(19)
(11)EP 3 135 198 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 16186149.7

(22)Date of filing:  29.08.2016
(51)International Patent Classification (IPC): 
A61B 5/1455(2006.01)
A61B 5/00(2006.01)

(54)

PULSE PHOTOMETER AND METHOD FOR EVALUATING RELIABILITY OF CALCULATED VALUE OF BLOOD LIGHT ABSORBER CONCENTRATION

PULSPHOTOMETER UND VERFAHREN ZUR BEURTEILUNG DER ZUVERLÄSSIGKEIT DES BERECHNETEN WERTS EINER BLUTLICHTABSORBERKONZENTRATION

PHOTOMÈTRE POUR MESURER LE POULS ET PROCÉDÉ D'ÉVALUATION DE LA FIABILITÉ DE LA VALEUR CALCULÉE DE LA CONCENTRATION DE L'ABSORBEUR DE LUMIÈRE DE SANG


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.08.2015 JP 2015170785
09.06.2016 JP 2016115721

(43)Date of publication of application:
01.03.2017 Bulletin 2017/09

(73)Proprietor: Nihon Kohden Corporation
Shinjuku-ku Tokyo (JP)

(72)Inventors:
  • Ueda, Yoshinori
    Shinjuku-ku, Tokyo (JP)
  • Ukawa, Teiji
    Shinjuku-ku, Tokyo (JP)
  • Ito, Kazumasa
    Shinjuku-ku, Tokyo (JP)
  • Fujisaki, Hideki
    Shinjuku-ku, Tokyo (JP)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
WO-A1-02/28274
US-A- 5 413 100
US-A- 4 714 341
US-A- 5 782 756
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present invention relates to a pulse photometer, and also to a method for evaluating the reliability of a calculated value of the blood light absorber concentration.

    [0002] A pulse photometer is an apparatus which calculates the blood light absorber concentration of the subject. Specifically, the living tissue of the subject is irradiated with light beams at a plurality of wavelengths which have different ratios of the blood light absorbances depending on the blood light absorber concentration. The intensities of the light beams at the wavelengths transmitted through or reflected from the living tissue are detected. The intensities at the wavelengths are changed in accordance with the pulsation of the blood in the subject. Therefore, temporal changes of the intensities at the wavelengths due to the pulsation are acquired in the form of a pulse wave signal. The amplitudes of pulse wave signals with respect to waveforms correspond to light attenuation variations with respect to the waveforms, respectively. The blood light absorber concentration is calculated based on a ratio of light attenuation variations with respect to waveforms (for example, see Japanese Patent No. 4,196,209).

    [0003] As an example of the blood light absorber concentration, known is the arterial oxygen saturation (hereinafter, referred to as the Sa02) which is used as an index of blood oxygenation. In order to obtain the value of the Sa02, an invasive measurement must be performed. Therefore, the transcutaneous arterial oxygen saturation (hereinafter, referred to as the Sp02) which can be non-invasively calculated is widely used as the index. The Sp02 is calculated by a pulse oximeter which is an example of a pulse photometer.

    [0004] Techniques for evaluating the reliability of a calculated value which is obtained as described above are available. In the technique disclosed in Japanese Patent No. 4,865,737, for examples, a calculated value is compared with a data value which is previously acquired in a predetermined measurement environment, and the reliability of the calculated value is evaluated in accordance with the difference between the values.

    [0005] US 5,782,756 discloses a method and an apparatus for in vivo blood constituent analysis utilizing at least three wavelengths of electromagnetic radiation.

    SUMMARY



    [0006] The invention provides a pulse photometer according to claim 1 and a method for evaluating reliability of a calculated value of a blood light absorber concentration according to claim 7.

    [0007] The present invention may provide an apparatus and a method to improve the accuracy of reliability evaluation for a blood light absorber concentration which is non-invasively calculated.

    [0008] There may be provided a pulse photometer comprising: a first variation acquirer which is configured to acquire a first variation corresponding to a light attenuation variation of a first light beam due to pulsation of blood in a subject, based on a first intensity signal corresponding to an intensity of the first light beam that is transmitted through or reflected from a body of the subject, and that has a first wavelength; a second variation acquirer which is configured to acquire a second variation corresponding to a light attenuation variation of a second light beam due to the pulsation, based on a second intensity signal corresponding to an intensity of the second light beam that is transmitted through or reflected from the body of the subject, and that has a second wavelength; a third variation acquirer which is configured to acquire a third variation corresponding to a light attenuation variation of a third light beam due to the pulsation, based on a third intensity signal corresponding to an intensity of the third light beam that is transmitted through or reflected from the body of the subject, and that has a third wavelength; a concentration calculator which is configured to calculate a blood light absorber concentration in the blood, based on the first variation and the second variation; an estimated value calculator which is configured to calculate an estimated value of the third variation, based on the first variation and the second variation; and an evaluator which is configured to evaluate reliability of a calculated value of the blood light absorber concentration, based on the third variation acquired by the third variation acquirer, and the estimated value calculated by the estimated value calculator.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] 

    Fig. 1 is a diagram illustrating the functional configuration of a pulse oximeter in a first embodiment.

    Fig. 2 is a diagram illustrating the functional configuration of a pulse oximeter in a second embodiment.


    DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0010] Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Fig. 1 is a diagram illustrating the functional configuration of a pulse oximeter (an example of the pulse photometer) in a first embodiment. The pulse oximeter 1 is an apparatus which calculates the SpO2 of a subject 2. The Sp02 indicates a ratio (an example of the blood light absorber concentration) of oxyhemoglobin (an example of the blood light absorber) to the amount of hemoglobin capable of carrying oxygen.

    [0011] The pulse oximeter 1 may include a first light emitter 11, a second light emitter 12, a third light emitter 13, a light detector 20, a first variation acquirer 31, a second variation acquirer 32, a third variation acquirer 33, a concentration calculator 40, an estimated value calculator 50, and an evaluator 60.

    [0012] The first light emitter 11 is configured so as to emit a first light beam having a first wavelength λ1. An example of the first wavelength λ1 is 880 nm (an example of the infrared light beam). For example, the first light emitter 11 is a semiconductor light emitting device which can emit the first light beam. Examples of the semiconductor light emitting device are a light emitting diode (LED), a laser diode, and an organic electroluminescence.

    [0013] The second light emitter 12 is configured so as to emit a second light beam having a second wavelength λ2. Examples of the second wavelength λ2 are 630 nm and 660 nm (examples of the red light beam) . For example, the second light emitter 12 is a semiconductor light emitting device which can emit the second light beam. Examples of the semiconductor light emitting device are a light emitting diode (LED), a laser diode, and an organic electroluminescence.

    [0014] The third light emitter 13 is configured so as to emit a third light beam having a third wavelength λ3. An example of the third wavelength λ3 is 940 nm (an example of the infrared light beam). For example, the third light emitter 13 is a semiconductor light emitting device which can emit the third light beam. Examples of the semiconductor light emitting device are a light emitting diode (LED), a laser diode, and an organic electroluminescence.

    [0015] The light detector 20 is configured so as to output a first intensity signal I1 in accordance with the intensity of the first light beam transmitted through or reflected from the body of the subject 2. Moreover, the light detector 20 is configured so as to output a second intensity signal 12 in accordance with the intensity of the second light beam transmitted through or reflected from the body of the subject 2. Furthermore, the light detector 20 is configured so as to output a third intensity signal 13 in accordance with the intensity of the third light beam transmitted through or reflected from the body of the subject 2. For example, the light detector 20 is an optical sensor having a sensitivity to the first wavelength λ1, the second wavelength λ2, and the third wavelength λ3. Examples of the optical sensor are a photodiode, a phototransistor, and a photoresistor.

    [0016] The first light emitter 11, the second light emitter 12, the third light emitter 13, and the light detector 20 are supported by a probe (not shown) which is to be attached to the body of the subject 2. The probe is detachable from the pulse oximeter 1. The configuration of the probe is well known, and therefore its detailed description is omitted.

    [0017] The first variation acquirer 31 is configured so as to acquire a first variation ΔA1 corresponding to a light attenuation variation of the first light beam due to the blood pulsation of the subject 2 based on a temporal change of the first intensity signal I1 output from the light detector 20. The first variation ΔA1 is expressed by the following expression:

    where ΔI1 indicates the variation of the first intensity signal I1 due to the blood pulsation of the subject 2.

    [0018] The second variation acquirer 32 is configured so as to acquire a second variation ΔA2 corresponding to a light attenuation variation of the second light beam due to the blood pulsation of the subject 2 based on a temporal change of the second intensity signal 12 output from the light detector 20. The second variation ΔA2 is expressed by the following expression:

    where ΔI2 indicates the variation of the second intensity signal 12 due to the blood pulsation of the subject 2.

    [0019] The third variation acquirer 33 is configured so as to acquire a third variation ΔA3 corresponding to a light attenuation variation of the third light beam due to the blood pulsation of the subject 2 based on a temporal change of the third intensity signal 13 output from the light detector 20. The third variation ΔA3 is expressed by the following expression:

    where ΔI3 indicates the variation of the third intensity signal 13 due to the blood pulsation of the subject 2.

    [0020] The concentration calculator 40 is configured so as to calculate the Sp02 of the subject 2 based on the first variation ΔA1 acquired by the first variation acquirer 31, and the second variation ΔA2 acquired by the second variation acquirer 32. Specifically, the concentration calculator is configured so as to perform the following process.

    [0021] The first variation ΔA1 and the second variation ΔA2 are expressed by the following expressions:



    where E is the extinction coefficient (dl g-1cm-1), Hb is the hemoglobin concentration of blood (g dl-1), Σ indicates the light attenuation rate (cm-1), and ΔD indicates the thickness change (cm) due to the blood pulsation. The suffix "b" means blood, the suffix "t" means the tissue except blood, the suffix "1" means the first light beam, and the suffix "2" means the second light beam.

    [0022] Expressions (4) and (5) can be deformed in the following manner:



    where Ex indicates a variable which is replaced with (ΣtΔDt)/(HbΔDb), the suffix "1" means the first light beam, and the suffix "2" means the second light beam.

    [0023] Expressions (6) and (7) can be deformed in the following manner:





    [0024] With respect to Expression (9), Eb2 which is the blood extinction coefficient of the second light beam can be approximated by Eb1 which the blood extinction coefficient of the first light beam in the following manner:

    where a and b are constants, the suffix "1" means the first light beam, and the suffix "2" means the second light beam.

    [0025] Moreover, Ex2 which is the variable of the second light beam can be approximated by Ex1 which is the variable of the first light beam in the following manner:

    where α and β are constants, the suffix "1" means the first light beam, and the suffix "2" means the second light beam.

    [0026] Expressions (8) and (9) are rewritten by using Expressions (10) and (11), and the following expressions are obtained:



    When a constant value which is statistically obtained is used as Ex1, and the following matrix expression is calculated, the values of Eb1 and HbΔDb that are variables are obtained.
    (Exp. 1)

    When the Sp02 which is expressed in a percentage notification is unit-converted to S which is expressed in a decimal notification, Eb1 which is the extinction coefficient of the first light beam is expressed by the following expression:

    where Eo is the extinction coefficient of oxyhemoglobin, Er is the extinction coefficient of deoxyhemoglobin, and the suffix "1" means the first light beam. Therefore, the concentration calculator 40 calculates the SpO2 by the following expression:



    [0027] The estimated value calculator 50 is configured so as to calculate an estimated value ΔA3' of the third variation ΔA3 corresponding to the light attenuation variation of the third light beam, based on the first variation ΔA1 acquired by the first variation acquirer 31, and the second variation ΔA2 acquired by the second variation acquirer 32. Specifically, the estimated value calculator is configured so as to calculate the following process.

    [0028] The estimated value ΔA3' is expressed by the following expression:

    where, as described above, E is the extinction coefficient (dl g-1cm-1), Hb is the hemoglobin concentration of blood (g dl-1), Σ indicates the light attenuation rate (cm-1), and ΔD indicates the thickness change (cm) due to the blood pulsation. The suffix "b" means blood, the suffix "t" means the tissue except blood, and the suffix "3" means the third light beam.

    [0029] Expression (17) can be deformed in the following manner:

    where, as described above, Ex indicates a variable which is replaced with (EtΔDt)/(HbΔDb), and the suffix "3" means the third light beam.

    [0030] With respect to Expression (18), Eb3 which is the blood extinction coefficient of the third light beam can be approximated by Eb1 which is the blood extinction coefficient of the first light beam in the following manner:

    where, as described above, a and b are constants, the suffix "1" means the first light beam, and the suffix "3" means the third light beam.

    [0031] Moreover, Ex3 which is the variable of the third light beam can be approximated by Ex1 which is the variable of the first light beam in the following manner:

    where α and β are constants, the suffix "1" means the first light beam, and the suffix "3" means the third light beam.

    [0032] Expression (18) is rewritten by using Expressions (19) and (20), and the following expression is obtained:

    When the values of Eb1 and HbΔDb which are calculated from Expression (14) by the concentration calculator 40 are substituted into Expression (21), therefore, the estimated value ΔA3' can be calculated.

    [0033] The evaluator 60 is configured so as to evaluate the reliability of the Sp02 which is calculated by the concentration calculator 40, based on the third variation ΔA3 acquired by the third variation acquirer 33, and the estimated value ΔA3' calculated by the estimated value calculator 50.

    [0034] Specifically, the evaluator 60 calculates a ratio of the third variation ΔA3 to the estimated value ΔA3'. When the value of the ratio is within the range of 0.9 to 1.1, the evaluator 60 evaluates the Sp02 calculated by the concentration calculator 40, as reliable. When the value of the ratio of the third variation ΔA3 to the estimated value ΔA3' is outside the range, the evaluator 60 evaluates the Sp02 calculated by the concentration calculator 40, as unreliable.

    [0035] It is contemplated that a difference of the estimated value ΔA3' from an acquired value of the third variation ΔA3 which is based on an actual measurement is caused by inappropriate positioning of the probe, an operation failure of the apparatus, or the like. In the case where the SpO2 calculated by the concentration calculator 40 is evaluated as unreliable, the evaluator 60 performs at least one of a visual notification and an audible notification to the user. The user who receives the notification takes an appropriate countermeasure.

    [0036] The pulse oximeter 1 in the embodiment is configured so as to be able to calculate the SpO2 by using the first and second variations ΔA1 and ΔA2 which correspond respectively to the light attenuation variations of the first and second light beams due to the pulsation of the subject 2. According to the configuration, while, by using the third light beam which is not essential for calculation of the SpO2, the third variation ΔA3 corresponding to the light attenuation variation of the third light beam due to the pulsation of the subject 2 is acquired based on an actual measured value, a comparison with the estimated value ΔA3' of the third variation ΔA3 which is obtained based on the first and second variations ΔA1 and ΔA2 that are used in the process of calculating the SpO2 can be performed.

    [0037] The reliability of the calculated SpO2 can be evaluated dynamically and in real time. Therefore, it is possible to perform evaluation which more conforms to the current status as compared to the configuration where evaluation is conducted by comparison with a group of data that are previously collected. Consequently, the accuracy of reliability evaluation for the calculated SpO2 can be improved.

    [0038] In the embodiment, an infrared light beam is used as the first light beam for calculating the Sp02, and a red light beam is used as the second light beam. Alternatively, a red light beam may be used as the first light beam, and an infrared light beam may be used as the second light beam. An infrared light beam is used as the third light beam for evaluating the reliability of the SpO2. Alternatively, a red light beam may be used as the third light beam.

    [0039] The red light beam and the infrared light beam are a combination in which ratios of the blood light absorbances are varied depending on the oxygen saturation, and therefore particularly the accuracy of the calculation for the SpO2 can be improved.

    [0040] The embodiment is configured so that the common light detector 20 detects the first light beam emitted from the first light emitter 11, the second light beam emitted from the second light emitter 12, and the third light beam emitted from the third light emitter 13. Alternatively, a configuration may be employed where at least one of the light detector for detecting the first light beam, that for detecting the second light beam, and that for detecting the third light beam is independently disposed.

    [0041] In the embodiment, the functions of the first variation acquirer 31, the second variation acquirer 32, the third variation acquirer 33, the concentration calculator 40, the estimated value calculator 50, and the evaluator 60 are realized from software executed by a cooperation of a processor and memory which are communicably connected to each other. Examples of the processor are a CPU and an MPU. Examples of the memory are a RAM and a ROM. However, at least one of the functions of the first variation acquirer 31, the second variation acquirer 32, the third variation acquirer 33, the concentration calculator 40, the estimated value calculator 50, and the evaluator 60 may be realized by hardware such as circuit devices, or a combination of hardware and software.

    [0042] Fig. 2 is a diagram illustrating the functional configuration of a pulse oximeter 1A in a second embodiment. Portions which are identical or substantially identical with those of the pulse oximeter 1 in the first embodiment are denoted by the same reference numerals, and duplicated descriptions are omitted.

    [0043] The pulse oximeter 1A may include the first light emitter 11, the second light emitter 12, the third light emitter 13, a fourth light emitter 14, a light detector 20A, the first variation acquirer 31, the second variation acquirer 32, the third variation acquirer 33, a fourth variation acquirer 34, a concentration calculator 40A, an estimated value calculator 50A, and an evaluator 60A.

    [0044] The fourth light emitter 14 is configured so as to emit a fourth light beam having a fourth wavelength λ4. Examples of the fourth wavelength λ4 are 700 nm (an example of the red light beam), 730 nm (an example of the red light beam), and 805 nm (an example of the infrared light beam) . For example, the fourth light emitter 14 is a semiconductor light emitting device which can emit the fourth light beam. Examples of the semiconductor light emitting device are a light emitting diode (LED), a laser diode, and an organic electroluminescence.

    [0045] The light detector 20A is configured so as to output a fourth intensity signal 14 in accordance with the intensity of the fourth light beam transmitted through or reflected from the body of the subject 2.

    [0046] The fourth variation acquirer 34 is configured so as to acquire a fourth variation ΔA4 corresponding to a light attenuation variation of the fourth light beam due to the blood pulsation of the subject 2 based on a temporal change of the fourth intensity signal 14 output from the light detector 20A. The fourth variation ΔA4 is expressed by the following expression:

    where ΔI4 indicates the variation of the fourth intensity signal 14 due to the blood pulsation of the subject 2.

    [0047] The concentration calculator 40A is configured so as to calculate the Sp02 of the subject 2 based on the first variation ΔA1 acquired by the first variation acquirer 31, the second variation ΔA2 acquired by the second variation acquirer 32, and the fourth variation ΔA4 acquired by the fourth variation acquirer 34. Specifically, the concentration calculator is configured so as to perform the following process.

    [0048] The fourth variation ΔA4 is expressed by the following expression:

    where, as described above, E is the extinction coefficient (dl g-1cm-1), Hb is the hemoglobin concentration of blood (g dl-1), Σ indicates the light attenuation rate (cm-1), and ΔD indicates the thickness change (cm) due to the blood pulsation. The suffix "b" means blood, the suffix "t" means the tissue except blood, and the suffix "4" means the fourth light beam.

    [0049] Expression (23) can be deformed in the following manner:

    where, as described above, Ex indicates a variable which is replaced with (ΣtΔDt)/(HbΔDb), and the suffix "4" means the fourth light beam.

    [0050] With respect to Expression (24), Eb4 which is the blood extinction coefficient of the fourth light beam can be approximated by Eb1 which is the blood extinction coefficient of the first light beam in the following manner:

    where, as described above, a and b are constants, the suffix "1" means the first light beam, and the suffix "4" means the fourth light beam.

    [0051] Moreover, Ex4 which is the variable of the fourth light beam can be approximated by Ex1 which is the variable of the first light beam in the following manner:

    where α and β are constants, the suffix "1" means the first light beam, and the suffix "4" means the fourth light beam.

    [0052] When Expressions (12) and (13) are modified, and Expression (24) is rewritten by using Expressions (25) and (26), the following expressions are obtained:







    [0053] In the embodiment, also Ex1 is treated as a variable. When the following matrix expression is calculated, the values of Eb1, Ex1, and HbΔDb that are variables are obtained.
    (Exp. 2)



    [0054] The concentration calculator 40A calculates the Sp02 by substituting Eb1 which is the acquired extinction coefficient of the first light beam into Expression (16).

    [0055] The estimated value calculator 50A is configured so as to calculate an estimated value ΔA3' of the third variation ΔA3 corresponding to the light attenuation variation of the third light beam, based on the first variation ΔA1 acquired by the first variation acquirer 31, the second variation ΔA2 acquired by the second variation acquirer 32, and the fourth variation ΔA4 acquired by the fourth variation acquirer 34.

    [0056] Specifically, the values of Eb1, Ex1, and HbΔDb which are calculated from Expression (30) by the concentration calculator 40A are substituted into Expression (21), thereby calculating the estimated value ΔA3'.

    [0057] The evaluator 60A is configured so as to evaluate the reliability of the Sp02 which is calculated by the concentration calculator 40A, based on the third variation ΔA3 acquired by the third variation acquirer 33, and the estimated value ΔA3' calculated by the estimated value calculator 50A.

    [0058] Specifically, the evaluator 60A calculates a ratio of the third variation ΔA3 to the estimated value ΔA3'. When the value of the ratio is within the range of 0.9 to 1.1, the evaluator 60A evaluates the SpO2 calculated by the concentration calculator 40A, as reliable. When the value of the ratio of the third variation ΔA3 to the estimated value ΔA3' is outside the range, the evaluator 60A evaluates the SpO2 calculated by the concentration calculator 40A, as unreliable.

    [0059] In the case where the SpO2 calculated by the concentration calculator 40A is evaluated as unreliable, the evaluator 60A performs at least one of a visual notification and an audible notification to the user. The user who receives the notification takes an appropriate countermeasure.

    [0060] The pulse oximeter 1A in the embodiment is configured so as to be able to calculate the SpO2 by using the first, second, and fourth variations ΔA1, ΔA2, and ΔA4 which correspond respectively to the light attenuation variations of the first, second, and fourth light beams due to the pulsation of the subject 2. According to the configuration, while, by using the third light beam which is not essential for calculation of the SpO2, the third variation ΔA3 corresponding to the light attenuation variation of the third light beam due to the pulsation of the subject 2 is acquired based on an actual measured value, a comparison with the estimated value ΔA3' of the third variation ΔA3 which is obtained based on the first, second, and fourth variations ΔA1, ΔA2, and ΔA4 that are used in the process of calculating the SpO2 can be performed.

    [0061] The reliability of the calculated SpO2 can be evaluated dynamically and in real time. Therefore, it is possible to perform evaluation which more conforms to the current status as compared to the configuration where evaluation is conducted by comparison with a group of data that are previously collected. Particularly, the SpO2 is calculated by using three wavelengths, and therefore all of the three variables which are necessary for calculating the estimated value ΔA3' can be acquired based on actual measured values. Consequently, the accuracy of reliability evaluation for the calculated SpO2 can be further improved.

    [0062] In the embodiment, an infrared light beam is used as the first light beam for calculating the SpO2, and a red light beam is used as the second light beam. Alternatively, a red light beam may be used as the first light beam, and an infrared light beam may be used as the second light beam. An infrared light beam is used as the third light beam for evaluating the reliability of the SpO2. Alternatively, a red light beam may be used as the third light beam.

    [0063] The red light beam and the infrared light beam are a combination in which ratios of the blood light absorbances are varied depending on the oxygen saturation, and therefore particularly the accuracy of the calculation for the SpO2 can be improved.

    [0064] The embodiment is configured so that the common light detector 20A detects the first light beam emitted from the first light emitter 11, the second light beam emitted from the second light emitter 12, the third light beam emitted from the third light emitter 13, and the fourth light beam emitted from the fourth light emitter 14. Alternatively, a configuration may be employed where at least one of the light detector for detecting the first light beam, that for detecting the second light beam, that for detecting the third light beam, and that for detecting the fourth light beam is independently disposed.

    [0065] In the embodiment, the functions of the first variation acquirer 31, the second variation acquirer 32, the third variation acquirer 33, the fourth variation acquirer 34, the concentration calculator 40A, the estimated value calculator 50A, and the evaluator 60A are realized from software executed by a cooperation of a processor and memory which are communicably connected to each other. Examples of the processor are a CPU and an MPU. Examples of the memory are a RAM and a ROM. However, at least one of the functions of the first variation acquirer 31, the second variation acquirer 32, the third variation acquirer 33, the fourth variation acquirer 34, the concentration calculator 40A, the estimated value calculator 50A, and the evaluator 60A may be realized by hardware such as circuit devices, or a combination of hardware and software.

    [0066] The above-described embodiments are mere examples for facilitating understanding of the invention. It is obvious that equivalents are included within the technical scope of the invention.

    [0067] In the above-described embodiments, a pulse oximeter for calculating the SpO2 has been exemplified. However, the invention can be applied also to other kinds of pulse photometers which measure the concentration of another blood light absorber. Examples of another blood light absorber are carboxyhemoglobin, methemoglobin, and a dye injected into blood vessels. In this case, the wavelengths of the light beams are selected so that combinations can be produced in which ratios of the blood light absorbances are substantially different from each other depending on the target blood light absorber concentration. In a pulse photometer for calculating a plurality of kinds of blood light absorbers, a light beam which is to be used for reliability evaluation, and which is not essential for calculating the concentration of one of the blood light absorbances may be used for calculating the concentration of the other blood light absorber.

    [0068] A configuration may be employed where four or more light beams at four or more wavelengths are used for calculating the blood light absorber concentration. According to the configuration, the reliability of a calculated blood light absorber concentration can be evaluated by using a fifth light beam which is not essential for calculating the blood light absorber concentration. For example, five wavelengths λ1, λ2, λ3, λ4, and λ5 may be selected as follows:

    λ1 = 630 nm, λ2 = 660 nm, λ3 = 700 nm, λ4 = 880 nm, λ5 = 940 nm; or

    λ1 = 660 nm, λ2 = 700 nm, λ3 = 730 nm, λ4 = 880 nm, λ5 = 940 nm.



    [0069] In the above-described embodiments, pulse oximeters have been exemplified as pulse photometers. The term "pulse photometer" used in the specification includes a patient monitor, defibrillator, medical transmitter, and the like which have a function of calculating the SpO2.

    [0070] According to an aspect of the invention, the pulse photometer is configured so as to be able to calculate the blood light absorber concentration by using the first and second variations which correspond respectively to the light attenuation variations of the first and second light beams due to the pulsation of the subject. According to the configuration, while, by using the third light beam which is not essential for calculation of the blood light absorber concentration, the third variation corresponding to the light attenuation variation of the third light due to the pulsation of the subject is acquired based on an actual measured value, a comparison with the estimated value of the third variation which is obtained based on the first and second variations that are used in the process of calculating the blood light absorber concentration can be performed.

    [0071] The reliability of the calculated blood light absorber concentration can be evaluated dynamically and in real time. Therefore, it is possible to perform evaluation which more conforms to the current status as compared to the configuration where evaluation is conducted by comparison with a group of data that are previously collected. Consequently, the accuracy of reliability evaluation for the calculated blood light absorber concentration can be improved.


    Claims

    1. A pulse photometer (1) comprising:

    a first variation acquirer (31) which is configured to acquire a first variation corresponding to a light attenuation variation of a first light beam due to pulsation of blood in a subject, based on a first intensity signal corresponding to an intensity of the first light beam that is transmitted through or reflected from a body of the subject, and that has a first wavelength;

    a second variation acquirer (32) which is configured to acquire a second variation corresponding to a light attenuation variation of a second light beam due to the pulsation, based on a second intensity signal corresponding to an intensity of the second light beam that is transmitted through or reflected from the body of the subject, and that has a second wavelength;

    a third variation acquirer (33) which is configured to acquire a third variation corresponding to a light attenuation variation of a third light beam due to the pulsation, based on a third intensity signal corresponding to an intensity of the third light beam that is transmitted through or reflected from the body of the subject, and that has a third wavelength; and

    a concentration calculator (40) which is configured to calculate a blood light absorber concentration in the blood, based on the first variation and the second variation;
    characterized by

    an estimated value calculator (50) which is configured to calculate an estimated value of the third variation, based on the first variation and the second variation; and

    an evaluator (60) which is configured to evaluate reliability of a calculated value of the blood light absorber concentration, based on the third variation acquired by the third variation acquirer, and the estimated value calculated by the estimated value calculator.


     
    2. The pulse photometer according to claim 1, further comprising:

    a fourth variation acquirer (34) which is configured to acquire a fourth variation corresponding to a light attenuation variation of a fourth light beam due to the pulsation, based on a fourth intensity signal corresponding to an intensity of the fourth light beam that is transmitted through or reflected from the body of the subject, and that has a fourth wavelength, wherein

    the concentration calculator is configured to calculate the blood light absorber concentration based on the first variation, the second variation, and the fourth variation, and

    the estimated value calculator is configured to calculate the estimated value based on the first variation, the second variation, and the fourth variation.


     
    3. The pulse photometer according to claim 1, comprising:

    a first light emitter (11) which is configured to emit the first light beam having the first wavelength;

    a second light emitter (12) which is configured to emit the second light beam having the second wavelength;

    a third light emitter (13) which is configured to emit the third light beam having the third wavelength;

    a light detector (20) which is configured to output the first intensity signal, the second intensity signal, and the third intensity signal.


     
    4. The pulse photometer according to claim 3, wherein
    one of the first light beam and the second light beam is a red light beam, and
    the other of the first light beam and the second light beam is an infrared light beam.
     
    5. The pulse photometer according to claim 3 or 4, further comprising:

    a fourth light emitter (14); and

    a fourth variation acquirer (34), wherein

    the fourth light emitter is configured to emit a fourth light beam having a fourth wavelength,

    the light detector is configured to output a fourth intensity signal in accordance with an intensity of the fourth light beam that is transmitted through or reflected from the body of the subject,

    the fourth variation acquirer is configured to acquire a fourth variation corresponding to a light attenuation variation of the fourth light beam due to the pulsation, based on the fourth intensity signal,

    the concentration calculator is configured to calculate the blood light absorber concentration based on the first variation, the second variation, and the fourth variation, and

    the estimated value calculator is configured to calculate the estimated value based on the first variation, the second variation, and the fourth variation.


     
    6. The pulse photometer according to claim 5, wherein
    the first wavelength, the second wavelength, the third wavelength, and the fourth wavelength are selected from 630 nm, 660 nm, 700 nm, 730 nm, 805 nm, 880 nm, and 940 nm.
     
    7. A method for evaluating reliability of a calculated value of a blood light absorber concentration, the method comprising:

    causing a pulse photometer to acquire a first variation corresponding to a light attenuation variation of a first light beam due to pulsation of blood in a subject, based on a first intensity signal corresponding to an intensity of the first light beam that is transmitted through or reflected from a body of the subject, and that has a first wavelength;

    causing the pulse photometer to acquire a second variation corresponding to a light attenuation variation of a second light beam due to the pulsation, based on a second intensity signal corresponding to an intensity of the second light beam that is transmitted through or reflected from the body of the subject, and that has a second wavelength;

    causing the pulse photometer to acquire a third variation corresponding to a light attenuation variation of a third light beam due to the pulsation, based on a third intensity signal corresponding to an intensity of the third light beam that is transmitted through or reflected from the body of the subject, and that has a third wavelength;

    causing the pulse photometer to calculate a blood light absorber concentration in the blood, based on the first variation and the second variation;
    characterized by

    causing the pulse photometer to calculate an estimated value of the third variation, based on the first variation and the second variation; and

    causing the pulse photometer to evaluate reliability of a calculated value of the blood light absorber concentration, based on the third variation and the estimated value of the third variation.


     
    8. The method according to claim 7, wherein
    one of the first light beam and the second light beam is a red light beam, and
    the other of the first light beam and the second light beam is an infrared light beam.
     
    9. The method according to claim 7 or 8, further comprising
    causing the pulse photometer to acquire a fourth variation corresponding to a light attenuation variation of a fourth light beam due to the pulsation, based on a fourth intensity signal corresponding to an intensity of the fourth light beam that is transmitted through or reflected from the body of the subject, and that has a fourth wavelength, wherein
    the blood light absorber concentration is calculated based on the first variation, the second variation, and the fourth variation, and
    the estimated value is calculated based on the first variation, the second variation, and the fourth variation.
     
    10. The method according to claim 9, wherein
    the first wavelength, the second wavelength, the third wavelength, and the fourth wavelength are selected from 630 nm, 660 nm, 700 nm, 730 nm, 805 nm, 880 nm, and 940 nm.
     


    Ansprüche

    1. Pulsfotometer (1), mit:

    einer ersten Änderungserfassungseinheit (31), die ausgebildet ist, eine erste Änderung, die einer Lichtabschwächungsänderung eines ersten Lichtstrahls aufgrund einer Pulsation von Blut in einem Objekt entspricht, auf der Grundlage eines ersten Intensitätssignals zu erhalten, das einer Intensität des ersten Lichtstrahls entspricht, der einen Körper des Objekts durchläuft oder davon reflektiert wird und eine erste Wellenlänge hat;

    einer zweiten Änderungserfassungseinheit (32), die ausgebildet ist, eine zweite Änderung, die einer Lichtabschwächungsänderung eines zweiten Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage eines zweiten Intensitätssignals zu erhalten, das einer Intensität des zweiten Lichtstrahls entspricht, der den Körper des Objekts durchläuft oder davon reflektiert wird und eine zweite Wellenlänge hat;

    einer dritten Änderungserfassungseinheit (33), die ausgebildet ist, eine dritte Änderung, die einer Lichtabschwächungsänderung eines Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage eines dritten Intensitätssignals zu erhalten, das einer Intensität des Lichtstrahls entspricht, der den Körper des Objekts durchläuft oder davon reflektiert wird und eine dritte Wellenlänge hat; und

    einer Konzentrationsberechnungseinheit (40), die ausgebildet ist, eine Blutlichtabsorptionskonzentration in dem Blut auf der Grundlage der ersten Änderung und der zweiten Änderung zu berechnen;

    gekennzeichnet durch

    eine Schätzwertberechnungseinheit (50), die ausgebildet ist, einen Schätzwert der dritten Änderung auf der Grundlage der ersten Änderung und der zweiten Änderung zu berechnen; und

    eine Bewertungseinheit (60), die ausgebildet ist, eine Zuverlässigkeit des berechneten Wertes der Blutlichtabsorptionskonzentration auf der Grundlage der durch die dritte Änderungserfassungseinheit erhaltenen Änderung und auf der Grundlage des Schätzwertes, der von der Schätzwertberechnungseinheit berechnet ist, zu bewerten.


     
    2. Pulsfotometer nach Anspruch 1, das ferner aufweist:

    eine vierte Änderungserfassungseinheit (34), die ausgebildet ist, eine vierte Änderung, die einer Lichtabschwächungsänderung eines vierten Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage eines vierten Intensitätssignals zu erhalten, das einer Intensität des vierten Lichtstrahls entspricht, der den Körper des Objekts durchläuft oder davon reflektiert wird und eine vierte Wellenlänge hat, wobei

    die Konzentrationsberechnungseinheit ausgebildet ist, die Blutlichtabsorptionskonzentration auf der Grundlage der ersten Änderung, der zweiten Änderung und der vierten Änderung zu berechnen, und

    die Schätzwertberechnungseinheit ausgebildet ist, den Schätzwert auf der Grundlage der ersten Änderung, der zweiten Änderung und der vierten Änderung zu berechnen.


     
    3. Pulsfotometer nach Anspruch 1, das ferner aufweist:

    einen ersten Lichtemitter (11), der ausgebildet ist, den ersten Lichtstrahl mit der ersten Wellenlänge auszusenden;

    einen zweiten Lichtemitter (12), der ausgebildet ist, den zweiten Lichtstrahl mit der zweiten Wellenlänge auszusenden;

    einen dritten Lichtemitter (13), der ausgebildet ist, den dritten Lichtstrahl mit der dritten Wellenlänge auszusenden;

    einen Lichtdetektor (20), der ausgebildet ist, das erste Intensitätssignal, das zweite Intensitätssignal und das dritte Intensitätssignal auszugeben.


     
    4. Pulsfotometer nach Anspruch 3, wobei
    der erste Lichtstrahl oder der zweite Lichtstrahl ein roter Lichtstrahl ist, und
    der entsprechende andere Lichtstrahl des ersten Lichtstrahls und des zweiten Lichtstrahls ein Infrarotlichtstrahl ist.
     
    5. Pulsfotometer nach Anspruch 3 oder 4, das ferner aufweist:

    einen vierten Lichtemitter (14); und

    eine vierte Änderungserfassungseinheit (34), wobei

    der vierte Lichtemitter ausgebildet ist, einen vierten Lichtstrahl mit einer vierten Wellenlänge auszusenden,

    der Lichtdetektor ausgebildet ist, ein viertes Intensitätssignal gemäß einer Intensität des vierten Lichtstrahls, der den Körper des Objekts durchläuft oder davon reflektiert wird, auszugeben,

    die vierte Änderungserfassungseinheit ausgebildet ist, eine vierte Änderung, die eine Lichtabschwächung des vierten Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage des vierten Intensitätssignals zu erhalten,

    die Konzentrationsberechnungseinheit ausgebildet ist, die Blutlichtabsorptionskonzentration auf der Grundlage der ersten Änderung, der zweiten Änderung und der vierten Änderung zu berechnen, und

    die Schätzwertberechnungseinheit ausgebildet ist, den Schätzwert auf der Grundlage der ersten Änderung, der zweiten Änderung und der vierten Änderung zu berechnen.


     
    6. Pulsfotometer nach Anspruch 5, wobei
    die erste Wellenlänge, die zweite Wellenlänge, die dritte Wellenlänge und die vierte Wellenlänge ausgewählt sind aus 630 nm, 660 nm, 700 nm, 730 nm, 805 nm, 880 nm und 940 nm.
     
    7. Verfahren zur Bewertung einer Zuverlässigkeit eines berechneten Wertes einer Blutlichtabsorptionskonzentration, wobei das Verfahren umfasst:

    Bewirken, dass ein Pulsfotometer eine erste Änderung, die einer Lichtabschwächungsänderung eines ersten Lichtstrahls aufgrund einer Pulsation von Blut in einem Objekt entspricht, auf der Grundlage eines ersten Intensitätssignals erhält, das einer Intensität des ersten Lichtstrahls entspricht, der einen Körper des Objekts durchläuft oder davon reflektiert wird und eine erste Wellenlänge hat;

    Bewirken, dass ein Pulsfotometer eine zweite Änderung, die einer Lichtabschwächungsänderung eines zweiten Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage eines zweiten Intensitätssignals erhält, das einer Intensität des zweiten Lichtstrahls entspricht, der den Körper des Objekts durchläuft oder davon reflektiert wird und eine zweite Wellenlänge hat;

    Bewirken, dass das Pulsfotometer eine dritte Änderung, die einer Lichtabschwächungsänderung eines dritten Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage eines dritten Intensitätssignals erhält, das einer Intensität des dritten Lichtstrahls entspricht, der den Körper des Objekts durchläuft oder davon reflektiert wird und eine dritte Wellenlänge hat;

    Bewirken, dass das Pulsfotometer eine Blutlichtabsorptionskonzentration im Blut auf der Grundlage der ersten Änderung und der zweiten Änderung berechnet;

    gekennzeichnet durch

    Bewirken, dass das Pulsfotometer einen Schätzwert der dritten Änderung auf der Grundlage der ersten Änderung und der zweiten Änderung berechnet; und

    Bewirken, dass das Pulsfotometer eine Zuverlässigkeit eines berechneten Wertes der Blutlichtabsorptionskonzentration auf der Grundlage der dritten Änderung und des Schätzwertes der dritten Änderung bewertet.


     
    8. Verfahren nach Anspruch 7, wobei
    der erste Lichtstrahl oder der zweite Lichtstrahl ein roter Lichtstrahl ist, und
    der andere Lichtstrahl des ersten Lichtstrahls und des zweiten Lichtstrahls ein Infrarotlichtstrahl ist.
     
    9. Verfahren nach Anspruch 7 oder 8, das ferner umfasst
    Bewirken, dass das Pulsfotometer eine vierte Änderung, die einer Lichtabschwächungsänderung eines vierten Lichtstrahls aufgrund der Pulsation entspricht, auf der Grundlage eines vierten Intensitätssignals erhält, das einer Intensität des vierten Lichtstrahls entspricht, der den Körper des Objekts durchläuft oder davon reflektiert wird und eine viere Wellenlänge hat, wobei
    die Blutlichtabsorptionskonzentration auf der Grundlage der ersten Änderung, der zweiten Änderung und der vierten Änderung berechnet wird, und
    der Schätzwert auf der Grundlage der ersten Änderung, der zweiten Änderung und der vierten Änderung berechnet wird.
     
    10. Verfahren nach Anspruch 9, wobei
    die erste Wellenlänge, die zweite Wellenlänge, die dritte Wellenlänge und die vierte Wellenlänge ausgewählt sind aus 630 nm, 660 nm, 700 nm, 730 nm, 805 nm, 880 nm und 940 nm.
     


    Revendications

    1. Photomètre de mesure du pouls (1) comprenant :

    un premier dispositif d'acquisition de variation (31) qui est configuré pour acquérir une première variation correspondant à une variation d'atténuation de lumière d'un premier faisceau de lumière dû à la pulsation du sang chez un sujet, sur la base d'un premier signal d'intensité correspondant à une intensité du premier faisceau de lumière qui est transmis à travers ou reflété depuis un corps du sujet, et qui présente une première longueur d'onde ;

    un second dispositif d'acquisition de variation (32) qui est configuré pour acquérir une seconde variation correspondant à une variation d'atténuation de lumière d'un second faisceau de lumière dû à la pulsation, sur la base d'un second signal d'intensité correspondant à une intensité du second faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet, et qui présente une seconde longueur d'onde ;

    un troisième dispositif d'acquisition de variation (33) qui est configuré pour acquérir une troisième variation correspondant à une variation d'atténuation de lumière d'un troisième faisceau de lumière dû à la pulsation, sur la base d'un troisième signal d'intensité correspondant à une intensité du troisième faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet, et qui présente une troisième longueur d'onde ; et

    un calculateur de concentration (40) qui est configuré pour calculer une concentration de la substance d'absorption de lumière du sang dans le sang, sur la base de la première variation et de la seconde variation ;

    caractérisé par

    un calculateur de valeur estimée (50) qui est configuré pour calculer une valeur estimée de la troisième variation, sur la base de la première variation et de la seconde variation ; et

    un évaluateur (60) qui est configuré pour évaluer la fiabilité d'une valeur calculée de la concentration de la substance d'absorption de lumière du sang, sur la base de la troisième variation acquise par le troisième dispositif d'acquisition de variation, et la valeur estimée calculée par le calculateur de valeur estimée.


     
    2. Photomètre de mesure du pouls selon la revendication 1, comprenant en outre :

    un quatrième dispositif d'acquisition de variation (34) qui est configuré pour acquérir une quatrième variation correspondant à une variation d'atténuation de lumière d'un quatrième faisceau de lumière dû à la pulsation, sur la base d'un quatrième signal d'intensité correspondant à une intensité du quatrième faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet, et qui présente une quatrième longueur d'onde, où

    le calculateur de concentration est configuré pour calculer la concentration de la substance d'absorption de lumière du sang sur la base de la première variation, de la seconde variation, et de la quatrième variation, et

    le calculateur de valeur estimée est configuré pour calculer la valeur estimée sur la base de la première variation, de la seconde variation, et de la quatrième variation.


     
    3. Photomètre de mesure du pouls selon la revendication 1, comprenant :

    un premier dispositif d'émission de lumière (11) qui est configuré pour émettre le premier faisceau de lumière présentant la première longueur d'onde ;

    un second dispositif d'émission de lumière (12) qui est configuré pour émettre le second faisceau de lumière présentant la seconde longueur d'onde ;

    un troisième dispositif d'émission de lumière (13) qui est configuré pour émettre le troisième faisceau de lumière présentant la troisième longueur d'onde ;

    un détecteur de lumière (20) qui est configuré pour délivrer le premier signal d'intensité, le second signal d'intensité, et le troisième signal d'intensité.


     
    4. Photomètre de mesure du pouls selon la revendication 3, dans lequel
    l'un du premier faisceau de lumière et du second faisceau de lumière est un faisceau de lumière rouge, et
    l'autre du premier faisceau de lumière et du second faisceau de lumière est un faisceau de lumière infrarouge.
     
    5. Photomètre de mesure du pouls selon la revendication 3 ou 4, comprenant en outre :

    un quatrième dispositif d'émission de lumière (14) ; et

    un quatrième dispositif d'acquisition de variation (34), où

    le quatrième dispositif d'émission de lumière est configuré pour émettre un quatrième faisceau de lumière présentant une quatrième longueur d'onde,

    le détecteur de lumière étant configuré pour délivrer un quatrième signal d'intensité selon une intensité du quatrième faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet,

    le quatrième dispositif d'acquisition de variation est configuré pour acquérir une quatrième variation correspondant à une variation d'atténuation de lumière du quatrième faisceau de lumière dû à la pulsation, sur la base du quatrième signal d'intensité,

    le calculateur de concentration est configuré pour calculer la concentration de la substance d'absorption de lumière du sang sur la base de la première variation, de la seconde variation, et de la quatrième variation, et

    le calculateur de valeur estimée est configuré pour calculer la valeur estimée sur la base de la première variation, de la seconde variation, et de la quatrième variation.


     
    6. Photomètre de mesure du pouls selon la revendication 5, dans lequel
    la première longueur d'onde, la seconde longueur d'onde, la troisième longueur d'onde, et la quatrième longueur d'onde sont sélectionnées parmi 630 nm, 660 nm, 700 nm, 730 nm, 805 nm, 880 nm, et 940 nm.
     
    7. Procédé d'évaluation de la fiabilité d'une valeur calculée d'une concentration de la substance d'absorption de lumière du sang, le procédé comprenant :

    le fait d'amener un photomètre de mesure du pouls à acquérir une première variation correspondant à une variation d'atténuation de lumière d'un premier faisceau de lumière dû à la pulsation du sang chez un sujet, sur la base d'un premier signal d'intensité correspondant à une intensité du premier faisceau de lumière qui est transmis à travers ou reflété depuis un corps du sujet, et qui présente une première longueur d'onde ;

    le fait d'amener le photomètre de mesure du pouls à acquérir une seconde variation correspondant à une variation d'atténuation de lumière d'un second faisceau de lumière dû à la pulsation, sur la base d'un second signal d'intensité correspondant à une intensité du second faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet, et qui présente une seconde longueur d'onde ;

    le fait d'amener le photomètre de mesure du pouls à acquérir une troisième variation correspondant à une variation d'atténuation de lumière d'un troisième faisceau de lumière dû à la pulsation, sur la base d'un troisième signal d'intensité correspondant à une intensité du troisième faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet, et qui présente une troisième longueur d'onde ;

    le fait d'amener le photomètre de mesure du pouls à calculer une concentration de la substance d'absorption de lumière du sang dans le sang, sur la base de la première variation et de la seconde variation ;

    caractérisé par

    le fait d'amener le photomètre de mesure du pouls à calculer une valeur estimée de la troisième variation, sur la base de la première variation et de la seconde variation ; et

    le fait d'amener le photomètre de mesure du pouls à évaluer la fiabilité d'une valeur calculée de la concentration de la substance d'absorption de lumière du sang, sur la base de la troisième variation et de la valeur estimée de la troisième variation.


     
    8. Procédé selon la revendication 7, dans lequel l'un du premier faisceau de lumière et du second faisceau de lumière est un faisceau de lumière rouge, et
    l'autre du premier faisceau de lumière et du second faisceau de lumière est un faisceau de lumière infrarouge.
     
    9. Procédé selon la revendication 7 ou 8, comprenant en outre
    le fait d'amener le photomètre de mesure du pouls à acquérir une quatrième variation correspondant à une variation d'atténuation de lumière d'un quatrième faisceau de lumière dû à la pulsation, sur la base d'un quatrième signal d'intensité correspondant à une intensité du quatrième faisceau de lumière qui est transmis à travers ou reflété depuis le corps du sujet, et qui présente une quatrième longueur d'onde, où
    la concentration de la substance d'absorption de lumière du sang est calculée sur la base de la première variation, de la seconde variation, et de la quatrième variation, et
    la valeur estimée est calculée sur la base de la première variation, de la seconde variation, et de la quatrième variation.
     
    10. Procédé selon la revendication 9, dans lequel
    la première longueur d'onde, la seconde longueur d'onde, la troisième longueur d'onde, et la quatrième longueur d'onde sont sélectionnées parmi 630 nm, 660 nm, 700 nm, 730 nm, 805 nm, 880 nm, et 940 nm.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description