(19)
(11)EP 3 134 372 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 15720477.7

(22)Date of filing:  24.04.2015
(51)Int. Cl.: 
C04B 28/14  (2006.01)
C04B 28/34  (2006.01)
A61L 27/36  (2006.01)
C04B 28/18  (2006.01)
A61L 27/12  (2006.01)
(86)International application number:
PCT/IB2015/053009
(87)International publication number:
WO 2015/162597 (29.10.2015 Gazette  2015/43)

(54)

METHODS OF FORMING A POROUS CERAMIC SHAPED ARTICLE

VERFAHREN ZUR HERSTELLUNG EINES PORÖSEN KERAMISCHEN FORMKÖRPERS

PROCÉDÉS DE FORMATION D'UN ARTICLE POREUX FAÇONNÉ EN CÉRAMIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.04.2014 SE 1400213

(43)Date of publication of application:
01.03.2017 Bulletin 2017/09

(73)Proprietor: OssDsign AB
754 50 Uppsala (SE)

(72)Inventors:
  • ENGQVIST, Håkan
    S-742 36 Östhammar (SE)
  • UNOSSON, Johanna
    S-752 39 Uppsala (SE)

(74)Representative: Brann AB 
P.O. Box 3690 Drottninggatan 27
103 59 Stockholm
103 59 Stockholm (SE)


(56)References cited: : 
EP-A1- 1 380 313
WO-A2-2012/045013
WO-A1-2009/110917
US-A1- 2012 093 771
  
  • XU H H K ET AL: "Injectable and macroporous calcium phosphate cement scaffold", BIOMATERIALS, ELSEVIER SCIENCE PUBLISHERS BV., BARKING, GB, vol. 27, no. 24, 1 August 2006 (2006-08-01), pages 4279-4287, XP027951284, ISSN: 0142-9612 [retrieved on 2006-08-01]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present invention is directed to methods of forming porous ceramic shaped articles and, more specifically, the invention relates to methods of forming porous ceramic shaped articles using a sacrifying phase. The porous ceramic shaped articles are, in one embodiment, particularly advantageous for use in biomedical applications, for example as implants and scaffolds for drug and cell delivery in vivo. In certain embodiments, the porous ceramic shaped articles are macroporous, and in certain embodiments, the porous shaped articles have a uniform porosity.

Background of the Invention



[0002] Synthetic materials intended for bone void filling have been a topic of research interest for several years and there are many potential and important applications for such materials, including, among others, the filling of voids due to osteosarcoma and trauma. The gold standard in practice today, autologous bone, has disadvantages in its limited availability and in the risk of resistant pain. To overcome such drawbacks associated with the use of autologous bone, synthetic materials have become an important substitute. Calcium phosphate ceramics are one of the main groups of synthetic materials used in these applications and they advantageously combine biodegradation and biocompatibility. The calcium phosphate ceramics have the advantage of a chemical composition similar to the mineral phase of bone, i.e., ion-substituted calcium-deficient hydroxyapatite.

[0003] Calcium phosphate (CaP) materials for bone void filling applications are provided in many physical forms including premade scaffolds, granules, putties and self-setting cements. CaPs that are produced through a low temperature method, i.e., through a cement dissolution-precipitation reaction, are known as chemically bonded ceramic materials and have an entangled network of small crystallites. The small size of the crystallites makes the calcium phosphate cements (CPCs) degrade more rapidly than scaffolds prepared through a high temperature sintering process where larger and more compact crystals are formed.

[0004] It is highly desirable for a bone void-filling material to have a fast resorption rate, mirroring an equally fast formation of new bone. Resorbable CaP implants should work as a template for new bone formation and prevent the formation of fibrotic tissue within a bone void, rather than being a permanent bone substitute, similar to the manner in which autologous bone functions. To increase the bone ingrowth in synthetic bone void fillers, it has been suggested, and tested with good results, that the introduction of macropores could be helpful. Two main mechanisms are responsible for the bone ingrowth into bone void fillers. The first is osteoclastic degradation, similar to the normal remodelling mechanism of bone, and the second is resorption through dissolution of the material. Although the CPC based bone void fillers have a high inherent porosity, the pore size mainly lies in the vicinity of 1 µm and lower. An increased amount of macropores, i.e., pores having a size greater than 10 µm, as well as an increased interconnectivity of pores, could improve the cell colonization within the material and increase the osteoclastic degradation. Studies have shown that pore sizes greater than 100 µm are required for a good bone ingrowth, while sizes greater than 300 µm are recommended to achieve enhanced capillary and bone formation. See Karageorgiou et al, Biomaterials, 26:5474-91 (2005).

[0005] Macroporous cements can be either injected into a bone void and set in situ or hardened outside the body into a desired shape, normally into a granule shape, and used as an in vitro scaffold or an implant. The introduction of macropores into a cement has conventionally been performed through several routes. One method employs a mixture of the cement phase with a sacrifying phase (normally a sugar), which is dissolved after cement setting, thereby creating voids. Another method incorporates a surfactant to entrap air during cement mixing (see Sarda et al, Journal of Biomedical Materials Research Part A; 65A:215-21 (2003). Mechanical foaming of the cement paste is also used (see Ginebra et al, Journal of Biomedical Materials Research Part A, 80A:351-61 (2007); Perut et al, Acta Biomaterialia, 7:1780-7 (2011); Montufar et al, Journal of Materials Science: Materials in Medicine, 21:863-9 (2010)). The two main approaches, however, are the use of a sacrifying phase and mechanical foaming. The drawback with these conventional methods is the difficulty to achieve a controlled pore size distribution and interconnectivity, i.e., interconnection of pores. Although foaming could give a controlled distribution of pores in the foam through a rigorously-controlled foaming procedure, the foams are easily ruptured and distorted during cement setting and assuring an even distribution of pores in the final product is difficult. The use of a sugar as a sacrifying phase also has several disadvantages. Mainly, the fast dissolution of the sugars often causes dissolution before the setting of the cement has started, affecting the cement setting mechanism and creating unpredictable pore sizes and distribution. The sugars are furthermore hard to mold into desired shapes, limiting the size and shape of the sacrifying phase.

[0006] WO 2009/110917 A1 discloses a bone substitute, self-hardening cementitious composition comprising a calcium phosphate matrix, at least one macropore forming powder, wherein at least a portion of the macropore forming powder can be polyethylene glycol having a molecular weight of 2000.

[0007] Accordingly, new methods for forming porous ceramic shaped articles are needed, and, additionally, new methods for forming porous ceramic shaped articles having macropores suitable for use as implants which avoid drawbacks of the prior art are needed.

Summary of the Invention



[0008] It is an object of the present invention to provide new methods for forming porous ceramic shaped articles.

[0009] In one embodiment, the invention is directed to a method for making a porous, chemically bonded ceramic shaped article according to any of the claims 1 to 12.

[0010] An embodiment not according to the invention is directed to a porous, chemically bonded ceramic shaped article having interconnected pores, a total porosity of at least about 50%, and a macroporosity of at least about 30%.

[0011] The methods and shaped articles of the invention are advantageous in providing shaped articles with controlled porosity and, in certain embodiments, with controlled macroporosity. These and additional advantages will be more fully apparent in view of the detailed description herein.

Brief Description of the Drawing



[0012] Certain aspects of the invention may be better understood when viewed in connection with the Drawing, in which

Fig. 1 shows porosity (total porosity and macroporosity) of a ceramic material as a function of polymer particle content in a precursor powder mixture, as described in Example 1. Solid markers show total porosity and hollow markers show macroporosity.

Fig. 2 shows an optical image of granules produced in Example 2.

Fig. 3 shows a micro-computed tomography (µCT) image of a granule produced in Example 2.

Fig. 4 shows the pore volume and distribution of granules produced in Example 2.


Detailed Description



[0013] The inventive method comprises i) providing a precursor powder mixture comprising polymer particles comprising water-soluble polyethylene glycol and a ceramic self-setting cementitious powder, wherein the polyethylene glycol has a weight average molecular weight, Mw, in a range of from 5000 g/mol to 30000 g/mol and the polymer particles have an average particle size of from 100 µm to 800 µm; ii) preparing a shaped article from a paste comprising the precursor powder mixture and an aqueous liquid; and iii) immersing the shaped article in an immersing liquid in which the polymer particles are soluble, for a period of time of from about 10 minutes to about two weeks to dissolve the polymer particles in the immersing liquid, thereby creating pores in the shaped article.

[0014] More specifically, the polymer particles comprise at least 50 wt%, 60 wt%, or 70 wt% water-soluble polyethylene glycol. In further embodiments, the polymer particles consist essentially of water-soluble polyethylene glycol, i.e., only insignificant amounts of any other polymer or other material are employed, or the polymer particles consist of water-soluble polyethylene glycol, i.e., no other polymer or other material is included in the particles. Any polymer or other material included in the polymer particles should not adversely influence the melting point of the particles, i.e., the melting point of the particles should be such that the particles are solid at room temperature and during any processing which requires a solid material to provide particles of a desired size, i.e., grinding, milling, sieving or the like. Additionally, any polymer or other material included in the polymer particles should not adversely influence the dissolution of the polymer particles in the immersing liquid beyond the parameters discussed below.

[0015] The polymer can be ground, milled or otherwise mechanically processed to a controlled size without melting during such processing and to ensure that the precursor powder mixture can be mixed with an aqueous liquid to form the paste and the article can be shaped without significant dissolution of the polymer particles. Further, the polyethylene glycol has a molecular weight in the range of from 5000 g/mol to 30000 g/mol to ensure that the particles are sufficiently water soluble when the shaped article is immersed in the immersing liquid to obtain a reasonably fast dissolution rate in the immersing liquid in a reasonable scarifying phase removal time. The dissolution time is not shorter than 10 minutes but not longer than about 10 weeks, more specifically, less than two weeks, one week, or one to five days, or, even more specifically, about 24 hours, particularly at a desired sacrifying phase removal temperature, i.e., in the range of 1 to 100°C, or, specifically, at room temperature. In a specific embodiment, the polymer exhibits the aforementioned dissolution time in the aforementioned sacrifying phase removal temperature when the immersing liquid is water and the immersion is conducted at atmospheric pressure.

[0016] The polymer particles may exhibit a slight solubility when the precursor powder is mixed with the aqueous liquid to form the paste, but the polymer particles are substantially insoluble in the paste and until the shaped article is formed and hardened so that subsequent dissolution of the polymer particles forms an interconnected pore structure, or, in certain embodiments, an interconnected macropore structure, when immersed in the immersing liquid.

[0017] The polymer particles are selected or formed to a specified particle size, shape, and distribution in order to control the porosity in the shaped article. The polymer particles have an average particle size of from 100 µm to 800 µm. In specific embodiments, the polymer particles may have an average particle size of from 300 µm to 600 µm, an average particle size of from 100 µm to 200 µm, or an average particle size of from 200 µm to 300 µm. In another embodiment, at least 50%, 60%, 70%, 80% or 90% of the polymer particles have a size in a range of 100 µm to 800 µm, 300 µm to 600 µm, 100 µm to 200 µm, or 200 µm to 300 µm. Polymer particles in these ranges will provide the shaped article with desirable macroporosity and interconnected pores. The polymer particles may be shaped and sized through various processes known in the art, including, but not limited to, molding, grinding, and/or sieving.

[0018] The precursor powder mixture comprises the polymer particles and a ceramic self-setting cementious powder. A ceramic self-setting cementious powder is one that forms a chemically bonded cement and does not require sintering. The self-setting cementious powder can be any of, but not limited to, one or more of the following: calcium phosphates, calcium sulfates, calcium silicates (e.g. CS, C2S and/or C3S (where C=CaO and S=SiO2)), calcium carbonates (e.g. amorphous, aragonite, calcite, vaterite), magnesium carbonates, and calcium aluminates (e.g. CA, C12A7, C3A (where C=CaO and A=Al2O3)), or a mixture of two or more thereof. In specific embodiments, the powder comprises one or more calcium phosphates selected from the group consisting of anhydrous dicalcium phosphate, dicalcium phosphate dihydrate, monocalcium phosphate monohydrate, octacalcium phosphate, α-tricalcium phosphate, β-tricalcium phosphate, amorphous calcium phosphate, calcium-deficient hydroxyapatite, non-stoichiometric hydroxyapatite, and tetracalcium phosphate. The calcium phosphate powders may be selected to form Brushite, Monetite, and/or hydroxyapatite. In further embodiments, the calcium phosphate powders comprise a mixture of monocalcium phosphate monohydrate and β-tricalcium phosphate, for example, in about equimolar amounts.

[0019] As is known in the art, the cementious powder may be selected to be acidic, neutral or basic, facilitating formation of a desired hardened cement composition. For example, an acidic cement-forming paste will form Monetite or Brushite, while a neutral or basic cement-forming paste will form hydroxyapatite.

[0020] The polymer particles function as a template for the porosity of the shaped article and, in a specific embodiment, macropores. Macropores are defined as pores having a size great than about 10 µm. In specific embodiments, the shaped article has macropores greater than about 50 µm, 100 µm, 200 µm or 300 µm. In additional embodiments, the shaped article has macropores ranging in size from about 50 µm to about 1000 µm, about 100 µm to about 800 µm, about 300 µm to about 600 µm, about 100 µm to about 200 um, or about 200 µm to about 300 µm. Porosity size and distribution can be calculated using volume and density measurements or can be measured using micro-computed tomography as described in the Examples.

[0021] The polymer particles and the ceramic powder are mixed in desired ratios. In a specific embodiment, the precursor powder mixture comprises from 10 to 60 wt%, from 20 to 50 wt%, or from 20 to 40 wt%, based on the weight of the mixture, of the polymer particles, and a balance of the ceramic powder. If the polymer particle content is too low, the shaped article will not have a sufficient porosity for loading, for example, to induce cell loading, and if the polymer content is too high, the shaped article will not have sufficient mechanical strength.

[0022] An aqueous liquid is added to the precursor powder mixture to form a cement paste in which the dissolution-precipitation reaction of the ceramic cementious powder is initiated. In a specific embodiment, the aqueous liquid is mainly water. In specific embodiments, the aqueous liquid comprises at least 50 wt %, at least 60 wt %, at least 70 wt%, at least 80 wt%, at least 90 wt % or 100 wt % water. One or more conventional additives may be included in the precursor powder mixture, the aqueous liquid used to form the paste, or the paste itself in order to influence the setting time of the cement.

[0023] The paste is shaped into a desired article, for example, granules or a custom shape. Generally, the time in which the paste may be shaped is relatively short, several minutes to less than an hour, as the aqueous liquid causes the ceramic powder to react and harden, i.e., set, although longer setting times are also encompassed within the invention.

[0024] After the ceramic has set, the polymer particles are removed by immersion of the shaped article in the immersing liquid. In a specific embodiment, the polymer particles are water soluble and the immersing liquid is water. The article is maintained in the immersing liquid until all polymer is dissolved and removed. The immersing liquid is preferably changed one or several times to ensure complete polymer removal. The time of the dissolution step is referred to as the sacrifying phase removal time and the temperature as the sacrifying phase removal temperature. In specific embodiments, at least 50 wt%, 60 wt%, 70 wt%, 80 wt%, 90 wt%, or all of the polymer particles are dissolved in the immersing liquid within 24 hours at room temperature.

[0025] As the polymer particles are dissolved in the immersing liquid, pores are created in the shaped article. Polymer particles which are sized as described herein, used in the disclosed amounts, can provide a shaped article with interconnected macropores. Thus, the shaped article can be molded directly to its final geometry with macropores according to specific embodiments as described herein. Controlling the polymer particle size to a narrow distribution will assist in forming macropores of similarly uniform size. In specific embodiments, the ceramic shaped articles produced by the inventive methods have interconnected pores, a total porosity of at least about 50%, 60% or 70%, and a macroporosity of at least about 30%, 40% or 50%. The inventive method therefore provides an efficient way to produce controlled macroporous materials. The materials, as well as parameters such as particle sizes, and process-related parameters such as processing times and temperatures as described herein may be varied within the scope of the invention.

[0026] The resulting porous shaped article may then be removed from the immersing liquid and optionally, washed and sterilized for subsequent use. The porous shaped article is suitably used as an in vitro scaffold material or a biomedical implant. An implant optionally can be loaded with a pharmaceutical active ingredient, cells or the like for in vivo delivery. In one embodiment, the shaped article may be used as a scaffold for stem cells. In another embodiment, when the implant is used for drug delivery, macroporosity may not be required, in which case the polymer particles may have a smaller size, for example of less than 50 µm, less than 10 µm, or less than 1 µm.

Example 1



[0027] This example demonstrates various aspects of certain embodiments of the methods and materials of the invention.

[0028] Polyethylene glycol (PEG) with a Mw of 20,000 g/mol was used, the molecular weight being low enough that the PEG dissolves quite fast in water and high enough that the PEG is solid at room temperature and slightly higher temperatures, making it possible to grind and mill the PEG without melting the polymer (Mp = 63-66°C). PEG flakes were melted at 100°C for approximately 10 minutes, cooled, ground by hand, and sieved to desired particle sizes as described in Table 1.

[0029] Monocalcium phosphate monohydrate (MCPM) (Scharlau, CA0211005P, batch 14160301, Spain) and β-TCP (Sigma-Aldrich), were mixed in a 45:55 molar ratio together with 1 wt% disodium dihydrogen pyrophosphate (SPP, Sigma-Aldrich). The sieved PEG was added in appropriate amounts according to Table 1. Citric acid (0.5 M (aq)) was used as the liquid phase in a liquid/paste (L/P) ratio of 0.25 ml/g (not including the PEG content). The mixing was performed twice for thirty seconds in 50 mL falcon tubes, using a Cap-Vibrator (Ivoclar Vivadent, Liechtenstein). Generally 5 g of CaP powder and appropriate amount of PEG was added to the bottom of a 50 mL falcon tube and mixed in a Turbula for approximately 10 minutes. 1.25 mL of citric acid was added and the cement was mixed in the Cap-Vibrator for two periods of 30 seconds each.

[0030] The resulting paste was molded in silicon rubber molds of diameter 8 mm x height 3 mm and six samples were placed together in 50 mL of PBS at 37°C for 24 h. The samples were then polished (both sides) and removed from the molds, and 12 samples were placed together in 90 mL of fresh PBS at 60 °C. The PBS was changed once after 24 - 48 h and removed after another 24 - 48 h. The samples were dried at 60 °C for 24 hours.



[0031] The apparent density of the resulting porous samples (pa,p) was measured by using a caliper to estimate the apparent volume of the samples and by weighing the samples after drying. The skeletal density (ps) was measured using helium pycnometry. The total porosity was then calculated with the following equation



[0032] Macroporosity was calculated according to Takagi et al, Journal of Materials Science Materials in Medicine, 12:135-9 (2001), using the apparent density of the sample without PEG (ρa,np), according to the equation below:



[0033] The results are presented in Table 2.



[0034] This example shows that the present methods can be used to efficiently produce cements having controlled macroporosity.

Example 2



[0035] This example demonstrates various aspects of certain embodiments of the methods and materials of the invention.

[0036] Poly(ethylene glycol) PEG (20 000 g/mol, aaa, Sigma Aldrich, Germany) was melted at 70°C, crushed and sieved to between 100 and 600 µm. Three grams of the sieved PEG was mixed with 0.060 g β-TCP and 1.940 g α-TCP. The powders were mixed in a Turbula (Willy A Bachofen AG, Switzerland) for 1 hour before the liquid (0.8 mL 2.5 % Na2HPO4 (aq)) was added. The paste was mixed for 1 minute using a CapVibrator (Ivoclar Vivadent, USA) and molded in Teflon molds with a diameter of 1.2 mm and a height of 1.2 mm and left to cure at room temperature (21 °C) for 48 hours. The formed granules were then demolded. The PEG was removed from the granules by first washing the granules four times with 100 mL water, after which an additional 100 mL was added and the granules were stored for 2 hours at 70 °C. The water was changed and the granules were stored again in 100 mL water for 2 hours at 70°C. After complete removal of the sacrificial phase (i.e. PEG) the granules were dried at 70°C for 48 hours. Thermogravimetric analysis was performed on the dried granules to ensure complete removal of the PEG.

[0037] The calcium phosphate granules have a diameter between 1.0 and 1.2 mm and a height of 1.2 to 1.6 mm (Figs. 2 and 3). The granules have a total porosity of approximately 75% and a macroporosity of approximately 45%. The macropore size is between 10 and 200 µm, with the average at approximately 80 µm. The pore size distribution from µCT measurements is shown in Fig. 4. The crystal composition of the granules was a mixture of calcium deficient hydroxyapatite with less than 10% β-TCP and α-TCP.

[0038] The specific embodiments and examples described herein are exemplary only in nature and are not intended to be limiting of the invention defined by the claims. Further embodiments and examples, and advantages thereof, will be apparent to one of ordinary skill in the art in view of this specification and are within the scope of the claimed invention.


Claims

1. A method for making a porous, chemically bonded ceramic shaped article, comprising:

i) providing a precursor powder mixture comprising polymer particles comprising water-soluble polyethylene glycol and a ceramic self-setting cementitious powder, wherein the polyethylene glycol has a weight average molecular weight, Mw, in a range of from 5000 g/mol to 30,000 g/mol and the polymer particles have an average particle size of from 100 µm to 800 µm;

ii) preparing a shaped article from a paste comprising the precursor powder mixture and an aqueous liquid;

iii) immersing the shaped article in an immersing liquid in which the polymer particles are soluble, for a period of time of from 10 minutes to two weeks to dissolve the polymer particles in the immersing liquid, thereby creating pores in the shaped article.


 
2. The method according to claim 1, wherein said polymer particles consist of water-soluble polyethylene glycol.
 
3. The method according to claim 1 or 2, wherein the polymer particles have an average particle size of from 300 µm to 600 µm, an average particle size of from 100 µm to 200 µm, or an average particle size of from 200 µm to 300 µm.
 
4. The method according to any one of claims 1-3, wherein the precursor powder mixture comprises from 10 to 60 wt%, from 20 to 50 wt%, or from 20 to 40 wt%, of the polymer particles.
 
5. The method according to any one of claims 1-4, wherein the ceramic self-setting cementitious powder comprises calcium phosphate powder, calcium sulfate power, calcium silicate powder, calcium carbonate powder, magnesium carbonate powder, calcium aluminate powder, or a mixture of two or more thereof.
 
6. The method of claim 5, wherein the ceramic self-setting cementitious powder comprises a mixture of monocalcium phosphate monohydrate and β-tricalcium phosphate.
 
7. The method according to any one of claims 1-6, wherein the shaped article comprises granules.
 
8. The method according to any one of claims 1-7, wherein a shaped article comprising Brushite is formed.
 
9. The method according to any one of claims 1-7, wherein a shaped article comprising Monetite is formed.
 
10. The method according to any one of claims 1-7, wherein a shaped article comprising hyroxyapatite is formed.
 
11. The method according to any one of claims 1-10, wherein the immersing liquid comprises water.
 
12. The method according to any one of claims 1-11, wherein at least 50 wt%, 60 wt%, 70 wt%, 80 wt%, 90 wt%, or all of the polymer particles are dissolved in the immersing liquid within 24 hours.
 


Ansprüche

1. Verfahren zum Herstellen eines porösen, chemisch gebundenen, keramischen Formartikels, umfassend:

i) Bereitstellen einer Vorläuferpulvermischung, die Polymerpartikel, die wasserlösliches Polyethylenglycol umfassen, und ein keramisches, selbsthärtendes, zementartiges Pulver umfasst, wobei das Polyethylenglycol ein gewichtsgemitteltes Molekulargewicht Mw in einer Reichweite von 5000 g/mol bis 30.000 g/mol aufweist und die Polymerpartikel eine durchschnittliche Partikelgröße von 100 µm bis 800 µm aufweisen;

ii) Vorbereiten eines Formartikels aus einer Paste, die die Vorläuferpulvermischung und eine wässrige Flüssigkeit umfasst;

iii) Eintauchen des Formartikels in eine Eintauchflüssigkeit, in der die Polymerpartikel löslich sind, für einen Zeitraum von 10 Minuten bis zwei Wochen, um die Polymerpartikel in der Eintauchflüssigkeit aufzulösen, wodurch Poren in dem Formartikel erzeugt werden.


 
2. Verfahren nach Anspruch 1, wobei die Polymerpartikel aus wasserlöslichem Polyethylenglycol bestehen.
 
3. Verfahren nach Anspruch 1 oder 2, wobei die Polymerpartikel eine durchschnittliche Partikelgröße von 300 µm bis 600 µm, eine durchschnittliche Partikelgröße von 100 µm bis 200 µm oder eine durchschnittliche Partikelgröße von 200 µm bis 300 µm aufweisen.
 
4. Verfahren nach einem der Ansprüche 1-3, wobei die Vorläuferpulvermischung zu 10 bis 60 Gew.-%, zu 20 bis 50 Gew.-% oder zu 20 bis 40 Gew.-% von den Polymerpartikeln umfasst.
 
5. Verfahren nach einem der Ansprüche 1-4, wobei das keramische, selbsthärtende, zementartige Pulver Calciumphosphatpulver, Calciumsulfatpulver, Calciumsilikatpulver, Calciumcarbonatpulver, Magnesiumcarbonatpulver, Calciumaluminatpulver oder eine Mischung von zwei oder mehr davon umfasst.
 
6. Verfahren nach Anspruch 5, wobei das zementartige, selbsthärtende Pulver eine Mischung aus Monocalciumphosphatmonohydrat und β-Tricalciumphosphat umfasst.
 
7. Verfahren nach einem der Ansprüche 1-6, wobei der Formartikel Granulat umfasst.
 
8. Verfahren nach einem der Ansprüche 1-7, wobei ein Brushit umfassender Formartikel gebildet wird.
 
9. Verfahren nach einem der Ansprüche 1-7, wobei ein Monetit umfassender Formartikel gebildet wird.
 
10. Verfahren nach einem der Ansprüche 1-7, wobei ein Hydroxyapatit umfassender Formartikel gebildet wird.
 
11. Verfahren nach einem der Ansprüche 1-10, wobei die Eintauchflüssigkeit Wasser umfasst.
 
12. Verfahren nach einem der Ansprüche 1-11, wobei mindestens 50 Gew.-%, 60 Gew.-%, 70 Gew.-%, 80 Gew.-%, 90 Gew.-% oder alle der Polymerpartikel innerhalb von 24 Stunden in der Eintauchflüssigkeit aufgelöst werden.
 


Revendications

1. Procédé de fabrication d'un article poreux façonné en céramique lié chimiquement, comprenant :

i) la fourniture d'un mélange de poudres précurseurs comprenant des particules de polymère comprenant du polyéthylène glycol soluble dans l'eau et une poudre de céramique à base de ciment à prise automatique, dans lequel le polyéthylène glycol présente une masse moléculaire moyenne en poids, Mp, située dans une plage allant de 5000 g/mol à 30 000 g/mol et les particules de polymère présentent une taille de particule moyenne allant de 100 µm à 800 µm ;

ii) la préparation d'un article façonné à partir d'une pâte comprenant le mélange de poudres précurseurs et un liquide aqueux ;

iii) l'immersion de l'article façonné dans un liquide d'immersion dans lequel les particules de polymère sont solubles, pendant une durée allant de 10 minutes à deux semaines pour dissoudre les particules de polymère dans le liquide d'immersion, créant ainsi des pores dans l'article façonné.


 
2. Procédé selon la revendication 1, dans lequel lesdites particules de polymère se composent de polyéthylène glycol soluble dans l'eau.
 
3. Procédé selon la revendication 1 ou 2, dans lequel les particules de polymère présentent une taille de particule moyenne allant de 300 µm à 600 µm, une taille de particule moyenne allant de 100 µm à 200 µm ou une taille de particule moyenne allant de 200 µm à 300 µm.
 
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le mélange de poudres précurseurs comprend de 10 à 60% en poids, de 20 à 50% en poids ou de 20 à 40 % en poids des particules de polymère.
 
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la poudre de céramique à base de ciment à prise automatique comprend de la poudre de phosphate de calcium, de la poudre de sulfate de calcium, de la poudre de silicate de calcium, de la poudre de carbonate de calcium, de la poudre de carbonate de magnésium, de la poudre d'aluminate de calcium ou un mélange de deux ou plusieurs de ceux-ci.
 
6. Procédé selon la revendication 5, dans lequel la poudre de céramique à base de ciment à prise automatique comprend un mélange de monohydrate de phosphate monocalcique et de phosphate β-tricalcique.
 
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'article façonné comprend des granulés.
 
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'article façonné comprenant de la brushite est formé.
 
9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'article façonné comprenant de la monétite est formé.
 
10. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'article façonné comprenant de l'hydroxyapatite est formé.
 
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le liquide d'immersion comprend de l'eau.
 
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel au moins 50% en poids, 60% en poids, 70% en poids, 80% en poids, 90 % en poids ou toutes les particules de polymère sont dissoutes dans le liquide d'immersion dans les 24 heures.
 




Drawing









REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description