(19)
(11)EP 3 137 373 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.07.2019 Bulletin 2019/27

(21)Application number: 15785219.5

(22)Date of filing:  01.05.2015
(51)International Patent Classification (IPC): 
B63B 21/50(2006.01)
(86)International application number:
PCT/US2015/028911
(87)International publication number:
WO 2015/168632 (05.11.2015 Gazette  2015/44)

(54)

BUOYANT TURRET MOORING WITH POROUS TURRET CAGE

SCHWIMMFÄHIGE TURMVERANKERUNG MIT PORÖSEM TURMKÄFIG

AMARRAGE DE TOURELLE DE BOUÉE À CAGE DE TOURELLE POREUSE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.05.2014 US 201414268866

(43)Date of publication of application:
08.03.2017 Bulletin 2017/10

(73)Proprietor: Single Buoy Moorings Inc.
1723 Marly (CH)

(72)Inventors:
  • CARRICO, Todd, Vincent
    Katy, TX 77494 (US)
  • LEVERETTE, Steven, John
    Richmond, TX 77406 (US)

(74)Representative: Nederlandsch Octrooibureau 
P.O. Box 29720
2502 LS The Hague
2502 LS The Hague (NL)


(56)References cited: : 
EP-A1- 2 492 183
US-A- 3 844 239
US-A- 5 305 703
US-A1- 2003 138 299
US-A1- 2008 138 159
US-A1- 2011 162 571
WO-A1-2012/032163
US-A- 4 490 121
US-A1- 2003 138 299
US-A1- 2006 137 590
US-A1- 2011 061 582
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS:



    [0001] This application claims the priority of United States Patent Application Number 14/268,866 filed on May 2, 2014.

    BACKGROUND OF THE INVENTION


    1. Field of the Invention.



    [0002] The present invention generally relates to offshore vessels used for the production of petroleum products. More specifically, it relates to a buoyant turret mooring system for a Floating Production, Storage and Offloading (FPSO) system.

    [0003] A Floating Production Storage and Offloading system (FPSO) is a floating facility installed above or close to an offshore oil and/or gas field to receive, process, store and export hydrocarbons.

    [0004] It consists of a floater, which may be either a purpose-built vessel or a converted tanker, that is moored at a selected site. The cargo capacity of the vessel is used as buffer storage for the oil produced. The process facilities (topsides) and accommodation are installed on the floater. The mooring configuration may be of the spread mooring type or a single point mooring system, generally a turret.

    [0005] The high pressure mixture of produced fluids is delivered to the process facilities mounted on the deck of the tanker, where the oil, gas and water are separated. The water is discharged overboard after treatment to eliminate hydrocarbons. The stabilized crude oil is stored in the cargo tanks and subsequently transferred into shuttle tankers either via a buoy or by laying side by side or in tandem to the FPSO vessel.

    [0006] The gas can be used for enhancing the liquid production through gas lift, and for energy production onboard the vessel. The remainder can be compressed and transported by pipeline to shore or reinjected into the reservoir.

    [0007] Typically, offshore systems are designed to withstand the "100 year storm" -- i.e. the most extreme storm that may statistically be expected to happen once every hundred years at the location where the system is installed. All locations have different hundred year storm conditions, with the worst storms being in the North Atlantic and the northern North Sea. Exceptionally bad storm conditions can occur in typhoon (hurricane) infested areas. Thus, some FPSO mooring systems are designed to be disconnectable, so that the FPSO vessel can temporarily move out of the storm path, and the mooring system need only be designed for moderate conditions.

    [0008] A Buoyant Turret Mooring (BTM) system utilizes a mooring buoy that is fixed to the seabed by catenary anchor legs and supports crude oil and gas risers - steel or flexible pipe which transfer well fluids from the seabed to the surface. The BTM buoy may be connected by means of a structural connector to to an integrated turret. The earth-fixed turret extends up through a moonpool in the tanker, supported on a bearing and contains the reconnection winch, flow lines, control manifolds and fluid swivels located above the main deck. The bearings allow the vessel to freely rotate or weathervane in accordance with the prevailing environmental conditions.

    [0009] The BTM system was developed for areas where typhoons, hurricanes or icebergs pose a danger to the FPSO vessel and, primarily for safety reasons, rapid disconnection and/or reconnection is required. Disconnection and reconnection operations may be carried out from the tanker without external intervention. When disconnected, the mooring buoy sinks to equilibrium depth and the FPSO vessel sails away.

    [0010] A Steel Catenary Riser (SCR) is a steel pipe hung in a catenary configuration from a floating vessel in deep water to transmit flow to or from the seafloor.

    [0011] A swivel stack is an arrangement of several individual swivels stacked on top of each other to allow the continuous transfer on a weathervaning FPSO vessel of fluids, gasses, controls and power between the risers and the process facilities on the FPSO vessel deck.

    [0012] The turret mooring and high pressure swivel stack are thus the essential components of an FPSO vessel.

    [0013] A heave compensation system is a mechanical system used to suppress the movements of a load being lifted, in an offshore environment, a mechanical system, often referred to as 'heave compensation system', is devised to dampen and control vertical movements. Two methods of heave compensation exist: passive systems and active systems.

    [0014] U.S. Patent No. 6,155,193 to Syvertsen et al. describes a vessel for use in the production and/or storage of hydrocarbons, including a receiving device having a downwardly open space for receiving and releasably securing a submerged buoy connected to at least one riser, a rotatable connector for connection with the buoy and transfer of fluids, and a dynamic positioning system for keeping the vessel at a desired position. The vessel includes a moonpool extending through the hull, and the receiving device is a unit which is arranged in the moonpool for raising and lowering, the rotatable connector being arranged at deck level, for connection to the buoy when the receiving unit with the buoy has been raised to an upper position in the moonpool. The moonpool is provided with a plurality of quite large holes all along its length and no holes are present in the receiving unit. The presence of the large holes, however, may jeopardize the structural integrity of the moonpool.

    [0015] EP 2 492 183 A1 describes a disconnectable mooring system for a vessel comprising a moonpool in the vessel, a turret structure mounted for a rotation in the moonpool and a buoy member.

    BRIEF SUMMARY OF THE INVENTION



    [0016] A disconnectable BTM system is vulnerable to damage from collisions between the buoy and the buoy turret cage during reconnection and deconnection operations. The risk of collision may increase when the FPSO vessel and the buoy have differing heave periods. It is therefore desirable that the buoy separate quickly from the turret of the FPSO vessel during a disconnect operation. This minimizes the time period during which the two floaters are uncoupled from one another yet in close proximity to each other.

    [0017] It has been found that the disconnect time is influenced by the behavior of the layer of water between the inner surface of the receptor and the outer surface of the buoy. Separating the two floaters requires that the suction produced by this layer of water as the two surfaces separate be overcome. This problem is particularly acute for BTM systems having very large buoys - i.e., systems wherein the buoys and receptors have a large mating surface area.

    [0018] The present invention solves this problem by providing the turret cage with a certain degree of porosity that allows a flow of seawater from the outside of the receptor to the inner surface of the receptor. Introducing water in this way relieves the suction and/or stiction forces and allows for a quicker separation of the buoy from the turret of the FPSO vessel, minimizing the time during which an uncontrolled collision between the buoy and the FPSO vessel is most likely. Moreover, the hydrodynamic coupling created by a mostly closed turret cage may act to prevent uncontrolled collisions between the buoy and the turret of the FPSO vessel during connection (or re-connection) operations. Preferably, no porosity is present in the turret above the area where the lower end of the turret and the turret cage are connected, such that no outflow of seawater is allowed in this part. This permits the creation of a water column at the top end of the turret cage.

    BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)



    [0019] 

    Figure 1 is a side cut-away view of the bow portion of an FPSO vessel equipped with a buoyant turret mooring (BTM) system according to one embodiment of the invention.

    Figure 2 is a bottom view of a BTM turret cage according to the invention.

    Figure 3 is a side view, partially in cross section of a BTM buoy just prior to release from the turret of an FPSO vessel equipped with a turret cage according to the invention.

    Figure 4 is a side view, partially in cross section of a BTM buoy just subsequent to release from the turret of an FPSO vessel equipped with a turret cage according to the invention

    Figure 5 is a partial, side, cross-sectional view of a turret cage according to the invention.

    Figure 6 is a three-dimensional illustration of a representative portion of a turret cage according to the invention.

    Figure 7 is a graph showing buoy disconnect times for various porosity levels of a turret cage according to the invention.

    Figure 8 is a perspective view of a turret structure of the prior art which may be modified according to one embodiment of the invention to have variable porosity.

    Figures 9A through 9F show various states of a variable porosity turret mooring system according to the invention.

    Figures 10A through 10C sequentially illustrate a connection operation using the variable porosity turret mooring system shown in Figures 9A through 9F.

    Figures 11A through 11C sequentially illustrate a disconnection operation using the variable porosity turret mooring system shown in Figures 9A through 9F.


    DETAILED DESCRIPTION OF THE INVENTION



    [0020] The invention relates to the use of porosity to optimize the connection and disconnection of a submersible mooring buoy to/from an FPSO vessel. A submersible buoy supports one or more risers, and is moored to the seafloor. The buoy is rigidly connected internal to the FPSO vessel under operational conditions; the buoy's mooring system provides the station keeping for the FPSO vessel. The buoy can be disconnected from the FPSO vessel, e.g. because of large sea states or storms.

    [0021] The upper part of the buoy has a cone shape which mates with a cage-shaped structure attached internally to the FPSO vessel. Cage porosities ranging between 5% and 20% yield good synchronization of buoy and FPSO vessel motion during reconnect which then reduce impact velocities while achieving an acceptable short time frame for when the released buoy clears the FPSO vessel. Charging the space above the buoy with water (filling the turret before release) improves the disconnect time.

    [0022] A buoyant turret mooring buoy supports one or more risers, and is moored to the seafloor. The buoy is rigidly connected to the FPSO's turret which is located inside a moonpool. Under operational conditions; the buoy's mooring system provides the station keeping for the FPSO vessel.

    [0023] The main objective for the disconnect operation is to have the buoy separate quickly from the FPSO vessel thereby reducing the probability of collision. This nominally requires minimal hydrodynamic coupling between the buoy and turret. For reconnection, the objective is to minimize motion between the bodies thus enabling a more gentle connection. This nominally requires maximum hydrodynamic coupling between the buoy and turret. In practice, satisfying these objectives requires a blended design solution which balances their opposing needs. Typically, a more open walled turret cage facilitates rapid disconnect while a more closed cage provides better coupling during reconnection. The invention relates to the use of porosity (openings through the turret cage wall) as a critical design element in the overall buoy/turret system configuration. Other important design features include internal drain holes in the turret and a buoy heave compensation system.

    [0024] Porosities ranging between 5% and 20% produce optimum hydrodynamic coupling between the buoy and FPSO vessel during reconnection which result in reduced impact velocities. These small porosity values have also been found to be acceptable for disconnection, for example when combined with prefilling the turret to about two meters above the FPSO vessel's mean waterline. The presence of an additional water column in the turret (up to about 2 meters above draft level) on top of the connected buoy may facilitate a quicker disengagement of the buoy from the turret when it needs to be disconnected. Figure 1 shows the configuration prior to disconnect. In certain preferred embodiments, all water discharge openings in the turret are below the mating point of the buoy and the turret - i.e., seal 70 in Figure 5.

    [0025] The advantage that the porosity range provides is an acceptable balance that results in good disconnect and reconnect performance. Measured departure times from model tests are shown in Figure 7. The data in Figure 7 demonstrates that porosities greater than 20% all have approximately identical departure times. This indicates that the suction forces which try to keep the bodies together can be overcome with minimal porosity and a prefill charge of water. By allowing water to flow though a fraction of the cage wall, the newly created void left by the buoy's departure is rapidly filled. In addition, the net downward force acting on the buoy is temporarily increased by the weight of the additional volume of water.

    [0026] This design feature is needed when developing buoys of extreme size. The porosity is one of the technologies that make connecting and disconnecting a BTM buoy of extreme size feasible. Prefilling the turret with water above the mean waterline prior to disconnect is an optional, supporting procedure.

    [0027] The invention may best be understood by reference to the exemplary embodiment(s) illustrated in the drawing figures wherein the following reference numbers are used:
    • 10 FPSO vessel hull
    • 12 buoy
    • 14 mooring line connector
    • 16 mooring line
    • 18 steel catenary riser (SCR)
    • 20 moonpool
    • 22 turret
    • 24 swivel stack
    • 26 pull-in winch
    • 28 pull-in line
    • 30 heave compensator
    • 32 heave compensator pivot arm
    • 34 bell housing
    • 36 turret bearing
    • 38 structural connector
    • 40 turret cage
    • 42 abandonment winch
    • 44 stinger
    • 46 moonpool wall
    • 48 water gap
    • 50 inner surface of receptor
    • 52 prefill waterline
    • 54 bumper
    • 56 conical section of buoy
    • 58 latching ring
    • 62 radial opening
    • 64 elongated annular opening
    • 66 axial opening
    • 68 porosity opening
    • 70 buoy-to-turret seal
    • 80 turret structure
    • 82 upper structural ring
    • 84 lower structural ring
    • 86 locally reinforced structure
    • 88 opening
    • 89 connector group
    • 90 turret structure
    • 91 mooring buoy
    • 92 exterior frusto-conical surface
    • 93 interior frusto-conical surface
    • 94 upper surface aperture
    • 95 exterior surface aperture
    • 96 variable aperture
    • 97 shutter
    • 98 track
    • 99 track follower
    • 100 upper surface of mooring buoy


    [0028] A detailed description of one or more embodiments of the buoy and receptor as well as methods for its use are presented herein by way of exemplification and not limitation with reference to the drawing figures.

    [0029] Referring now to Figure 1, FPSO vessel 10 is equipped with moonpool 20 containing turret 22 which connects to BTM buoy 12 secured by a plurality of structural connectors 38 arranged in an annular array.

    [0030] BTM buoy 12 supports a plurality of steel catenary risers 18 at their upper end. Mooring lines 16 which extend to anchoring means in the seafloor (not shown) connect to buoy 12 via connectors 14 which, in the illustrated embodiment, are pivoting connectors. Thus, when connected, FPSO vessel 10 is releasably moored at the geo-location of buoy 12 while being free to weathervane about buoy 12 on bearings 36 in response to metocean conditions.

    [0031] Figure 1 shows buoy 12 in the connected state. In the connection operation, FPSO vessel 10 is maneuvered over submerged buoy 12 and pull-in line 28 is extended from winch 26 until bell housing 34 is latched to stinger 44. Pull-in winch 26 is then used to raise buoy 12 into turret cage 40 of turret 22. Heave compensator 30 acting via pivoting arm 32 may be used to avoid snatch loads on pull-in line 28. As buoy 12 approaches turret cage 40, the heave motions of the two floaters become synchronized and buoy 12 can be raised to a level that allows structural connectors 38 to move into the latched position, securing FPSO vessel 10 to mooring buoy 12.

    [0032] When mooring buoy 12 is secured within turret 22, fluid connections between risers 18 and on-board processing equipment may be made via swivel stack 24.

    [0033] Figure 2 is a bottom view of the interior mating surface 50 of turret cage 40. An annular water gap separates the moonpool wall from turret cage 40. A plurality of porosity openings 68 exist as through holes in mating surface 50 of turret cage 40. It will be appreciated by those skilled in the art that, as the number and size of porosity openings 68 increases, the freedom of water flow through surface 50 increases but the structural strength of turret cage 40 decreases. Thus, an appropriate balance between these competing design parameters must be established. As used herein, the percentage porosity of turret cage 40 is defined to be the sum total of the area of porosity openings 68 divided by the total area of the turret cage surface.

    [0034] A disconnect operation is shown sequentially in Figures 3 and 4. As may be seen in Figure 3, the interior of turret 22 has been flooded to a level 52 (which may be approximately two meters above the mean waterline of the FPSO vessel) prior to buoy release. It has been found that the weight of this water on the upper surface of buoy 12 decreases the disconnect time.

    [0035] Figure 4 shows BTM buoy 12 a few seconds after being released from turret 12 by the retraction of structural connectors 38. Seawater may enter gap 48 and flow out porosity openings 68 to relieve the suction between surface 56 on buoy 12 and inner surface 50 of turret cage 40 as buoy 12 descends. Mooring lines 16 may connect to subsea spring buoys (not shown) and thus, as buoy 12 descends, the effective weight of the mooring system and risers 18 decreases until balanced by the buoyancy of buoy 12. Buoy 12 may, therefore, hover at a storm-safe distance below the surface during storms or ice encounters until the FPSO vessel returns and reconnects.

    [0036] Structural details of one, particular, preferred embodiment of the invention are shown in Figures 5 and 6. A single structural connector 38 appears in Figure 5 along with turret-to-buoy annular seal 70 which may be an inflatable seal that contacts an opposing flat surface on the upper portion of buoy 12.

    [0037] Various structural ribs, plates and stiffeners are shown in the three-dimensional view of Figure 6. An array of porosity openings 68 are provided in interior surface 50 of turret cage 40. In the illustrated embodiment, these porosity openings 68 are generally circular. However, other opening shapes may be used to achieve the results of the invention.

    [0038] In addition to porosity openings 68, a series of radial openings 62, annular openings 64, and axial openings 66 are provided in selected structural members. These openings provide a water discharge path for seawater that would otherwise be trapped above buoy 12 when it is raised into turret 22. In general, this entrained seawater flows radially outward through openings 62 and then axially downward through openings 66 to discharge through gap 48 between moonpool wall 46 and turret cage 40. The additional openings may further contribute to improved reconnect and/or disconnect times.

    [0039] As illustrated graphically in Figure 7, experimental results obtained using scale models in a wave tank indicate that the buoy disconnect time does not decrease appreciably above a porosity level of about 20%. In this way, a porosity level may be selected which provides adequate strength of the receptor cage, a cushioning effect during connection operations, and an acceptably short disconnect time.

    [0040] In an embodiment a turret cage for an FPSO vessel equipped with a BTM system according to the invention may comprise a generally bell-shaped structure having an open, top end and an opposing, open, bottom end and an inner surface between the top and bottom ends at least of portion of which is in the shape of a conical frustum; and, a porosity of the turret cage for allowing a flow of seawater between an outside of the structure and the inner surface in which a plurality of porosity openings exists as open through holes in the conical frustum portion of the inner surface. The generally bell-shaped structure may comprise a framework that is open on a first, outer side and is at least partially sheathed on a second, inner side. The portion in the shape of a conical frustum may be sheathed. The turret cage may further comprise a curved section of the inner surface adjacent an upper end of the conical frustum portion and a plurality of through holes in the curved section. The turret cage may also further comprise an annular projection on the outer side having a plurality of axial through holes therein. The turret cage may also further comprise a plurality of radial through holes in a upper, generally cylindrical portion of the inner surface proximate the top end. The plurality of radial through holes may be sized and spaced to permit water flowing up and out the open top end to drain over an outer side of the generally bell-shaped structure. The total area of the through holes may preferably be between about 5 percent to about 20 percent of the total area of the turret cage surface.

    [0041] An FPSO vessel according to the invention may comprise a hull having a moonpool therein; a rotatable turret within the moonpool; and a turret cage comprising a generally bell-shaped structure attached to a lower end of the turret and having an open, top end and an opposing, open, bottom end and an inner surface between the top and bottom ends at least of portion of which is in the shape of a conical frustum; and, porosity of the turret cage for allowing a flow of seawater between an outside of the structure and the inner surface in which a plurality of porosity openings exists as open through holes in the conical frustum portion of the inner surface. The generally bell-shaped structure may comprise a framework that is open on a first, outer side and is at least partially sheathed on a second, inner side. The portion in the shape of a conical frustum may be sheathed. The turret cage may further comprise a curved section of the inner surface adjacent an upper end of the conical frustum portion and a plurality of through holes in the curved section. The turret cage may also further comprise an annular projection on the outer side having a plurality of axial through holes therein. The turret cage may also further comprise a plurality of radial through holes in a upper, generally cylindrical portion of the inner surface proximate the top end. The plurality of radial through holes may be sized and spaced to permit water flowing up and out the open top end to drain over an outer side of the generally bell-shaped structure. The total area of the through holes may preferably be between about 5 percent to about 20 percent of the total area of the turret cage surface.

    [0042] A method not part of the invention for disconnecting a mooring buoy from an FPSO vessel equipped with a buoyant turret mooring system may comprise providing a turret cage within a moonpool on the FPSO vessel said receptor having an inner surface that is at least partially sheathed with sheathing having a plurality of through holes; and, releasing the mooring buoy from the turret cage. The plurality of through holes in the sheathing preferably has a sum total area that is between about 5 percent and about 20 percent of the total area of the turret cage inner surface. The method may further comprise filling at least a portion of the moonpool above an upper surface of a mooring buoy secured within the turret cage with water prior to releasing the mooring buoy.

    [0043] A cylindrical turret according to the invention for an FPSO vessel equipped with a BTM system may have a turret at its lower end provided with a turret cage comprising a generally bell shaped structure attached to a lower end of the turret and having an open, top end and an opposing, open, bottom end and an inner surface between the top and bottom ends at least of portion of which is in the shape of a conical frustum, a porosity of the turret cage for allowing a flow of seawater between an outside of the structure and the inner surface in which a plurality of porosity openings exists as open through holes in the conical frustum portion of the inner surface and wherein no porosity is present in the lower turret wall in the area above the generally bell shaped structure.

    [0044] International Publication Number WO 2012/032163 A1 (entitled "Disconnectable mooring system with grouped connectors") discloses a disconnectable mooring system for a weathervaning vessel having a moonpool that extends from deck level to keel level. The system includes a turret that is held within the moonpool; a swivel unit for transfer of fluids mounted on the turret; a bearing assembly between the turret and the moonpool; and, a buoy anchored to the seabed via multiple mooring lines that can be retrieved in the moonpool and connected to the turret. The system further includes a locking assembly for mechanically locking the buoy to the turret and at least one riser supported by the buoy for transferring fluids to or from the seabed. The locking assembly includes at least two connectors, each of which is provided with a clamp that can be moved in a radially outward direction to mechanically connect the buoy to the turret.

    [0045] FIG. 8 shows a turret structure according to WO 2012/032163 A1 having reinforcements for transferring the mooring loads. As shown in FIG. 8, turret structure 80 comprises upper structural ring 82 which is joined to lower structural ring 84 by locally reinforced structures 86. Openings 88 between locally reinforced structures 86 can permit the movement of seawater in and out of the interior of the turret structure when the corresponding portion of a BTM mooring buoy is inserted or released. Also shown in FIG. 8 are connector groups 89 which may mechanically latch to a BTM mooring buoy so as to secure it within turret structure 80.

    [0046] In an embodiment, a turret structure of the type illustrated in FIG. 8 may be provided with means for varying the porosity of openings 88 - i.e., the apertures through which seawater may flow during the connection and release of a BTM mooring buoy. Referring now to FIGS. 9A through 9F, turret structure 90 is configured to receive mooring buoy 91. Mooring buoy 91 may be provided with exterior, frusto-conical surface 92 which is sized and shaped to fit within interior frusto-conical surface 93 of turret structure 90. As may be seen in FIGS. 9B and 9C, mooring buoy 91 may have substantially planar upper surface 100.

    [0047] Turret structure 90 may be provided with upper surface apertures 94 and exterior surface apertures 95 through which seawater may flow when mooring buoy 91 is inserted or released from turret structure 90. A portion of exterior surface aperture 95 may be variable aperture 96 which may be opened or closed by moveable shutter 97. In the illustrated embodiment, tracks 98 are provided across the width of exterior surface aperture 95 and shutter 97 is provided with track followers 99 which permit shutter 97 to selectively cover a portion or all of variable aperture 96 by sliding on tracks 98.

    [0048] FIG. 9A illustrates mooring buoy 91 partially within turret structure 90 with shutter 97 in the fully closed position.

    [0049] FIG. 9B illustrates mooring buoy 91 fully seated within turret structure 90 with shutter 97 in the fully closed position.

    [0050] FIG. 9C illustrates mooring buoy 91 fully seated within turret structure 90 with shutter 97 in the half-opened position.

    [0051] FIG. 9D illustrates mooring buoy 91 fully seated within turret structure 90 with shutter 97 in the fully opened position.

    [0052] FIG. 9E illustrates mooring buoy 91 partially within turret structure 90 with shutter 97 in the half-closed position.

    [0053] FIG. 9F illustrates mooring buoy 91 partially within turret structure 90 with shutter 97 in the fully opened position.

    [0054] The cost to implement a buoyant turret mooring (BTM) system in ultra deepwater is governed by the size of the BTM buoy required to support a large riser payload. One way to improve the cost efficiency of such a system is to optimize the hydrodynamic coupling between a BTM buoy and an FPSO vessel during the final stage of the buoy reconnection. Among others important parameters, the so-called "turret cone porosity" plays an important role. The turret cone is the conical shape located at the bottom of the turret cylinder that interfaces with the BTM buoy. Its main structural function is alignment of the BTM buoy with the turret cylinder during reconnection - the male cone of the BTM buoy must axially align with the female cone of the turret cylinder. The space between the two cones once connected and the amount of water that can flow across the surface of the turret (female) cone is called the "turret cone porosity."

    [0055] The tuning of the turret cone porosity may be a compromise between two adverse design goals. For reconnection operations, it is desirable to minimize the turret cone porosity inasmuch as low porosity has a positive effect for the optimization of the hydrodynamic coupling of the relative motions of the BTM buoy and the FPSO vessel during the final stage of the reconnection (which enables one to reduce significantly the specification and therefore the cost of the reconnection system). For disconnection operations, the designer would like to maximize the turret cone porosity inasmuch as increased porosity reduces the suction effect which can slow down the separation of the BTM buoy from the FPSO vessel and thereby reduce the disconnection seastate in order to avoid the risk of the FPSO vessel hitting the BTM buoy during a too-slow descent of the buoy.

    [0056] The above-described system enables variable turret cone porosity so that porosity can be at a maximum during disconnection operations and at a minimum during reconnection operations.

    [0057] The structure of the lower turret accommodating the turret cone may comprise a number of structural boxes 86 (three boxes in the illustrated embodiment) interconnected at the top and bottom to the turret cone by ring box structures (elements 82 and 84, respectively).

    [0058] The space between the vertical structural boxes 86 is the turret cone "skin" where the variable porosity may be implemented by means of the sliding shutters 97 or their equivalents.

    [0059] A variable porosity turret cone system according to the invention may reduce the cost of a reconnection system for a weathervaning vessel, increase the reconnection seastates (to provide more up-time in sites exposed to persistent swells) while increasing the allowable disconnection seastates (to provide more up-time or/and enable further cost savings for a mooring system - e.g. if one can disconnect in 10-year or 100-year conditions then the mooring system may be sized for the maximum disconnection conditions instead of more stringent conditions such as 100-year or 10,000 year environments).

    [0060] A connection operation using a variable-porosity turret system according to the invention is illustrated sequentially in FIGS. 10A, 10B and 10C.

    [0061] FIG. 10A shows turret structure 90 with shutter 97 moving from the open position towards the closed position. The closing of shutter 97 may be accomplished prior to raising the BTM mooring buoy into turret structure 90.

    [0062] In FIG. 10B, BTM mooring buoy 91 is shown being raised - e.g., by winch cable - into the interior of turret structure 90. Shutter 97 is in its fully closed position. Corresponding shutters (not shown) on other sides of turret structure 90 may also be closed to minimize the porosity of turret structure 90. As discussed above, reducing the porosity of turret structure 90 may improve the hydrodynamic coupling of turret structure 90 and mooring buoy 91 during the connection operation.

    [0063] FIG. 10C shows BTM buoy 91 fully seated within turret structure 90 with shutter 97 in the fully closed position such as would exist at the end of a connection operation.

    [0064] A disconnection operation using a variable-porosity turret system according to the invention is illustrated sequentially in FIGS. 11A, 11B and 11C.

    [0065] FIG. 11A shows turret structure 90 with shutter 97 moving from the closed position towards the open position. The opening of shutter 97 may be accomplished prior to releasing the BTM mooring buoy from turret structure 90.

    [0066] FIG. 11B shows buoy 91 within turret structure 90 just prior to release. Shutter 97 is fully open and the exterior frusto-conical surface 92 of buoy 91 is visible through the open portion of variable aperture 96. Release of buoy 91 may be accomplished by reverse actuation of connectors 89 (see FIG. 8).

    [0067] FIG. 11C shows buoy 91 falling away from turret structure 90. Shutter 97 is in the fully open position and variable aperture 96 is configured for maximum porosity. A volume of water may be staged above turret structure 90 prior to disconnection. Upon disconnection, this water may flow through upper surface apertures 94 and variable aperture 96 into the interior of turret structure 90 so as to relieve the suction forces generated by the falling BTM buoy. This may act to increase the rate at which the buoy departs the turret structure thereby decreasing the period of time during which a damaging collision between the vessel and the unrestrained, sinking buoy may occur.

    [0068] Although particular embodiments of the present invention have been shown and described, they are not intended to limit what this patent covers. One skilled in the art will understand that various changes and modifications may be made without departing from the scope of the present invention as literally and equivalently covered by the following claims.


    Claims

    1. A turret cage (40) for an FPSO vessel equipped with a buoyant turret mooring system comprising:

    a generally bell-shaped structure having an open, top end and an opposing, open, bottom end and an inner surface (50) between the top and bottom ends at least of portion of which is in the shape of a conical frustum;

    characterized by
    a porosity of the turret cage (40) for allowing a flow of seawater between an outside of the structure and the inner surface (50) in which a plurality of porosity openings (68) exists as open through holes in the conical frustum portion of the inner surface (50).


     
    2. The turret cage recited in claim 1 wherein the generally bell-shaped structure comprises a framework that is open on a first, outer side and is at least partially sheathed on a second, inner side.
     
    3. The turret cage recited in claim 1 further comprising a curved section of the inner surface (50) adjacent an upper end of the conical frustum portion and a plurality of through holes in the curved section.
     
    4. The turret cage recited in claim 2 further comprising an annular projection on the outer side having a plurality of axial open through holes (66) therein.
     
    5. The turret cage recited in claim 1 further comprising a plurality of radial open through holes (62) in a upper, generally cylindrical portion of the inner surface proximate the top end, wherein the plurality of radial through holes are sized and spaced to permit water flowing up and out the open top end to drain over an outer side of the generally bell-shaped structure.
     
    6. The turret cage recited in claim 1 wherein the total area of the open through holes is between about 5 percent to about 20 percent of the total area of the turret cage surface.
     
    7. An FPSO vessel comprising:

    a hull (10) having a moonpool (20) therein;

    a rotatable turret (22) within the moonpool;

    and a turret cage (40) comprising:

    a generally bell-shaped structure attached to a lower end of the turret (22) and having an open, top end and an opposing, open, bottom end and an inner surface (50) between the top and bottom ends at least of portion of which is in the shape of a conical frustum; and,

    characterized by a porosity of the turret cage (40) for allowing a flow of seawater between an outside of the structure and the inner surface (50) in which a plurality of porosity openings (68) exists as open through holes in the conical frustum portion of the inner surface.


     
    8. The FPSO vessel recited in claim 7 wherein the generally bell-shaped structure of the turret cage comprises a framework that is open on a first, outer side and is at least partially sheathed on a second, inner side.
     
    9. The FPSO vessel recited in claim 7 wherein the turret cage further comprises a curved section of the inner surface adjacent an upper end of the conical frustum portion and a plurality of through holes in the curved section.
     
    10. The FPSO vessel recited in claim 8 wherein the turret cage further comprises an annular projection on the outer side having a plurality of axial open through holes (66) therein.
     
    11. The FPSO vessel recited in claim 7 wherein the turret cage further comprises a plurality of radial open through holes (62) in a upper, generally cylindrical portion of the inner surface proximate the top end.
     
    12. The FPSO vessel recited in claim 11 wherein the plurality of open radial through holes (62) of the turret cage (40) are sized and spaced to permit water flowing up and out the open top end to drain over an outer side of the generally bell-shaped structure.
     
    13. The FPSO vessel recited in claim 7 wherein the total area of the open through holes of the turret cage is between about 5 percent to about 20 percent of the total area of the turret cage surface.
     
    14. The FPSO vessel recited in claim 7 wherein the generally bell-shaped structure of the turret cage (40) is sized to fit within the moonpool (20) such that the bell-shaped structure is spaced apart from an inner wall of the moonpool.
     
    15. A cylindrical turret for a FPSO vessel equipped with a buoyant turret mooring system wherein the turret (22) at its lower end is provided with a turret cage (40) comprising a generally bell shaped structure attached to a lower end of the turret and having an open, top end and an opposing, open, bottom end and an inner surface (50) between the top and bottom ends at least of portion of which is in the shape of a conical frustum, characterized by a porosity of the turret cage for allowing a flow of seawater between an outside of the structure and the inner surface (50) in which a plurality of porosity openings (68) existing as open through holes in the conical frustum portion of the inner surface (50) and wherein no porosity is present in the lower turret wall in the area above the generally bell shaped structure.
     


    Ansprüche

    1. Drehturm-Taucheinsatz (40) für ein FPSO Schiff (Schiff als schwimmendes Produktions- und Lagersystem), das mit einem schwimmfähigen Drehturm-Verankerungssystem ausgerüstet ist, umfassend:

    einen im Allgemeinen glockenartigen Aufbau mit einem offenen, oberen Ende und einem gegenüberliegenden offenen, unteren Ende und einer Innenfläche (50) zwischen dem oberen und dem unteren Ende, wobei mindestens ein Teil davon die Form eines Kegelstumpfes aufweist;

    gekennzeichnet durch

    eine Durchlässigkeit des Drehturm-Taucheinsatzes (40), um einen Seewasserstrom zwischen einer Außenseite des Aufbaus und der Innenfläche (50) zuzulassen, in dem eine Vielzahl von Durchlässigkeitsöffnungen (68) als offene Durchgangslöcher in dem Kegelstumpfabschnitt der Innenfläche (50) vorhanden sind.


     
    2. Drehturm-Taucheinsatz nach Anspruch 1, wobei der im Allgemeinen glockenartige Aufbau ein Rahmentragwerk aufweist, das auf einer ersten, äußeren Seite offen ist und auf einer zweiten, inneren Seite zumindest teilweise ummantelt ist.
     
    3. Drehturm-Taucheinsatz nach Anspruch 1, des Weiteren umfassend einen bogenförmigen Abschnitt der Innenfläche (50) angrenzend an ein oberes Ende des Kegelstumpfabschnitts und eine Vielzahl von Durchgangslöchern in dem bogenförmigen Abschnitt.
     
    4. Drehturm-Taucheinsatz nach Anspruch 2, des Weiteren umfassend einen ringförmigen Ansatz auf der Außenseite mit einer Vielzahl von axialen offenen Durchgangslöchern (66) darin.
     
    5. Drehturm-Taucheinsatz nach Anspruch 1, des Weiteren umfassend eine Vielzahl von radialen offenen Durchgangslöchern (62) in einem oberen, im Allgemeinen zylindrischen Abschnitt der Innenfläche, unmittelbar am oberen Ende, wobei die Vielzahl radialer Durchgangslöcher dimensioniert und im Abstand angeordnet ist, so dass ermöglicht wird, dass Wasser nach oben und aus dem offenen oberen Ende strömt, um über eine Außenseite des im Allgemeinen glockenartigen Aufbaus abzufließen.
     
    6. Drehturm-Taucheinsatz nach Anspruch 1, wobei der gesamte Bereich der offenen Durchgangslöcher zwischen etwa 5 Prozent bis etwa 20 Prozent des gesamten Bereichs der Drehturm-Taucheinsatzfläche beträgt.
     
    7. FPSO Schiff, das umfasst:

    einen Schiffsrumpf (10) mit einem darin befindlichen Moonpool (20) (untere Schiffsrumpföffnung);

    einen drehbaren Turm (22) innerhalb des Moonpools;

    und einen Drehturm-Taucheinsatz (40), umfassend:
    einen im Allgemeinen glockenartigen Aufbau, der an einem unteren Ende des Drehturms (22) befestigt ist und ein offenes, oberes Ende und ein gegenüber liegendes offenes, unteres Ende und eine Innenfläche (50) zwischen dem oberen und dem unteren Ende aufweist, von denen mindestens ein Abschnitt die Form eines Kegelstumpfes aufweist; und,
    gekennzeichnet durch eine Durchlässigkeit des Drehturm-Taucheinsatzes (40), um einen Seewasserstrom zwischen einer Außenseite des Aufbaus und der Innenfläche (50) zuzulassen, in dem eine Vielzahl von Durchlässigkeitsöffnungen (68) als offene Durchgangslöcher in dem Kegelstumpfabschnitt der Innenfläche vorhanden ist.


     
    8. FPSO-Schiff nach Anspruch 7, wobei der im Allgemeinen glockenartige Aufbau des Drehturm-Taucheinsatzes ein Rahmentragwerk aufweist, das auf einer ersten Außenseite offen ist und auf einer zweiten Innenseite zumindest teilweise ummantelt ist.
     
    9. FPSO Schiff nach Anspruch 7, wobei der Drehturm-Taucheinsatz des Weiteren einen bogenförmigen Abschnitt der Innenfläche angrenzend an ein oberes Ende des Kegelstumpfabschnitts und eine Vielzahl von Durchgangslöchern in dem bogenförmigen Abschnitt umfasst.
     
    10. FPSO Schiff nach Anspruch 8, wobei der Drehturm-Taucheinsatz des Weiteren einen ringförmigen Ansatz an der Außenseite mit einer Vielzahl von axialen, offenen Durchgangslöchern (66) darin aufweist.
     
    11. FPSO Schiff nach Anspruch 7, wobei der Drehturm-Taucheinsatz des Weiteren eine Vielzahl von radialen offen Durchgangslöchern (62) in einem oberen, im Allgemeinen zylindrischen Abschnitt der Innenfläche unmittelbar am oberen Ende umfasst.
     
    12. FPSO Schiff nach Anspruch 11, wobei die Vielzahl von offenen radialen Durchgangslöchern (62) des Drehturm-Taucheinsatzes (40) dimensioniert und im Abstand angeordnet ist, so dass ermöglicht wird, dass Wasser nach oben und aus dem offenen, oberen Ende strömt, um über eine Außenseite des im Allgemeinen glockenartigen Aufbaus abzufließen.
     
    13. FPSO Schiff nach Anspruch 7, wobei der gesamte Bereich der offenen Durchgangslöcher des Drehturm-Taucheinsatzes zwischen etwa 5 Prozent bis etwa 20 Prozent des gesamten Bereichs der Drehturm-Taucheinsatzfläche beträgt.
     
    14. FPSO Schiff nach Anspruch 7, wobei der im Allgemeinen glockenartige Aufbau des Drehturm-Taucheinsatzes (40) dimensioniert ist, um innerhalb des Moonpools (20) zu passen, so dass der glockenartige Aufbau im Abstand von einer Innenwand des Moonpools angeordnet ist.
     
    15. Zylindrischer Drehturm für ein FPSO Schiff, das mit einem schwimmfähigen Drehturm-Verankerungssystem ausgerüstet ist, wobei der Drehturm (22) an seinem unteren Ende mit einem Drehturm-Taucheinsatz (40) mit einem im Allgemeinen glockenartigen Aufbau versehen ist, der an einem unteren Ende des Drehturms befestigt ist und ein offenes oberes Ende und ein gegenüber liegendes offenes, unteres Ende und eine Innenfläche (50) zwischen dem oberen und dem unteren Ende aufweist, wobei mindestens ein Teil davon die Form eines Kegelstumpfes aufweist, gekennzeichnet durch eine Durchlässigkeit des Drehturm-Taucheinsatzes, um einen Seewasserstrom zwischen einer Außenseite des Aufbaus und der Innenfläche (50) zuzulassen, in dem eine Vielzahl von Durchlässigkeitsöffnungen (68) als offene Durchgangslöcher in dem Kegelstumpfabschnitt der Innenfläche (50) vorhanden ist, und wobei es in der unteren Drehturmwand im Bereich über dem im Allgemeinen glockenartigen Aufbau keine Durchlässigkeit gibt.
     


    Revendications

    1. Cage de tourelle (40) pour un navire FPSO (unité flottante de production, de stockage et d'expédition) équipé avec un système d'amarrage de tourelle de bouée comprenant :

    une structure généralement en forme de cloche ayant une extrémité supérieure ouverte et une extrémité inférieure ouverte opposée, et une surface interne (50) entre les extrémités supérieure et inférieure dont au moins une partie se présente sous une forme tronconique ;

    caractérisée par :
    une porosité de la cage de tourelle (40) pour permettre un écoulement d'eau de mer entre l'extérieur de la structure et la surface interne (50) dans laquelle une pluralité d'ouvertures de porosité (68) existent en tant que trous débouchants ouverts dans la partie tronconique de la surface interne (50).


     
    2. Cage de tourelle selon la revendication 1, dans laquelle la structure généralement en forme de cloche comprend un bâti qui est ouvert sur un premier côté externe et est au moins partiellement gainé sur un second côté interne.
     
    3. Cage de tourelle selon la revendication 1, comprenant en outre une section incurvée de la surface interne (50) adjacente à une extrémité supérieure de la partie tronconique et une pluralité de trous débouchants dans la section incurvée.
     
    4. Cage de tourelle selon la revendication 2, comprenant en outre une saillie annulaire sur le côté externe ayant une pluralité de trous débouchants (66) ouverts axiaux à l'intérieur de cette dernière.
     
    5. Cage de tourelle selon la revendication 1, comprenant en outre une pluralité de trous débouchants (62) ouverts radiaux dans une partie supérieure généralement cylindrique de la surface interne à proximité de l'extrémité supérieure, dans laquelle la pluralité de trous débouchants radiaux sont dimensionnés et espacés pour permettre à l'eau de s'écouler vers le haut et à l'extérieur de l'extrémité supérieure ouverte pour s'évacuer sur un côté externe de la structure généralement en forme de cloche.
     
    6. Cage de tourelle selon la revendication 1, dans laquelle la surface totale des trous débouchants ouverts est comprise entre environ 5 pour cent et environ 20 pour cent de la surface totale de la surface de cage de tourelle.
     
    7. Navire de FPSO comprenant :

    une coque (10) ayant un puits central (20) à l'intérieur de cette dernière ;

    une tourelle rotative (22) à l'intérieur du puits central ;

    et une cage de tourelle (40) comprenant :

    une structure généralement en forme de cloche fixée à une extrémité inférieure de la tourelle (22) et ayant une extrémité supérieure ouverte et une extrémité inférieure ouverte opposée et une surface interne (50) entre les extrémités supérieure et inférieure dont au moins une partie se présente sous une forme tronconique ; et

    caractérisé par une porosité de la cage de tourelle (40) pour permettre un écoulement d'eau de mer entre l'extérieur de la structure et la surface interne (50) dans laquelle une pluralité d'ouvertures de porosité (66) existent en tant que trous débouchants ouverts dans la partie tronconique de la surface interne.


     
    8. Navire de FPSO selon la revendication 7, dans lequel la structure généralement en forme de cloche de la cage de tourelle comprend un bâti qui est ouvert sur un premier côté externe et est au moins partiellement gainé sur un second côté interne.
     
    9. Navire de FPSO selon la revendication 7, dans lequel la cage de tourelle comprend en outre une section incurvée de la surface interne adjacente à une extrémité supérieure de la partie tronconique et une pluralité de trous débouchants dans la section incurvée.
     
    10. Navire de FPSO selon la revendication 8, dans lequel la cage de tourelle comprend en outre une saillie annulaire sur le côté externe ayant une pluralité de trous débouchants ouverts axiaux (66) à l'intérieur de cette dernière.
     
    11. Navire de FPSO selon la revendication 7, dans lequel la cage de tourelle comprend en outre une pluralité de trous débouchants (62) ouverts radiaux dans une partie supérieure généralement cylindrique de la surface interne à proximité de l'extrémité supérieure.
     
    12. Navire de FPSO selon la revendication 11, dans lequel la pluralité de trous débouchants (62) radiaux ouverts de la cage de tourelle (40) sont dimensionnés et espacés pour permettre à l'eau s'écoulant vers le haut et vers l'extérieur de l'extrémité supérieure ouverte de s'évacuer sur un côté externe de la structure généralement en forme de cloche.
     
    13. Navire de FPSO selon la revendication 7, dans lequel la surface totale des trous débouchants ouverts de la cage de tourelle est comprise entre environ 5 pour cent et environ 20 pour cent de la surface totale de la surface de cage de tourelle.
     
    14. Navire de FPSO selon la revendication 7, dans lequel la structure généralement en forme de cloche de la cage de tourelle (40) est dimensionnée pour s'adapter à l'intérieur du puits central (20) de sorte que la structure en forme de cloche est espacée d'une paroi interne du puits central.
     
    15. Tourelle cylindrique pour un navire de FPSO équipé avec un système d'amarrage de tourelle de bouée, dans laquelle la tourelle (22), au niveau de son extrémité inférieure, est prévue avec une cage de tourelle (40) comprenant une structure généralement en forme de cloche fixée sur une extrémité inférieure de la tourelle et ayant une extrémité supérieure ouverte et une extrémité inférieure ouverte opposée et une surface interne (50) entre les extrémités supérieure et inférieure, dont au moins une partie se présente sous une forme tronconique, caractérisée par une porosité de la cage de tourelle pour permettre un écoulement d'eau de mer entre un extérieur de la structure et la surface interne (50) dans laquelle une pluralité d'ouvertures de porosité (68) existent en tant que trous débouchants dans la partie tronconique de la surface interne (50), et dans laquelle aucune porosité n'est présente dans la paroi de tourelle inférieure dans la zone au-dessus de la structure généralement en forme de cloche.
     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description