(19)
(11)EP 3 136 414 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15183183.1

(22)Date of filing:  31.08.2015
(51)International Patent Classification (IPC): 
H01H 33/56(2006.01)
H01H 33/40(2006.01)
H01H 33/666(2006.01)
H01H 33/02(2006.01)

(54)

GAS-INSULATED MEDIUM VOLTAGE SWITCHGEAR WITH A CIRCUIT BREAKER POLE PART ARRANGEMENT

GASISOLIERTE MITTELSPANNUNGSSCHALTANLAGE MIT EINER SCHUTZSCHALTERPOLTEILANORDNUNG

APPAREILLAGE DE COMMUTATION MOYENNE TENSION À ISOLATION GAZEUSE AVEC UN AGENCEMENT DE PARTIE PÔLE DE DISJONCTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
01.03.2017 Bulletin 2017/09

(73)Proprietor: ABB Schweiz AG
5400 Baden (CH)

(72)Inventor:
  • Sauer, Manfred
    40885 Ratingen (DE)

(74)Representative: Schmidt, Karl Michael 
ABB AG GF-IP Oberhausener Strasse 33
40472 Ratingen
40472 Ratingen (DE)


(56)References cited: : 
EP-A1- 1 998 347
EP-A1- 2 325 858
DE-A1- 10 305 464
EP-A1- 2 261 941
WO-A1-2004/055850
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a gas-insulated medium voltage switchgear with a circuit breaker pole part arrangement in a gastight compartment of the switchgear, and with a drive arrangement for switching actuation of the circuit breaker, wherein the drive as well as the pole part arrangement is fixed on a common plate or frame, which is provided with a gastight sealing, and is closing the aforesaid compartment gastightly in such, that in the completely mounted position of the plate or frame, the pole parts are positioned inside, and the drive is positioned outside the aforesaid gastight compartment, according to the preamble of claim 1. In general, that means in the state of the art, such medium voltage vacuum circuit breakers mainly consist of a drive mechanism and electric poles. Vacuum interrupters are installed within the poles. The drive is connected to the vacuum interrupters via pushrods which actuates the mechanical movement of the switching contacts inside the vacuum interrupters. The poles provide the mechanical support to the vacuum interrupters, and are fixed to the circuit breaker structure and therewith to the gas-insulated switchgear panel.

    [0002] The pole-design has to withstand the dielectric, thermal and mechanical stress during service and testing conditions. Such switchgear is disclosed in the WO 2004/055850 A1. It can be seen, that the coupling elements are adapted to a fixed distance.

    [0003] In respect of dielectric stress the insulation parts of electric poles must provide sufficient electric creepage distance on electrically stressed paths and sufficient high electric resistivity. Furthermore the design should avoid thin gas gaps between insulating and electrically stressed parts where an accumulation of the electric field appears. The poles have to be arranged inside the switchgear in a way that sufficient electric clearance is provided between the poles and earthed parts of the switchgear and between the poles in multiphase systems.

    [0004] In respect of thermal stress the insulating parts of electric poles must withstand the ambient temperature in the circuit breaker compartment and the temperature of conducting parts with which they are in contact. Mechanical and dielectrical properties of the insulating parts of the poles must not change inappropriately.

    [0005] In respect of mechanical stress, the pole design and especially the mechanically supporting parts of the poles must withstand the mechanical stress during switching of the circuit breaker and the electromagnetic forces during fault current.

    [0006] In general the electric poles of medium voltage circuit breakers are arranged in parallel to each other. The mechanical stress caused by electromagnetic forces on parallel poles in a switchgear which is subject to fault current is directly proportional to the square of the fault current and indirect proportional to the pole distance.

    [0007] The electric field and therewith the dielectric withstand of the gas volume between parallel poles depend indirectly on the pole-distance.

    [0008] Furthermore the pole distance depends on the width of the poles, the width of the interrupting units inside the poles, on the switchgear in which the circuit breaker will be installed, the drive mechanism of the circuit breaker, etc.

    [0009] As a consequence different ratings and designs of switchgears require different pole distances of the circuit breakers. In general circuit breakers with different pole distances comprise different drives which are specially designed for the corresponding pole-distance.

    [0010] Known constructions lead to the following disadvantages.
    • High variance/ number of parts and subassemblies
    • Preproduction of subassemblies not meaningful due to low needed volume per year of each part
    • Long production time
    • High production costs
    • Low quantities per part and year
    • High effort on product design maintenance due to high number of parts and bill of materials
    • Outsourcing of circuit breaker subassemblies difficult
    • Each rating requires characteristic design
    • No interchangeability of parts of different circuit breakers


    [0011] So it is the object of the invention, to overcome the aforesaid disadvantages by constructural features, which may coincidently lead to further advantages in a method of assembling such a medium voltage vacuum circuit breaker for gas-insulated switchgear.

    [0012] According to a medium voltage vacuum circuit breaker for gas-insulated switchgear this is solved by the invention of the feature combination of claim 1.

    [0013] Further advantageous embodiments are disclosed in the depending claims 2 to 4.

    [0014] Constructural basical features for the use of the invention are, that a standarized circuit breaker drive is adaptable to switchgear arrangements with different pole distances, and that the plate or frame is provided with holes, in which gastight mechanical feedtroughs are arranged in, through which the drive is coupled with each of the vacuum interrupters in the pole parts, and that by predefinable positioning of the holes, the plate or frame can easily be adapted to the pole distance in the gastight compartment. So the drive itself, which is located outside the gastight compartment, can be mounted independently from the arranged elements inside the gastight compartment. Also the maintanance service of the drive can be handled from outside the gastight compartment without the need of opening it.
    Key feature of the invention in this context is, that a standardized circuit breaker drive can be used or can be easily adapted to switchgear arrangements with different pole-distances.
    Aditionally to that, the invention is, that the plate or frame is provided with holes, in which gastight mechanical feedtroughs are arranged in, through which the drive is coupled with each of the vacuum interrupters in the pole parts, and that by predefinable positioning of the holes, the plate or frame can easily be adapted to the pole distance in the gastight compartment. Important is, that standardized and same drives can be used in different arrangements with different pole distances.

    [0015] A further important and advantageous embodiment is, that for a three phase arrangement of circuit breaker pole parts in one gastight compartment, the drive is coupled with one common main shaft, which transforms a rotational movement of the spring drive into a linear movement for each vacuum interrupter in such, that via a curve disc the rotational movement of the main shaft will be transformed into a linear movement of a movable contact of the vacuum interrupter by three pairs of levers, and that the adaption to a predefined pole part distance is realized only by exchange of the common shaft and the coupling shaft, adapted to the desired pole distance.

    [0016] In a further advantageous embodiment, the drive is a spring drive.

    [0017] The plate or frame is provided with gastight mechanical feedtrough or feedtroughs, through which the drive is coupled with the vacuum interrupter in the pole part. This leads to the above already mentioned advantages.

    [0018] In a further advantageous embodiment, said levers are coupled by means of coupling rod which is moved by the levers in perpendicular direction to the axis of the rod.

    [0019] A further important embodiment is given by predefinable positioning of the holes of the mechanical feedtroughs in the plate or frame, the plate or frame can easily be adapted to the pole distance in the gastight compartment, so that the drive can be adapted to the used pole-distance.

    [0020] A further advantageous embodiment is, that the pole parts each consist of a pair of half shells, which will be assembled together, with the vacuum interrupter between the half shells.

    [0021] In a further advantageous embodiment, the already aforesaid advantage can be caused in that the coupling rod is via its choosen length adapted to the pole distance, used in the switchgear.

    [0022] A further and final important advantageous embodiment is, that the aforesaid elements are sampled on modules in such, that the spring of the drive and/or that a motor for charging the spring is arrangend on a separateable charging module and/or that the movement transmission elements, and/or that means mechanical transmission elements like the levers and the curve discs are arrangend on a separateable transmission module, and/or that finally latching elements are arrangend on a latching module.

    [0023] The assembling can be done stepwise by connecting fully premanufactured modules in such, that also an adaption to different pole distances is not disturbed, but supported by the module construction.
    The plate or frame with other feedtrough distances has to be exchanged, in cases of adapting to other pole distances. With that, the position of the curve discs and levers in main shaft and the coupling rod length has to be adapted.

    [0024] An embodiment of the invention is shown in the drawing.

    Figure 1: Embodiment with a pole distance x

    Figure 2: Embodiment with a pole distance y, different from x



    [0025] A drive and a mechanical adaptable system for medium voltage vacuum interrupters for gas-insulated switchgear is shown in figure 1, and for a different pole distance in figure 2, which is able to drive the movable contacts inside the vacuum interrupters, also in use of switchgear arrangements with different pole-distances. The concerning drive 8 is based on a spring drive mechanism. The drive 8 is mounted on a stiff aluminum plate 2 which is fixed to the switchgear panel. The fixation of said aluminum plate to the panel is gastight, and not further detailed shown in the figures. The electric pole parts 1 of the circuit breaker are fixed on the opposite side of the drive 8 on the aluminum plate 2. The driving force from the circuit breaker drive 8 to the poles 1, or better saying, to the movable contacts of the interrupters inside the pole parts, is transmitted by push rods 9 through gastight mechanical feedthroughs 3 in the aluminum plate 2. The distance between the feed throughs 3 depend on the pole-distance of the circuit breaker.

    [0026] Within the aforesaid invention, related drive curve discs 7 are fixed on the right hand end, middle and left hand end of the rotating main shaft of the circuit breaker. Said curve discs transform the rotating motion of the main shaft 6 into a linear movement of three pairs of levers 5. Said levers 5 are coupled by means of a coupling rod 4, which is moved by the levers 5 in perpendicular direction to the axis of the rod. Said coupling rod comprises holes to which the drive rods of the poles of the circuit breaker are installed. The distance in between the holes and the aforesaid feedtroughs 3 is chosen according to the pole-distance x for which the drive is applicable. Thus one drive is applicable to circuit breakers of different ratings with different pole-distances by simply using different coupling rods with different distances between the holes in the rods. Thus all parts of the drive 8, except the coupling rod 4 are identical for different pole-distances x, y.

    [0027] A special embodiment is where the drive 8 is installed in a circuit breaker with vacuum interrupter, where the poles are comprising the half shells, and consist of a vacuum interrupter, push rods, connecting parts etc, like it is shown for different pole-distances in figures 1 and 2.

    [0028] A further embodiment is where the length of the coupling rod depends on the pole-distance of the circuit breaker.
    A further embodiment is where the drive is realized in a modular way i.e. consisting of e.g. an energy storage and charging module, a transmission module, a latching module etc..

    [0029] A further embodiment is that the pole-distance measures 120mm, 150mm or 210mm respectively.

    Numbering



    [0030] 
    1
    pole parts
    2
    plate or frame
    3
    gastight mechanical feedtrough
    4
    coupling rod
    5
    lever
    6
    main shaft
    7
    curve disc
    8
    drive
    9
    push or drive rod
    x,y
    pole distances



    Claims

    1. Gas-insulated medium voltage switchgear with a circuit breaker pole part arrangement in a gastight compartment of the switchgear, and with a drive arrangement for switching actuation of the circuit breaker, wherein the drive (8) as well as the pole part arrangement (1) is fixed on a common plate or frame(2), which is provided with a gastight sealing (3), and is closing the aforesaid compartment gastightly in such, that in the completely mounted position of the plate or frame, the pole parts are positioned inside, and the drive is positioned outside the aforesaid gastight compartment, wherein the drive is a standardized circuit breaker drive (8) is adaptable to switchgear arrangements with different pole distances (x, y), and that the plate or frame (2) is provided with holes, in which gastight mechanical feedtroughs (3) are arranged in, through which the drive (8) is coupled with each of the vacuum interrupters in the pole parts (1), and that by predefinable positioning of the holes, the plate or frame (2) can easily be adapted to the pole distance (x, y) in the gastight compartment,
    characterized in that for a three phase arrangement of circuit breaker pole parts (1) in one gastight compartment, the drive (8) is coupled with one common main shaft (6), which transforms a rotational movement of the drive into a linear movement for each vacuum interrupter in such, that via a curve disc (7) the rotational movement of the main shaft (6) will be transformed into a linear movement of a movable contact of the vacuum interrupter by three pairs of levers (5), and that the adaption to a predefined pole part distance (x) or (y) is realized only by exchange of the common shaft (6) and the coupling rod, adapted to the desired pole distance, and that said levers (5) are coupled by means of a coupling rod (4) which is moved by the levers in perpendicular direction to the axis of the rod, and that the coupling rod (4) is via its choosen length, adapted to the pole distance, used in the switchgear.
     
    2. Gas-insulated medium voltage switchgear, according to claim 1 or,
    characterized in
    that the drive (8) is a spring drive.
     
    3. Gas-insulated medium voltage switchgear, according to one of the aforesaid claims 1 to 2, characterized in
    that the pole parts (1) each consist of a pair of two half shells, which will be assembled together, with the vacuum interrupter between the half shells.
     
    4. Gas-insulated medium voltage switchgear, according to one of the aforesaid claims 1 to 3, characterized in
    that the aforesaid elements are sampled or grouped on modules in such, that the spring mechanism for the drive and/or that the motor for charging the spring is arrangend on a separateable energy storage charging module, and/or that the movement transmission elements, and/or that means mechanical transmission elements like the levers and the curve discs are arrangend on a separateable transmission module, and/or that finally latching elements are arrangend on a latching module.
     


    Ansprüche

    1. Gasisolierte Mittelspannungs-Schaltanlage mit einer Leistungsschalter-Polteilanordnung in einer gasdichten Abteilung der Schaltanlage und mit einer Antriebsanordnung zur Schaltbetätigung des Leistungsschalters, wobei der Antrieb (8) sowie die Polteilanordnung (1) auf einer gemeinsamen Platte oder einem gemeinsamen Rahmen (2) befestigt sind, welche/welcher mit einer gasdichten Dichtung (3) versehen ist und die vorerwähnte Abteilung derart gasdicht schließt, dass die Polteile in einer vollmontierten Position der Platte oder des Rahmens innerhalb dieser positioniert sind und der Antrieb außerhalb der vorerwähnten gasdichten Abteilung positioniert ist, wobei der Antrieb ein standardisierter Leistungsschalterantrieb (8) ist, der an Schaltanlagenanordnungen mit verschiedenen Poldistanzen (x, y) anpassbar ist, und dass die Platte oder der Rahmen (2) mit Löchern versehen ist, in welchen gasdichte mechanische Durchführungen (3) angeordnet sind, durch welche der Antrieb (8) mit jedem der Vakuumunterbrecher in den Polteilen (1) gekoppelt ist, und dass durch vordefinierbares Positionieren der Löcher die Platte oder der Rahmen (2) leicht an die Poldistanz (x, y) in der gasdichten Abteilung angepasst werden kann,
    dadurch gekennzeichnet, dass für eine Dreiphasenanordnung von Leistungsschalter-Polteilen (1) in einer gasdichten Abteilung der Antrieb (8) mit einer gemeinsamen Hauptwelle (6) gekoppelt ist, welche eine Drehbewegung des Antriebs derart in eine Linearbewegung für jeden Vakuumunterbrecher umwandelt, dass die Drehbewegung der Hauptwelle (6) über eine Kurvenscheibe (7) durch drei Paare von Hebeln (5) in eine Linearbewegung eines bewegbaren Kontakts des Vakuumunterbrechers umgewandelt wird und dass die Anpassung an eine vordefinierte Polteildistanz (x) oder (y) nur durch Auswechseln der gemeinsamen Welle (6) und der an die gewünschte Poldistanz angepassten Kopplungsstange realisiert wird, und dass die Hebel (5) mittels einer Kopplungsstange (4), welche durch die Hebel in einer zu der Achse der Stange senkrechte Richtung bewegt wird, gekoppelt sind, und dass die Kopplungsstange (4) über deren gewählte Länge, angepasst an die Poldistanz, in der Schaltanlage verwendet wird.
     
    2. Gasisolierte Mittelspannungs-Schaltanlage nach Anspruch 1 oder
    dadurch gekennzeichnet,
    dass der Antrieb (8) ein Federantrieb ist.
     
    3. Gasisolierte Mittelspannungs-Schaltanlage nach einem der vorhergehenden Ansprüche 1 bis 2,
    dadurch gekennzeichnet,
    dass die Polteile (1) jeweils aus einem Paar von Halbschalen bestehen, welche mit dem Vakuumunterbrecher zwischen den Halbschalen zusammengesetzt werden.
     
    4. Gasisolierte Mittelspannungs-Schaltanlage nach einem der vorhergehenden Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die vorerwähnten Elemente derart auf Modulen vereinzelt oder gruppiert sind, dass der Federmechanismus für den Antrieb und/oder dass der Motor zum Spannen der Feder auf einem abtrennbaren Energiespeicherspannmodul angeordnet ist und/oder dass die Bewegungsübertragungselemente und/oder dass Mittel, mechanische Übertragungselemente, wie die Hebel und die Kurvenscheiben, auf einem abtrennbaren Übertragungsmodul angeordnet sind und/oder dass schließlich Verriegelungselemente auf einem Verriegelungsmodul angeordnet sind.
     


    Revendications

    1. Appareillage de commutation moyenne tension isolé vis-à-vis des gaz avec un agencement de partie de pôle de disjoncteur dans un compartiment étanche aux gaz de l'appareillage de commutation, et avec un agencement d'entraînement pour un actionnement de commutation du disjoncteur, dans lequel l'entraînement (8) ainsi que l'agencement de partie de pôle (1) est fixé sur une plaque commune ou un cadre commun (2), qui est pourvu d'une obturation étanche aux gaz (3), et ferme le compartiment précité de manière étanche aux gaz si bien, que dans la position complètement montée de la plaque ou du cadre, les parties de pôle sont positionnées à l'intérieur, et l'entraînement est positionné à l'extérieur du compartiment étanche aux gaz précité, dans lequel l'entraînement est un entraînement de disjoncteur standardisé (8) adaptable à des agencements d'appareillage de commutation avec des distances de pôle (x, y) différentes, et que la plaque ou le cadre (2) est pourvu de trous, dans lesquels des traversées mécaniques étanches aux gaz (3) sont agencées, à travers lesquelles l'entraînement (8) est couplé à chacun des interrupteurs à vide dans les parties de pôle (1), et que par une position prédéfinissable des trous, la plaque ou le cadre (2) peut être facilement adapté à la distance de pôle (x, y) dans le compartiment étanche aux gaz, caractérisé en ce que, pour un agencement triphasé des parties de pôle de disjoncteur (1) dans un compartiment étanche aux gaz, l'entraînement (8) est couplé à un arbre principal commun (6), qui transforme un mouvement de rotation de l'entraînement en un mouvement linéaire pour chaque interrupteur à vide si bien, que via un disque courbe (7), le mouvement de rotation de l'arbre principal (6) sera transformé en un mouvement linéaire d'un contact mobile de l'interrupteur à vide par trois paires de leviers (5), et que l'adaptation à une distance de partie de pôle prédéfinie (x) ou (y) est réalisée uniquement par échange de l'arbre commun (6) et de la tige de couplage, adaptée à la distance de pôle souhaitée, et que lesdits leviers (5) sont couplés au moyen d'une tige de couplage (4) qui est déplacée par les leviers dans une direction perpendiculaire à l'axe de la tige, et que la tige de couplage (4) est, via sa longueur choisie, adaptée à la distance de pôle, utilisée dans l'appareillage de commutation.
     
    2. Appareillage de commutation moyenne tension isolé vis-à-vis des gaz selon la revendication 1 ou, caractérisé en ce que
    l'entraînement (8) est un entraînement à ressort.
     
    3. Appareillage de commutation moyenne tension isolé vis-à-vis des gaz selon l'une des revendications 1 à 2 précitées, caractérisé en ce que
    les parties de pôle (1) consistent chacune en une paire de deux demi-coques, qui seront conjointement assemblées, avec l'interrupteur à vide entre les demi-coques.
     
    4. Appareillage de commutation moyenne tension isolé vis-à-vis des gaz selon l'une des revendications 1 à 3 précitées,
    caractérisé en ce que
    les éléments précités sont échantillonnés ou groupés sur des modules si bien, que le mécanisme de ressort pour l'entraînement et/ou que le moteur pour charger le ressort sont agencés sur un module de charge d'emmagasinage d'énergie séparable, et/ou que les éléments de transmission de mouvement, et/ou que des moyens d'éléments de transmission mécanique comme les leviers et les disques courbes sont agencés sur un module de transmission séparable, et/ou enfin que des éléments de verrouillage sont agencés sur un module de verrouillage.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description