethrough in a second swirl direction opposite of the first swirl direction;

    a hub (40) separating said inner and outer annular swirlers to permit independent rotation of an air stream therethrough; and

    a plurality of hollow paths (52) located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler; wherein the plurality of hollow paths are configured to allow a flow of sweeping air over the surface of the centerbody fuel injector characterized in that the plurality of hollow paths (52) comprise a plurality of holes (90) disposed on an inner radial portion of the vanes (36) of the inner annular swirler (32).


     
    2. The system of claim 1, further comprising a fuel supply (48) in flow communication with the centerbody fuel injector.
     
    3. The system of claim 1, wherein the mixing duct (58) allows uniform mixing of a high pressure air from a compressor flowing through the inner and outer annular swirlers with a fuel from the centerbody fuel injector (44).
     
    4. The system of claim 1, wherein the centerbody fuel injector (44) comprises a plurality of orifices (62) therein to inject fuel into said mixing duct.
     
    5. The system of claim 4 wherein each of the plurality of orifices (62) comprises an, injection angle that is aligned with an inner swirl vane angle of the inner annular swirler (32) for enabling fuel penetration into a shearing layer of flows of air from the inner and outer annular swirlers.
     
    6. A method for premixing fuel and air prior to combustion in a gas turbine engine, the method comprising:

    directing a first flow of compressed air into a mixing duct (28) in a first swirl direction from an outer annular swirler (34) located adjacent an upstream end of the mixing duct;

    directing a second flow of compressed air into the mixing duct in a second swirl direction opposite the first swirl direction from an inner annular swirler (32) located adjacent an upstream end of the mixing duct;

    injecting fuel into the mixing duct from a centerbody fuel injector (44) located along a central axis of the mixing duct; and

    passing a flow of sweeping air over the surface of the centerbody fuel injector into the mixing duct from a plurality of hollow paths (52) located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler for preventing formation of recirculation zone around the centerbody fuel injector wherein the plurality of hollow paths comprise a plurality of holes (90) disposed on an inner radial portion of the vanes of the inner annular swirler.


     
    7. The method of claim 6, further comprising injecting fuel into the mixing duct from a plurality of orifices (62) disposed in the centerbody fuel injector.
     
    8. The method of claim 7, wherein each of the plurality of orifices (62) comprises an injection angle that is aligned with an inner swirl vane angle of the inner annular swirler (32) for enabling fuel penetration into a shearing layer of flows of air from the inner and outer annular swirlers.
     
    9. A gas turbine comprising; an air fuel premixer comprising a system for premixing fuel and air prior to combustion according to claim 1.
     


    Ansprüche

    1. System zum Vormischen von Kraftstoff und Luft vor Verbrennung in einem Gasturbinentriebwerk, umfassend:

    einen Mischkanal (28) mit einem kreisförmigen Querschnitt, der durch eine Wand definiert ist;

    einen Mittelkörper-Kraftstoffinjektor (44), der entlang einer Mittelachse des Mischkanals angeordnet ist und sich im Wesentlichen über die gesamte Länge des Mischkanals erstreckt;

    einen äußeren ringförmigen Verwirbler (34), der neben einem stromaufwärtigen Ende des Mischkanals angeordnet ist und eine Vielzahl von in Umfangsrichtung beabstandeten Leitschaufeln (38) aufweist, die so ausgerichtet sind, dass sie Luft verwirbeln, die sie in einer ersten Verwirbelungsrichtung durchströmt;

    einen inneren ringförmigen Verwirbler (32), der neben dem stromaufwärtigen Ende des Mischkanals angeordnet ist und eine Vielzahl von in Umfangsrichtung beabstandeten Flügeln (36) aufweist, die so ausgerichtet sind, dass sie Luft verwirbeln, die sie in einer zweiten Wirbelrichtung entgegengesetzt zur ersten Wirbelrichtung durchströmt;

    eine Nabe (40), die den inneren und den äußeren ringförmigen Verwirbler trennt, um eine unabhängige Drehung eines Luftstroms dort hindurch zu ermöglichen; und

    eine Vielzahl von Hohlwegen (52), die radial nach außen um den Mittelkörper-Kraftstoffinjektor und an einer radial nach innen gerichteten Seite des inneren ringförmigen Verwirblers angeordnet sind; wobei die Vielzahl von Hohlwegen dafür konfiguriert sind, einen Spülluftstrom über die Oberfläche des Mittelkörper-Kraftstoffinjektors zu ermöglichen, dadurch gekennzeichnet, dass die Vielzahl von Hohlwegen (52) eine Vielzahl von Löchern (90) umfassen, die an einem inneren radialen Abschnitt der Leitschaufeln (36) des inneren ringförmigen Verwirblers (32) angeordnet sind.


     
    2. System nach Anspruch 1, ferner umfassend eine Kraftstoffzuleitung (48) in Strömungsverbindung mit dem Mittelkörper-Kraftstoffinjektor.
     
    3. System nach Anspruch 1, wobei der Mischkanal (58) ein gleichmäßiges Mischen einer Hochdruckluft aus einem Kompressor, die durch den inneren und den äußeren ringförmigen Verwirbler strömt, mit einem Kraftstoff aus dem Mittelkörper-Kraftstoffinjektor (44) ermöglicht.
     
    4. System nach Anspruch 1, wobei der Mittelkörper-Kraftstoffinjektor (44) eine Vielzahl von Öffnungen (62) darin zum Einspritzen von Kraftstoff in den Mischkanal umfasst.
     
    5. System nach Anspruch 4, wobei jede der Vielzahl von Öffnungen (62) einen Einspritzwinkel aufweist, der mit einem inneren Wirbelschaufelwinkel des inneren ringförmigen Verwirblers (32) ausgerichtet ist, um das Eindringen von Kraftstoff in eine Scherschicht von Luftströmen aus dem inneren und dem äußeren ringförmigen Verwirbler zu ermöglichen.
     
    6. Verfahren zum Vormischen von Kraftstoff und Luft vor Verbrennung in einem Gasturbinentriebwerk, wobei das Verfahren umfasst:

    Leiten eines ersten Druckluftstroms in einen Mischkanal (28) in einer ersten Wirbelrichtung aus einem äußeren ringförmigen Verwirbler (34), der neben einem stromaufwärtigen Ende des Mischkanals angeordnet ist;

    Leiten eines zweiten Druckluftstroms in einen Mischkanal in einer zweiten Wirbelrichtung entgegengesetzt zur ersten Wirbelrichtung aus einem inneren ringförmigen Verwirbler (32), der neben einem stromaufwärtigen Ende des Mischkanals angeordnet ist;

    Einspritzen von Kraftstoff in den Mischkanal aus einem Mittelkörper-Kraftstoffinjektor (44), der entlang einer Mittelachse des Mischkanals angeordnet ist; und

    Leiten eines Spülluftstroms über die Oberfläche des Mittelkörper-Brennstoffinjektors in den Mischkanal aus eine Vielzahl von Hohlpfaden (52), die radial nach außen um den Mittelkörper-Kraftstoffinjektor und an einer radial nach innen gerichteten Seite des inneren ringförmigen Verwirblers angeordnet sind, um das Bilden einer Rezirkulationszone um die Mittelkörper-Kraftstoffinjektor herum zu verhindern, wobei die Vielzahl von Hohlwegen eine Vielzahl von Löchern (90) aufweisen, die an einem inneren radialen Abschnitt der Leitschaufeln des inneren ringförmigen Verwirblers angeordnet sind.


     
    7. Verfahren nach Anspruch 6, ferner umfassend das Einspritzen von Kraftstoff in den Mischkanal aus einer Vielzahl von Öffnungen (62), die in dem Mittelkörper-Kraftstoffinjektor angeordnet sind.
     
    8. Verfahren nach Anspruch 7, wobei jede der Vielzahl von Öffnungen (62) einen Einspritzwinkel aufweist, der mit einem inneren Wirbelschaufelwinkel des inneren ringförmigen Verwirblers (32) ausgerichtet ist, um das Eindringen von Kraftstoff in eine Scherschicht von Luftströmen aus dem inneren und dem äußeren ringförmigen Verwirbler zu ermöglichen.
     
    9. Gasturbine, umfassend;
    Luft-Kraftstoff-Vormischer, umfassend ein System zum Vormischen von Kraftstoff und Luft vor Verbrennung nach Anspruch 1.
     


    Revendications

    1. Système de prémélange de carburant et d'air avant une combustion dans un moteur de turbine à gaz, comprenant :

    un conduit de mélange (28) ayant une section transversale circulaire définie par une paroi ;

    un injecteur de carburant de corps central (44) situé le long d'un axe central du conduit de mélange et s'étendant essentiellement sur toute la longueur dudit conduit de mélange,

    un dispositif de tourbillonnement annulaire extérieur (34) situé de manière adjacente à une extrémité amont du conduit de mélange et incluant une pluralité d'aubes (38) espacées de manière circonférentielle orientées de manière à faire tourbillonner l'air s'écoulant à travers celui-ci dans une première direction de tourbillonnement ;

    un dispositif de tourbillonnement annulaire intérieur (32) situé de manière adjacente à l'extrémité en amont du conduit de mélange et incluant une pluralité d'aubes (36) espacées de manière circonférentielle orientées de manière à faire tourbillonner l'air s'écoulant à travers celui-ci dans une seconde direction de tourbillonnement opposée à la première direction de tourbillonnement ;

    un moyeu (40) séparant lesdits dispositifs de tourbillonnement annulaires intérieur et extérieur pour permettre une rotation indépendante d'un flux d'air, à travers ceux-ci ; et

    une pluralité de trajets creux (52) situés radialement vers l'extérieur autour de l'injecteur de carburant de corps central et au niveau d'un côté radialement vers l'intérieur du dispositif de tourbillonnement annulaire intérieur ; dans lequel la pluralité de trajets creux sont configurés pour permettre un écoulement d'air de balayage sur la surface de l'injecteur de carburant de corps central, caractérisé en ce que la pluralité de trajets creux (52) comprennent une pluralité de trous (90) disposés sur une partie radiale interne des aubes (36) du dispositif de tourbillonnement annulaire intérieur (32).


     
    2. Système selon la revendication 1, comprenant en outre une alimentation en carburant (48) en communication fluidique avec l'injecteur de carburant de corps central.
     
    3. Système selon la revendication 1, dans lequel le conduit de mélange (58) permet un mélange uniforme d'un air à haute pression provenant d'un compresseur s'écoulant à travers les dispositifs de tourbillonnement annulaires intérieur et extérieur avec un carburant provenant de, l'injecteur de carburant de corps central (44).
     
    4. Système selon la revendication 1, dans lequel l'injecteur de carburant de corps central (44) comprend une pluralité d'orifices (62) à l'intérieur de celui-ci pour injecter le carburant dans ledit conduit de mélange.
     
    5. Système selon la revendication 4, dans lequel chacun de la pluralité d'orifices (62) comprend un angle d'injection qui est aligné avec un angle d'aube de tourbillonnement intérieur du dispositif de tourbillonnement annulaire intérieur (32) pour permettre la pénétration du carburant dans une couche de cisaillement des écoulements d'air provenant des dispositifs de tourbillonnement annulaires intérieur et extérieur.
     
    6. Procédé de prémélange de carburant et d'air avant une combustion dans un moteur de turbine à gaz, le procédé comprenant :

    la direction d'un premier écoulement d'air comprimé dans un conduit de mélange (28) dans une première direction de tourbillonnement provenant d'un dispositif de tourbillonnement annulaire extérieur (34) situé de manière adjacente à une extrémité en amont du conduit de mélange ;

    la direction d'un second écoulement d'air comprimé dans le conduit de mélange dans une seconde direction de tourbillonnement opposée à la première direction de tourbillonnement provenant d'un dispositif de tourbillonnement annulaire intérieur (32) situé de manière adjacente à une extrémité en amont du conduit de mélange ;

    l'injection de carburant dans le conduit de mélange à partir d'un injecteur de carburant de corps central (44) situé le long d'un axe central du conduit de mélange ; et

    le passage d'un écoulement d'air de balayage sur la surface de l'injecteur de carburant de corps central dans le conduit de mélange provenant d'une pluralité de chemins creux (52) situés radialement vers l'extérieur autour de l'injecteur de carburant de corps central

    et au niveau d'un côté radialement vers l'intérieur du dispositif de tourbillonnement annulaire intérieur pour empêcher la formation d'une zone de recirculation autour de l'injecteur de carburant de corps central dans lequel la pluralité de trajets creux comprennent une pluralité de trous (90) disposés sur une partie radiale interne des aubes du dispositif de tourbillonnement annulaire intérieur.


     
    7. Procédé selon la revendication 6, comprenant en outre l'injection de carburant dans le conduit de mélange provenant d'une pluralité d'orifices (62) disposés dans l'injecteur de carburant de corps central.
     
    8. Procédé selon la revendication 7, dans lequel chacun de la pluralité d'orifices (62) comprend un angle d'injection qui est aligné avec un angle d'aube de tourbillonnement intérieur du dispositif de tourbillonnement annulaire intérieur (32) pour permettre la pénétration du carburant dans une couche de cisaillement des écoulements d'air provenant des dispositifs de tourbillonnement annulaires intérieur et extérieur.
     
    9. Turbine à gaz comprenant ;
    un prémélangeur carburant-air comprenant un système de prémélange de carburant et d'air avant la combustion selon la revendication 1.
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description