(19)
(11)EP 3 136 576 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 16180717.7

(22)Date of filing:  22.07.2016
(51)Int. Cl.: 
H02M 3/158  (2006.01)

(54)

BUCK-BOOST CONVERTER AND METHOD FOR CONTROLLING BUCK-BOOST CONVERTER

TIEF-HOCHSETZSTELLER UND VERFAHREN ZUR STEUERUNG EINES TIEF-HOCHSETZSTELLERS

CONVERTISSEUR ABAISSEUR-ÉLÉVATEUR ET PROCÉDÉ DE COMMANDE D'UN CONVERTISSEUR ABAISSEUR-ÉLÉVATEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.08.2015 US 201562202602 P
13.07.2016 US 201615209750

(43)Date of publication of application:
01.03.2017 Bulletin 2017/09

(73)Proprietor: MediaTek Inc.
Hsin-Chu 300 (TW)

(72)Inventors:
  • HONG, Hao-Ping
    302 Jhubei City, Hsinchu County (TW)
  • LIN, Shih-Mei
    112 Taipei City (TW)

(74)Representative: Hoefer & Partner Patentanwälte mbB 
Pilgersheimer Straße 20
81543 München
81543 München (DE)


(56)References cited: : 
US-A1- 2015 069 956
US-B2- 7 692 416
  
  • STEFAN WAFFLER ET AL: "A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck Boost Converters", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 24, no. 6, 1 June 2009 (2009-06-01), pages 1589-1599, XP011262259, ISSN: 0885-8993
  • DATABASE WPI Week 201306 Thomson Scientific, London, GB; AN 2012-Q69076 XP002766757, -& CN 102 684 484 A (SHANG HAI KANGWEITE ENERGY TECHNOLOGY CO) 19 September 2012 (2012-09-19)
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Background



[0001] The present invention relates to a buck-boost converter according to the pre-characterizing part of independent claim 1 and a method for controlling a buck-boost converter according to the pre-characterizing part of independent claim 6. Such a buck-boost converter and method are shown in US 7,692,416 B2.

[0002] A buck-boost converter is generally used in an electronic device to provide a stable output voltage while receiving an input voltage with wide range. The US patents US6,166,527, US5,402,060 and US7,692,416 disclose the techniques about the buck-boost converter, however, in the buck-boost switching regulator disclosed by US6,166,527 and the buck-boost converter disclosed by US5,402,060, the switch connected to the output voltage cannot conduct both high voltage and low voltage (close to zero/ground), which may decrease the efficiency; and in the voltage up-and-down DC-DC converter disclosed by US7,692,416, two transistors of the transmission gate connected to the output voltage are controlled by the related signals in the buck mode and the boost mode, and the switching loss may be increased in this operation.

[0003] Therefore, how to provide a buck-boost converter which may have both better efficiency and lower switching loss is an important topic.

Summary



[0004] It is therefore an objective of the present invention to provide a buck-boost converter having better efficiency, lower switching loss and wide output range, to solve the above-mentioned problem.

[0005] This is achieved by a buck-boost converter according to independent claim 1, and a method according to independent claim 6. The dependent claims pertain to corresponding further developments and improvements.

[0006] These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

Brief Description of the Drawings



[0007] 

FIG. 1 is a diagram illustrating a buck-boost converter according to one embodiment of the present invention.

FIG. 2 is a diagram illustrating the buck mode of the buck-boost converter according to one embodiment of the present invention.

FIG. 3 is a diagram illustrating the boost mode of the buck-boost converter according to one embodiment of the present invention.

FIG. 4 is a diagram illustrating the generation of the control signal NG3 according to a first embodiment which is not part of the present invention.

FIG. 5 is a diagram illustrating the generation of the control signal NG3 according to a second embodiment which is an embodiment of the present invention.

FIG. 6 is a diagram illustrating the generation of the control signal NG3 according to a third embodiment which is not part of the present invention.

FIG. 7 is a diagram illustrating the control circuit according to another embodiment of the present invention.

FIG. 8 shows a timing diagram of the signals shown in FIG. 7 when the buck-boost converter operates from the buck mode to the boost mode according to one embodiment of the present invention.

FIG. 9 shows a timing diagram of the signals shown in FIG. 7 when the buck-boost converter operates from the buck mode to the boost mode according to another embodiment of the present invention.


Detailed Description



[0008] Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus should be interpreted to mean "including, but not limited to ..." The terms "couple" and "couples" are intended to mean either an indirect or a direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.

[0009] Fig. 1 is a diagram illustrating a buck-boost converter 100 according to one embodiment of the present invention. As shown in FIG. 1, the buck-boost converter 100 is arranged to receive an input voltage Vin from a battery or any other supply voltage provider to generate a stable output voltage Vout at an output node Nout, and the buck-boost converter 100 comprises five switches SW1-SW5, an inductor L, and a capacitor C, where the switch SW1 is implemented by a PMOS and coupled between the input voltage Vin and a first terminal N1 of the inductor L, the switch SW2 is implemented by an NMOS and coupled between the first terminal N1 of the inductor L and a reference voltage VSS (in this embodiment, the reference voltage is a ground voltage), the SW3 is implemented by a PMOS and coupled between the output voltage Vout and a second terminal N2 of the inductor L, the SW4 is implemented by an NMOS and coupled between the second terminal N2 of the inductor L and the reference voltage, and the switch SW5 is implemented by an NMOS and is positioned parallel with the switch SW3.

[0010] In addition, the buck-boost converter 100 further comprises a control circuit 110 to generate five control signals PG1, NG1, PG2, NG2 and NG3 to control the switches SW1-SW5, respectively. In the operations of the control circuit 110, the control circuit 110 can determine a mode (buck mode or boost mode) of the buck-boost converter 100 according to information within the buck-boost converter 100, and control circuit 110 generates the control signals PG1, NG1, PG2, NG2 and NG3 according to the mode of the buck-boost converter 100. For example, the control circuit 110 may determine the mode of the buck-boost converter 100 according to at least one of the input voltage Vin, the output voltage Vout, a duty cycle of a portion of the control signals PG1, NG1, PG2, NG2 and NG3, or any suitable control signal within the control circuit 110. Details of the determination of the mode are described in the following figures.

[0011] Fig. 2 is a diagram illustrating the buck mode of the buck-boost converter 100 according to one embodiment of the present invention. As shown in FIG. 2, when the buck-boost converter 100 operates in the buck mode, the control circuit 110 generates the control signals PG1 and NG1 to control the switches SW1 and SW2, respectively, to make the switches SW1 and SW2 to turn on and off alternately, and the switches SW1 and SW2 are not turned on simultaneously. The control circuit 110 further generates the control signal PG2 to always turn on the switch SW3, and further generates the control signal NG2 to always turn off the switch SW4, and generates the control signal NG3 to turn on the switch SW5. In this embodiment, the switches SW3 and SW5 are turned on simultaneously, and because the NMOS switch can conduct low voltage (close to zero/ground voltage), so the output node Nout is allowed to receive the low voltage (close to zero/ground voltage), and the efficiency of the buck-boost converter 100 operated in the buck mode can be improved.

[0012] Fig. 3 is a diagram illustrating the boost mode of the buck-boost converter 100 according to one embodiment of the present invention. As shown in FIG. 3, when the buck-boost converter 100 operates in the boost mode, the control circuit 110 generates the control signal PG1 to always turn on the switch SW1, and generates the control signal NG1 to always turn off the switch SW2, and further generates the control signals PG2 and NG2 to control the switches SW3 and SW4, respectively, to make the switches SW3 and SW4 to turn on and off alternately, and the switches SW3 and SW4 are not turned on simultaneously. In addition, the control circuit 110 generates the mode control signal NG3 to turn off the switch SW5. In this embodiment, because the PMOS switch SW3 can conduct the high voltage and is capable of doing the work efficiently, so the switch SW5 is turned off to reduce the switching loss.

[0013] Regarding the generation of the control signal NG3, in a first embodiment shown in FIG. 4 and which is not part of the present invention, control circuit 110 may compare the input voltage Vin and the output voltage Vout to generate the mode control signal NG3. In this embodiment, when the input voltage Vin is greater than the output voltage Vout, it is determined that the buck-boost converter 100 operates in the buck mode, and the switch SW5 is turned on by the mode control signal NG3; and when the input voltage is less than the output voltage Vout, it is determined that the buck-boost converter 100 operates in the boost mode, and the switch SW5 is turned off by the mode control signal NG3. In addition, in other embodiments which also are not part of the present invention, the control circuit 110 may determine the mode of the buck-boost converter 100 according to information generated based on the input voltage Vin and the output voltage Vout, for example, Vin/Vout, Vout/Vin, Vin/Vref or Vout/Vref, where "Vref" may be any suitable value.

[0014] Fig. 5 is a diagram illustrating the generation of the mode control signal NG3 according to a second embodiment which is part of the present invention. In this embodiment, the control circuit 110 comprises a pulse-width modulation (PWM) circuit 112, a predriver 114 and a mode control signal generator 116. The PWM circuit 112 is arranged to generate a duty cycle information D1 corresponding to the control signals PG1 and NG1, and to generate a duty cycle information D2 corresponding to the control signals PG2 and NG2; and the predriver 114 is arranged to generate the control signals PG1, NG1, PG2 and NG2 according to the duty cycle information D1 and D2. The mode control signal generator 116 is arranged to generate the mode control signal NG3 according to a current mode of the buck-boost converter 100, where the current mode may be a buck mode or a boost mode. In the operations of the control circuit 110 shown in FIG. 5, the mode control signal generator 116 refers to at least one of the control signals PG1, PG2, NG1 and NG2 and may also refer to the duty cycle information D1 and D2 to generate the control signal NG3. For example, because each of the control signals PG1, PG2, NG1 and NG2 has different patterns for the buck mode and the boost mode, so the mode control signal generator 116 may perform some logical calculations upon at least one of the control signals PG1, PG2, NG1 and NG2 to generate the mode control signal NG3. In another embodiment which is not part of the present invention, because when the buck-boost converter 100 operates from the buck mode to the boost mode, the duty cycle of the control signal PG1 will largely increase and almost reach to 100%, so the mode control signal generator 116 can refer to the duty cycle of the control signal PG1 to determine the current mode of the buck-boost converter 100 to generate the control signal NG3. In yet another embodiment which is not part of the present invention, because when the buck-boost converter 100 operates from the boost mode to the buck mode, the duty cycle of the control signal PG2 will largely decrease and almost reach to 0%, so the mode control signal generator 116 can refer to the duty cycle of the control signal PG2 to determine the current mode of the buck-boost converter 100 to generate the control signal NG3.

[0015] Fig. 6 is a diagram illustrating the generation of the mode control signal NG3 according to a third embodiment which is not part of the present invention. As shown in FIG. 6, the buck-boost converter 100 further comprises a comparator 602, and the comparator 602 compares the output voltage Vout and a reference voltage to generate a comparison result Vs. In this embodiment, the comparison result Vs is proportional to the output voltage Vout (assuming that the input voltage does not change), therefore, when the comparison result Vs continuously increases to reach a threshold, the mode control signal generator 116 can determine that the buck-boost converter 100 operates in the boost mode, and the control signal generator 116 generates the mode control signal NG3 to turn off the switch SW5.

[0016] Fig. 7 is a diagram illustrating the control circuit 110 according to another embodiment of the present invention. In this embodiment, the control circuit 110 comprises a compensation circuit 710, a PWM controller 720 and a pre-driver 730. The compensation circuit 710 is arranged to provide several reference voltages to the PWM controller 720, and the PWM controller 720 generates duty cycle information and mode control information to the pre-driver 730 to generate the control signals PG1, NG1, PG2, NG2 and NG3.

[0017] In detail, the compensation circuit 710 comprises a feedback network 711, a reference signal generator 712, a compensator 713 and a comparator 714. The reference signal generator 712 is arranged to generate a reference voltage Vset to a positive input terminal of the comparator 714, and further generates a reference voltage Vr1 to the PWM controller 720. The comparator 714 compares the reference voltage with the output voltage Vout to generate an error signal VEA to the PWM controller 720.

[0018] The PWM controller 720 comprises a circuit 722, two comparator 723 and 724, a hysteresis comparator module 728 and a PWM logic 726. The circuit 722 comprises a first ramp signal generator 731, a second ramp signal generator 732, an input voltage comparator 733 and a ramp setting circuit 734. The first ramp signal generator 731 is arranged to generate a ramp signal Ramp1 to the comparator 723, and the comparator 723 compares the ramp signal Ramp1 with the error signal VEA to generate a first PWM signal PWM1; and the second ramp signal generator 732 is arranged to generate a ramp signal Ramp2 to the comparator 724, and the comparator 724 compares the ramp signal Ramp2 with the error signal VEA to generate a second PWM signal PWM2. The input voltage comparator 733 is arranged to compare the input voltage Vin with a setup output voltage to selectively force the mode switching. The ramp setting circuit 734 is controlled to provide hysteresis thresholds Hys_Vth (e.g. a high threshold Vthh and a low threshold Vthn) to the hysteresis comparator module 728, and a hysteresis comparator 741 compares the error signal VEA with the reference signal Vr1 to generate a mode signal Mode1, and a hysteresis comparator 742 compares the reference signal Vset with the supply voltage VDD to generate a mode signal Mode2 according to the hysteresis thresholds Hys_Vth. Then, the PWM logic 726 generates the duty cycle information Data1 and Data2 of the control signals PG1, NG1 , PG2 and NG2 and a mode signal to the pre-driver 730 according to at least the first PWM signal PWM1, the second PWM signal PWM2, the mode signal Mode1 and the mode signal Mode2. In this embodiment, the duty cycle information D1 corresponding to the control signals PG1 and NG1, and the duty cycle information D2 corresponding to the control signals PG2 and NG2.

[0019] In the embodiment shown in FIG. 7, a clock reset signal CK_RST is arranged to avoid the comparator saturation issue and to improve the comparator response time.

[0020] The PWM logic 726 may control the buck-boost operations to have several transition modes when the mode switching occurs. For example, FIG. 8 shows a timing diagram of the signals shown in FIG. 7 when the buck-boost converter 100 operates from the buck mode to the boost mode according to one embodiment of the present invention. In this embodiment, even if the comparison result for the low threshold Vthn of the hysteresis window is high, the PWM logic 726 still outputs the duty cycle information Data1 until the mode signal BCK_mode goes low (i.e. the buck-boost converter 100 enters the boost mode), and then PWM logic 726 outputs the duty cycle information Data2. In other words, the buck mode and the boost mode are roaming and two of the switches SW1-SW5 shown in FIG. 1 are toggling. In another embodiment, a seamless control may be applied, and during the transition when the buck-boost converter 100 is switching from the buck mode to the boost mode, the four switches SW1-SW4 are all toggling during this period.

[0021] FIG. 9 shows a timing diagram of the signals shown in FIG. 7 when the buck-boost converter 100 operates from the buck mode to the boost mode according to another embodiment of the present invention. In this embodiment, the comparison result for the low threshold Vthn of the hysteresis window is high, the PWM logic 726 stops generating the duty cycle information Data1, and when the mode signal BCK_mode goes low (i.e. the buck-boost converter 100 enters the boost mode), and the PWM logic 726 starts to output the duty cycle information Data2. That is, during the transition when the buck-boost converter 100 is switching from the buck mode to the boost mode, a bypass period is existed.

[0022] Briefly summarized, in the buck-boost converter of the present invention, an additional switch SW5 is provided to conduct the low voltage (close to zero/ground voltage) to make the buck-boost converter to work efficiently in the buck mode. In addition, the switch SW5 is turned off when the buck-boost converter operates in the boost mode to reduce the switching loss. Therefore, buck-boost converter may improve both the efficiency and switching loss, to solve the above-mentioned problem.

[0023] Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the invention should be construed as limited only by the appended claims.


Claims

1. A buck-boost converter (100), for receiving an input voltage (Vin) to generate an output voltage (Vout), comprising:

an inductor (L), comprising a first terminal (N1) and a second terminal (N2);

a first switch (SW1), coupled between the input voltage and the first terminal (N1) of the inductor (L);

a second switch (SW2), coupled between a reference voltage (VSS) and the first terminal (N1) of the inductor (L);

a third switch (SW3), coupled between the output voltage and the second terminal (N2) of the inductor (L);

a fourth switch (SW4), coupled between the reference voltage and the second terminal (N2) of the inductor (L); and

a fifth switch (SW5), wherein the fifth switch (SW5) is connected in parallel with the third switch (SW3);

a control circuit (110) for generating a plurality of control signals (PG1, NG1, PG2, NG2) to control the first switch (SW1), the second switch (SW2), the third switch (SW3) and the fourth switch (SW4), respectively, and

wherein when the buck-boost converter (100) operates in a buck mode, each of the first switch (SW1) and the second switch (SW2) is turned on and off alternately; when the buck-boost converter (100) operates in a boost mode, each of the third switch (SW3) and the fourth switch (SW4) is turned on and off alternately; and the fifth switch (SW5) is controlled to be on or off by referring to a mode control signal (NG3) that represents the buck mode or the boost mode;

characterized in that

the control circuit (110) includes a mode control signal generator (116) that generates the mode control signal (NG3) by referring to at least one of the control signals (PG1, NG1, PG2, NG2).


 
2. The buck-boost converter (100) of claim 1, characterized in that when the buck-boost converter (100) operates in the boost mode, the first switch (SW1) turns on, the second switch (SW2) turns off, and the fifth switch (SW5) turns off.
 
3. The buck-boost converter (100) of claim 1, characterized in that when the buck-boost converter (100) operates in the buck mode, the third switch (SW3) turns on, the fourth switch (SW4) turns off, and the fifth switch (SW5) turns on.
 
4. The buck-boost converter (100) of claim 1, characterized in that the third switch (SW3) is a P-type metal-oxide-semiconductor, PMOS, and the fifth switch (SW5) is an N-type metal-oxide-semiconductor, NMOS.
 
5. The buck-boost converter (100) of claim 1, characterized in that the control circuit (110) generates the mode control signal (NG3) according to a duty cycle of at least one of the control signals (PG1, NG1, PG2, NG2).
 
6. A method for controlling a buck-boost converter (100), wherein the buck-boost converter (100) is arranged to receive an input voltage (Vin) to generate an output voltage (Vout), and the buck-boost converter (100) comprises an inductor (L), a first switch (SW1), a second switch (SW2), a third switch (SW3), a fourth switch (SW4) and a fifth switch (SW5), the first switch (SW1) is coupled between the input voltage and a first terminal (N1) of the inductor (L), the second switch (SW2) is coupled between a reference voltage (VSS) and the first terminal (N1) of the inductor (L), the third switch (SW3) is coupled between the output voltage and a second terminal (N2) of the inductor (L), the fourth switch (SW4) is coupled between the reference voltage and the second terminal (N2) of the inductor (L), and the fifth switch (SW5) is connected in parallel with the third switch (SW3), wherein the method comprises the steps of:

generating a plurality of control signals (PG1, NG1, PG2, NG2) to control the first switch (SW1), the second switch (SW2), the third switch (SW3) and the fourth switch (SW4), respectively; when the buck-boost converter (100) operates in a buck mode, controlling each of the first switch (SW1) and the second switch (SW2) to turn on and off alternately;

when the buck-boost converter (100) operates in a boost mode, controlling each the third switch (SW3) and the fourth switch (SW4) to turn on and off alternately; and

controlling the fifth switch (SW5) to be on or off by referring to a mode control signal (NG3) that represents the buck mode or the boost mode;

characterized by:
generating the mode control signal (NG3) by referring to at least one of the control signals (PG1, NG1, PG2, NG2).


 
7. The method of claim 6, characterized in that further comprising:
when the buck-boost converter (100) operates in the boost mode, turning on the first switch (SW1), turning off the second switch (SW2), and turning off the fifth switch (SW5).
 
8. The method of claim 6, characterized in that further comprising:
when the buck-boost converter (100) operates in the buck mode, turning on the third switch (SW3), turning off the fourth switch (SW4), and turning on the fifth switch (SW5).
 
9. The method of claim 6, characterized in that the third switch (SW3) is a P-type metal-oxide-semiconductor, PMOS, and the fifth switch (SW5) is an N-type metal-oxide-semiconductor, NMOS.
 
10. The method of claim 6, characterized in that the step of generating the mode control signal comprises:
generating the mode control signal (NG3) according to a duty cycle of at least one of the control signals (PG1, NG1, PG2, NG2).
 


Ansprüche

1. Tief-Hochsetzsteller (100) zum Empfangen einer Eingangsspannung (Vin), um eine Ausgangsspannung (Vout) zu erzeugen, umfassend:

eine Induktivität (L), umfassend einen ersten Anschluss (N1) und einen zweiten Anschluss (N2);

einen ersten Schalter (SW1), der zwischen der Eingangsspannung und dem ersten Anschluss (N1) der Induktivität (L) gekoppelt ist;

einen zweiten Schalter (SW2), der zwischen einer Referenzspannung (VSS) und dem ersten Anschluss (N1) der Induktivität (L) gekoppelt ist;

einen dritten Schalter (SW3), der zwischen der Ausgangsspannung und dem zweiten Anschluss (N2) der Induktivität (L) gekoppelt ist;

einen vierten Schalter (SW4), der zwischen der Referenzspannung und dem zweiten Anschluss (N2) der Induktivität (L) gekoppelt ist; und

einen fünften Schalter (SW5), wobei der fünfte Schalter (SW5) parallel zu dem dritten Schalter (SW3) geschaltet ist;

eine Steuerschaltung (110) zum Erzeugen einer Vielzahl von Steuersignalen (PG1, NG1, PG2, NG2) zum jeweiligen Steuern des ersten Schalters (SW1), des zweiten Schalters (SW2), des dritten Schalters (SW3) und des vierten Schalters (SW4), und

wobei der erste Schalter (SW1) und der zweite Schalter (SW2) abwechselnd ein- und ausgeschaltet werden, wenn der Tief-Hochsetzsteller (100) in einem Tiefsetz-Modus arbeitet; der dritte Schalter (SW3) und der vierte Schalter (SW4) abwechselnd ein- und ausgeschaltet werden, wenn der Tief-Hochsetzsteller (100) in einem Hochsetz-Modus arbeitet; und der fünfte Schalter (SW5) unter Bezugnahme auf ein den Tiefsetz-Modus oder den Hochsetz-Modus repräsentierendes Modussteuersignal (NG3) gesteuert wird, ein- oder ausgeschaltet zu sein;

dadurch gekennzeichnet, dass

die Steuerschaltung (110) einen Modussteuersignalgenerator (116) beinhaltet, der unter Bezugnahme auf mindestens eines der Steuersignale (PG1, NG1, PG2, NG2) das Modussteuersignal (NG3) generiert.


 
2. Tief-Hochsetzsteller (100) nach Anspruch 1, dadurch gekennzeichnet, dass der erste Schalter (SW1) eingeschaltet wird, der zweite Schalter (SW2) ausgeschaltet wird und der fünfte Schalter (SW5) ausgeschaltet wird, wenn der Tief-Hochsetzsteller (100) im Hochsetz-Modus arbeitet.
 
3. Tief-Hochsetzsteller (100) nach Anspruch 1, dadurch gekennzeichnet, dass der dritte Schalter (SW3) eingeschaltet wird, der vierte Schalter (SW4) ausgeschaltet wird und der fünfte Schalter (SW5) eingeschaltet wird, wenn der Tief-Hochsetzsteller (100) im Tiefsetz-Modus arbeitet.
 
4. Tief-Hochsetzsteller (100) nach Anspruch 1, dadurch gekennzeichnet, dass der dritte Schalter (SW3) ein P-Typ Metall-Oxid-Halbleiter, PMOS, ist und der fünfte Schalter (SW5) ein N-Typ Metall-Oxid-Halbleiter, NMOS, ist.
 
5. Tief-Hochsetzsteller (100) nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerschaltung (110) das Modussteuersignal (NG3) gemäß einem Arbeitszyklus von mindestens einem der Steuersignale (PG1, NG1, PG2, NG2) generiert.
 
6. Verfahren zum Steuern eines Tief-Hochsetzstellers (100), wobei der Tief-Hochsetzsteller (100) angeordnet ist, eine Eingangsspannung (Vin) zu empfangen, um eine Ausgangsspannung (Vout) zu erzeugen,
und der Tief-Hochsetzsteller (100) eine Induktivität (L), einen ersten Schalter (SW1), einen zweiten Schalter (SW2), einen dritten Schalter (SW3), einen vierten Schalter (SW4) und einen fünften Schalter (SW5) umfasst, wobei der erste Schalter (SW1) zwischen der Eingangsspannung und dem ersten Anschluss (N1) des Induktors (L) gekoppelt ist, der zweite Schalter (SW2) zwischen einer Referenzspannung (VSS) und dem ersten Anschluss (N1) der Induktivität (L) gekoppelt ist, der dritte Schalter (SW3) zwischen der Ausgangsspannung und einem zweiten Anschluss (N2) der Induktivität (L) gekoppelt ist, der vierte Schalter (SW4) zwischen der Referenzspannung und dem zweiten Anschluss (N2) der Induktivität (L) gekoppelt ist und der fünfte Schalter (SW5) parallel zu dem dritten Schalter (SW3) geschaltet ist, wobei das Verfahren die folgenden Schritte umfasst:

Erzeugen einer Vielzahl von Steuersignalen (PG1, NG1, PG2, NG2) zum jeweiligen Steuern des ersten Schalters (SW1), des zweiten Schalters (SW2), des dritten Schalters (SW3) und des vierten Schalters (SW4); Steuern des ersten Schalters (SW1) und des zweiten Schalters (SW2), um abwechselnd ein- und ausgeschalten zu werden, wenn der Tief-Hochsetzsteller (100) in einem Tiefsetz-Modus arbeitet;

Steuern des dritten Schalters (SW3) und des vierten Schalters (SW4), um abwechselnd ein- und ausgeschalten zu werden, wenn der Tief-Hochsetzsteller (100) in einem Hochsetz-Modus arbeitet; und

Steuern des fünften Schalters (SW5) unter Bezugnahme auf ein den Tiefsetz-Modus oder den Hochsetz-Modus repräsentierendes Modussteuersignal (NG3), um ein- oder ausgeschaltet zu sein;

gekennzeichnet durch:
Generieren des Modussteuersignals (NG3), unter Bezugnahme auf mindestens eines der Steuersignale (PG1, NG1, PG2, NG2).


 
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass es weiter umfasst:
Einschalten des ersten Schalters (SW1), Ausschalten des zweiten Schalters (SW2) und Ausschalten des fünften Schalters (SW5), wenn der Tief-Hochsetzsteller (100) im Hochsetz-Modus arbeitet.
 
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass es weiter umfasst:
Einschalten des dritten Schalters (SW3), Ausschalten des vierten Schalters (SW4) und Einschalten des fünften Schalters (SW5), wenn der Tief-Hochsetzsteller (100) im Tiefsetz-Modus arbeitet.
 
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der dritte Schalter (SW3) ein P-Typ Metall-Oxid-Halbleiter, PMOS, ist und der fünfte Schalter (SW5) ein N-Typ Metall-Oxid-Halbleiter, NMOS, ist.
 
10. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Schritt des Generierens des Modussteuersignals (NG3) umfasst:
Generieren des Modussteuersignals (NG3) gemäß einem Arbeitszyklus von mindestens einem der Steuersignale (PG1, NG1, PG2, NG2).
 


Revendications

1. Convertisseur abaisseur-élévateur (100), pour recevoir une tension d'entrée (Vin) afin de générer une tension de sortie (Vout), comprenant :

une inductance (L), comprenant une première borne (N1) et une deuxième borne (N2) ;

un premier commutateur (SW1), couplé entre la tension d'entrée et la première borne (N1) de l'inductance (L) ;

un deuxième commutateur (SW2), couplé entre une tension de référence (VSS) et la première borne (N1) de l'inductance (L) ;

un troisième commutateur (SW3), couplé entre la tension de sortie et la deuxième borne (N2) de l'inductance (L) ;

un quatrième commutateur (SW4), couplé entre la tension de référence et la deuxième borne (N2) de l'inductance (L) ; et

un cinquième commutateur (SW5), où le cinquième commutateur (SW5) est connecté en parallèle au troisième commutateur (SW3) ;

un circuit de commande (110) pour générer une pluralité de signaux de commande (PG1, NG1, PG2, NG2) afin de commander le premier commutateur (SW1), le deuxième commutateur (SW2), le troisième commutateur (SW3) et le quatrième commutateur (SW4), respectivement, et

dans lequel, lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans un mode abaisseur, chacun du premier commutateur (SW1) et du deuxième commutateur (SW2) est mis sous tension et mis hors tension en alternance ; lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans un mode élévateur, chacun du troisième commutateur (SW3) et du quatrième commutateur (SW4) est mis sous tension et mis hors tension en alternance ; et le cinquième commutateur (SW5) est commandé pour être mis sous tension ou mis hors tension en faisant référence à un signal de commande de mode (NG3) qui représente le mode abaisseur ou le mode élévateur ;

caractérisé en ce que

le circuit de commande (110) comporte un générateur de signal de commande de mode (116) qui génère le signal de commande de mode (NG3) en faisant référence à au moins l'un des signaux de commande (PG1, NG1, PG2, NG2).


 
2. Convertisseur abaisseur-élévateur (100) de la revendication 1, caractérisé en ce que lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans le mode élévateur, le premier commutateur (SW1) est mis sous tension, le deuxième commutateur (SW2) est mis hors tension, et le cinquième commutateur (SW5) est mis hors tension.
 
3. Convertisseur abaisseur-élévateur (100) de la revendication 1, caractérisé en ce que lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans un mode abaisseur, le troisième commutateur (SW3) est mis sous tension, le quatrième commutateur (SW4) est mis hors tension, et le cinquième commutateur (SW5) est mis sous tension.
 
4. Convertisseur abaisseur-élévateur (100) de la revendication 1, caractérisé en ce que le troisième commutateur (SW3) est un semi-conducteur à oxyde métallique de type P, PMOS, et le cinquième commutateur (SW5) est un semi-conducteur à oxyde métallique de type N, NMOS.
 
5. Convertisseur abaisseur-élévateur (100) de la revendication 1, caractérisé en ce que le circuit de commande (110) génère le signal de commande de mode (NG3) selon un cycle de service d'au moins l'un des signaux de commande (PG1, NG1, PG2, NG2).
 
6. Procédé de commande d'un convertisseur abaisseur-élévateur (100), dans lequel le convertisseur abaisseur-élévateur (100) est agencé pour recevoir une tension d'entrée (Vin) afin de générer une tension de sortie (Vout),
et le convertisseur abaisseur-élévateur (100) comprend une inductance (L), un premier commutateur (SW1), un deuxième commutateur (SW2), un troisième commutateur (SW3), un quatrième commutateur (SW4) et un cinquième commutateur (SW5), le premier commutateur (SW1) est couplé entre la tension d'entrée et une première borne (N1) de l'inductance (L), le deuxième commutateur (SW2) est couplé entre une tension de référence (VSS) et la première borne (N1) de l'inductance (L), le troisième commutateur (SW3) est couplé entre la tension de sortie et une deuxième borne (N2) de l'inductance (L), le quatrième commutateur (SW4) est couplé entre la tension de référence et la deuxième borne (N2) de l'inductance (L), et le cinquième commutateur (SW5) est connecté en parallèle au troisième commutateur (SW3), le procédé comprenant les étapes consistant :

à générer une pluralité de signaux de commande (PG1, NG1, PG2, NG2) pour commander le premier commutateur (SW1), le deuxième commutateur (SW2), le troisième commutateur (SW3) et le quatrième commutateur (SW4), respectivement ;

lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans un mode abaisseur, à commander chacun du premier commutateur (SW1) et du deuxième commutateur (SW2) pour être mis sous tension et être mis hors tension en alternance ;

lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans un mode élévateur, à commander chacun du troisième commutateur (SW3) et du quatrième commutateur (SW4) pour être mis sous tension et mis hors tension en alternance ; et

à commander le cinquième commutateur (SW5) pour être mis sous tension et mis hors tension en se référant à un signal de commande de mode (NG3) qui représente le mode abaisseur ou le mode élévateur ; caractérisé par le fait :
de générer le signal de commande de mode (NG3) en se référant à au moins l'un des signaux de commande (PG1, NG1, PG2, NG2).


 
7. Procédé de la revendication 6, caractérisé en ce qu'il comprend en outre le fait :
lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans le mode élévateur, de mettre sous tension le premier commutateur (SW1), de mettre hors tension le deuxième commutateur (SW2), et de mettre hors tension du cinquième commutateur (SW5).
 
8. Procédé de la revendication 6, caractérisé en ce qu'il comprend en outre le fait :
lorsque le convertisseur abaisseur-élévateur (100) fonctionne dans le mode abaisseur, de mettre sous tension le troisième commutateur (SW3), de mettre hors tension le quatrième commutateur (SW4), et de mettre sous tension le cinquième commutateur (SW5).
 
9. Procédé de la revendication 6, caractérisé en ce que le troisième commutateur (SW3) est un semi-conducteur à oxyde métallique de type P, PMOS, et le cinquième commutateur (SW5) est un semi-conducteur à oxyde métallique de type N, NMOS.
 
10. Procédé de la revendication 6, caractérisé en ce que l'étape de génération du signal de commande de mode comprend le fait :
de générer le signal de commande de mode (NG3) selon un cycle de service d'au moins l'un des signaux de commande (PG1, NG1, PG2, NG2).
 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description