(19)
(11)EP 3 137 529 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 15720625.1

(22)Date of filing:  20.04.2015
(51)International Patent Classification (IPC): 
C08G 18/63(2006.01)
C08L 71/02(2006.01)
C08G 18/08(2006.01)
C08L 75/04(2006.01)
(86)International application number:
PCT/EP2015/058467
(87)International publication number:
WO 2015/165761 (05.11.2015 Gazette  2015/44)

(54)

PROCESS FOR MAKING A POLYMER POLYOL

VERFAHREN ZUR HERSTELLUNG EINES POLYMERPOLYOLS

PROCÉDÉ DE FABRICATION D'UN POLYOL POLYMÈRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.04.2014 EP 14166515

(43)Date of publication of application:
08.03.2017 Bulletin 2017/10

(73)Proprietor: BASF SE
67056 Ludwigshafen am Rhein (DE)

(72)Inventors:
  • KOENIG, Christian
    68165 Mannheim (DE)
  • PETROVIC, Dejan
    49080 Osnabrück (DE)
  • LOEFFLER, Achim
    Tower Yanlord Garden, Puming (CN)
  • BAUDER, Andreas
    68199 Mannheim (DE)
  • FREIDANK, Daniel
    49152 Bad Essen (CN)
  • OPFERMANN, Dirk
    68163 Mannheim (DE)
  • QUEIROZ DA FONSECA, Isa Alexandra
    67059 Ludwigshafen (DE)
  • MAGES-SAUTER, Caroline
    69469 Weinheim (DE)
  • FU, Chuan Long
    200000 Shanghai (CN)
  • WANG, ShuKui
    Shanghai (CN)

(74)Representative: BASF IP Association 
BASF SE G-FLP-C006
67056 Ludwigshafen
67056 Ludwigshafen (DE)


(56)References cited: : 
EP-B1- 2 297 219
US-A1- 2002 042 463
US-A- 5 494 957
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to a continuous process for making a polymer polyol, the polymer polyol produced according to the said process and its applications.

    [0002] WO 2009/155427 (Dow) describes a melt dispersion process for making polymer polyols by dispersion polystyrene via a mechanical dispersion process into a polyol by using a stabilizer consisting of 30 to 90 % of styrene or a mixture of styrene and one or more other low molecular weight monomers.

    [0003] Polymer polyols, also known as filled polyols, are viscous fluids comprising fine particles dispersed in polyols. Examples of solids used include styrene-acrylonitrile co-polymers and poly-ureas. The solids are typically prepared by in situ polymerization of monomers in the base polyol. Polymer polyols are commonly used for the production of polyurethane foams.

    [0004] Melt emulsification is, however, an entirely different process. Since there is no chemical polymerization reaction, the dispersion is created through a physical (i. e. mechanical) process. Therefore, the melt emulsification method also requires different stabilizers.

    [0005] The term melt emulsification is defined in WO2009/155427 as follows:
    Another way of dispersion the previously-formed polymer is to melt it, and then blend the molten polymer with the polyol under shear. The shearing action breaks the molten polymer into small droplets which become dispersed in the polyol phase. This process is described in US patent No. 6,623,827. That patent describes a process wherein a previously-formed polymer is melted in an extruder, mixed with a surfactant and a polyether polyol, and subsequently mixed with more of with the polyether polyol. The mixture is then cooled to solidify the particles.

    [0006] Polymer polyol production processes usually encounter the problem of how to achieve small average particle sizes and uniform particles. Additionally, it is not always easy to obtain low viscosities in the produced polymer polyol dispersions, and furthermore, in some cases the produced polymer polyol dispersions segregate and are not stable.

    [0007] EP2297219 B1 discloses a method for making a polymer polyol, comprising (a) mixing a melted thermoplastic polystyrene polymer with a liquid polyol in the presence of a stabilizer under conditions sufficient to disperse the polystyrene polymer in the form of droplets within a continuous phase of the liquid polyol and (b) cooling the polymer polyol to solidify the polystyrene polymer, wherein the stabilizer; includes a copolymer of (1) from 1.0 to 70 % by weight of a branched polyol which has a molecular weight of from 4000 to 20,000, from 0.2 to 1.2 polymerizable ethylenically unsaturated groups per molecule and from 3 to 8 hydroxyl groups per molecule with (2) from 30 to 90 % by weight of styrene or a mixture of styrene and one or more other low molecular weight monomers. In the examples 1-18, a stabilizer is prepared from styrene, a TMI-capped polyol and a carrier polyol. A polyol and stabilizer mixture is then mixed with polystyrene.

    [0008] The inventive process aims to overcome the mentioned problems. Thus, it aims for small average particle sizes and uniform particles, and, preferably, a low viscosity.

    [0009] Moreover, the polymer polyol dispersion should be stable for a prolonged time (the stability may be determined by storing samples for a prolonged time and visually inspecting them before and after the storage period of, usually, six months. When no precipitation has been formed at the bottom of the sample container (i. e. no phase separation), the sample is considered to be stable.).

    [0010] The process for making a polymer polyol should preferably also be easy to perform.

    [0011] Surprisingly, the mentioned problems could be overcome by the inventive process, as defined in claim 1 and the following claims.

    [0012] Thus, one object of the present invention is a continuous process for making a polymer polyol, comprising mixing at least one melted thermoplastic styrene-acrylonitrile-copolymer (TP) with at least one polyol (P) in the presence of at least one stabilizer (S), comprising from 10 to 70% by weight, preferably 30 to 60% by weight, more preferably 40 to 55% by weight, based on the sum of all components, at least one polyol P2, and at least one polyol CSP which comprises the reaction product of at least one macromere M, styrene and acrylonitrile in P2, optionally with an initiator and/ or a chain transfer agent, wherein the content of macromere M of the stabilizer (S) is between 30-70 wt%, preferably 35 to 54 wt%, based on the sum of all components, and/or wherein the polyol CSP is preferably comb-structured , and wherein, in a first step (1), TP, P and S are fed into an extruder (E) to form an initial dispersion, and the initial dispersion obtained from the extruder is then fed, in a second step (2), into at least one rotor-stator device (RS) comprising at least one rotor-stator combination, and (3) the dispersion is cooled below the Tg of the thermoplastic styrene-acrylonitrile-copolymer (TP) after passing all of the rotor-stators (RS) to obtain the final polymer polyol, wherein a macromere is defined as a molecule which comprises one or more polymerizable double bonds and one or more hydroxyl-terminated polyether tails.

    [0013] Further objects of this invention include a polymer polyol, obtainable by the inventive process, and a process for the production of a polyurethane, comprising reacting at least one polymer polyol obtainable by the inventive process and optionally at least one further polyether polyol with at least one di- or polyisocyanate and optionally a blowing agent.

    [0014] As mentioned above, a macromere is defined as a molecule which comprises one or more polymerizable double bonds and one or more hydroxyl-terminated polyether tails. Various macromeres are known and have previously been used to stabilize polymer polyols by co-polymerization with one or more ethylenically unsaturated monomers (such as, for example, styrene and acrylonitrile). Because of similarities in chemical composition, the polyether tail(s) energetically favor association with the polyol molecules in the continuous phase rather than with the styrene-acrylonitrile co-polymer. The polyether tails extend into the continuous phase, thereby forming a "brush" layer near the particle-fluid interface which screens the attractive van der Waals forces between particles. This phenomenon is known as steric stabilization. In order to form a brush layer which effectively screens van der Waals forces several conditions must be met. The polyether tails must be similar in chemical composition to the continuous phase so that they fully extend into the continuous phase and do not adsorb to the particles. Also, the surface coverage and molecular weight must be high enough so that the interfacial brush layer is sufficiently thick to prevent agglomeration of the solid particles.

    [0015] A number of methods for inducing reactive unsaturation into a polyol, thereby forming a macromere, are known in the art. U.S. Patent 6,013,731 teaches several techniques, including reaction of a polyol with unsaturated isocyanates (such as isocyanatoethylmethacrylate (IEM) or α,α-dimethyl metaisopropenyl benzylisocyanate (i.e. TMI)), or reaction of a polyol with maleic acid or maleic anhydride, followed by isomerization of the maleate bond to the more reactive fumarate bond. A macromere prepared by transesterification of a vinylalkoxy silane with a polyol has been disclosed in EP 0,162,589.

    [0016] EP 1 675 885 gives a definition of the term preformed stabilizer:
    A pre-formed stabilizer (PFS) is particularly useful for preparing a polymer polyol having a lower viscosity at a high solids content. In the pre-formed stabilizer processes, a macromere is reacted with monomers to form a co-polymer of composed of macromere and monomers. These co-polymers comprising a macromere and monomers are commonly referred to as pre-formed stabilizers (PFS). Reaction conditions may be controlled such that a portion of the co-polymer precipitates from solution to form a solid. In many applications, a dispersion having a low solids content (e.g., 3 to 15 % by weight) is obtained. Preferably, the reaction conditions are controlled such that the particle size is small, thereby enabling the particles to function as "seeds" in the polymer polyol reaction.

    [0017] For example, U.S. Patent 5,196,476 discloses a pre-formed stabilizer composition prepared by polymerizing a macromere and one or more ethylenically unsaturated monomers in the presence of a free-radical polymerization initiator and a liquid diluent in which the pre-formed stabilizer is essentially insoluble. EP 0,786,480 discloses a process for the preparation of a pre-formed stabilizer by polymerizing, in the presence of a free-radical initiator, from 5 to 40 % by weight of one or more ethylenically unsaturated monomers in the presence of a liquid polyol comprising at least 30 % by weight (based on the total weight of the polyol) of a coupled polyol which may contain induced unsaturation. These pre-formed stabilizers can be used to prepare polymer polyols which are stable and have a narrow particle size distribution. The coupled polyol is necessary to achieve a small particle size in the pre-formed stabilizer, which preferably ranges from 0.1 to 0.7 micron. U.S. Patents 6,013,731 and 5,990,185 also disclose pre-formed stabilizer compositions comprising the reaction product of a polyol, a macromere, at least one ethylenically unsaturated monomer, and a free radical polymerization initiator.

    [0018] It is known that large, bulky molecules are effective macromeres because less material can be used to sterically stabilize the particles. See, for example, EP 0786480. Generally speaking, this is due to the fact that a highly branched polymer has a considerably larger excluded volume than a linear molecule (such as, e.g., a monol), and therefore less of the branched polymer is required. U.S. Patent 5,196,476 discloses that functionalities of 2 and higher, and preferably 3 and higher, are suitable to prepare macromeres.

    [0019] Macromeres based on multi-functional polyols and which have multiple sites of reactive unsaturation are described in U.S. Patent 5,196,476. As described therein, there is an upper limit to the concentration of unsaturation when making macromeres by the maleic anhydride route. If the ratio of moles of unsaturation per mole of polyol is too high, then there is a higher probability that species will be formed which have more than one double bond per molecule. Typically, the '476 patent employs from about 0,5 to about 1.5 moles, and preferably from about 0.7 to about 1.1 moles, of the reactive unsaturated compound for each mole of the alkoxylated polyol adduct.

    [0020] As explained above, preformed stabilizers (PFS) are in principle known in the art for processes to form a dispersion by radical polymerization. However, the requirements for stabilizers to be used in the inventive melt emulsification process are different (even though the manufacturing of the stabilizers may be similar).

    [0021] The inventive melt emulsification process involves only physical mixing of the components, rather than a chemical reaction. In the conventional methods (radical polymerization), the PFS are added during the radical polymerization. Thus, the dwell times are different, and there is no further radical polymerization taking place in the melt emulsification process.

    [0022] The stabilizers (S) used in the inventive melt emulsification process usually have a viscosity between 1000 and 100000 mPas, preferably 5000 to 80000 mPas at 25 °C, determined according to DIN EN ISO 3219 at a shear rate of 100 1/s.

    [0023] Furthermore, stabilizers (S) used in the inventive melt emulsification process usually have an OH number of 1 to 100, preferably 1 to 50, even more preferably 10 to 40 mg KOH/g.
    The hydroxyl number was, unless indicated otherwise, determined in accordance with DIN 53240 from 2012 (DIN = "Deutsche Industrienorm", i. e. German industry standard).

    [0024] The viscosity of the stabilisers and polyols was, unless indicated otherwise, determined at 25°C in accordance with DIN EN ISO 3219 from 1994 by means of a Rheotec RC20 rotational viscometer using the spindle CC 25 DIN (spindle diameter: 12.5 mm; internal diameter of measuring cylinder: 13.56 mm) at a shear rate of 100 1/s (instead of 50 /1s).

    [0025] The particle size distribution of the dispersion was determined by static laser diffraction using a Mastersizer 2000 (Malvern Instruments Ltd) after dilution of the sample with isopropanol in order to obtain an optical concentration suitable for the measurement. For the dispersion of the sample a dispersing module Hydro SM was used with a stirrer speed of 2500 rpm. The calculation of the particle size distribution was performed by the Mastersizer 2000 using Fraunhofer theory.

    [0026] The diameter D10 (x10,3) defines the particle size at which 10 percent of the disperse phase volume of the particles are smaller. The diameter D50 (x50,3) defines the particle size at which 50 percent of the disperse phase volume of the particles are smaller. The diameter D90 (x90,3) defines the particle size at which 90 percent of the disperse phase volume of the particles are smaller. A more detailed description is available in DIN ISO 9276-2, 2009.

    [0027] In one embodiment, the inventive stabilizer (S) comprises from 10 to 70% by weight, preferably 30 to 60% by weight, more preferably 40 to 55% by weight, based on the sum of all components, at least one polyol P2, and at least one polyol CSP which comprises the reaction product of at least one macromere M, styrene and acrylonitrile in P2, optionally with an initiator and/ or a chain transfer agent, wherein the content of macromere M of the stabilizer (S) is between 35 to 54 wt%, based on the sum of all components, and/or wherein the polyol CSP is preferably comb-structured.

    [0028] In another embodiment, the stabilizer (S) consists of one or two polyols P2 and one or two polyols CSP which comprise the reaction product of at least one macromere M, styrene and acrylonitrile in P2, optionally with an initiator selected from the group consisting of azo initiators and peroxide initiators, and/ or a chain transfer agent selected from the group consisting of dodecane thiol, isopropanol and 2-butanol.

    [0029] In another embodiment, the stabilizer (S) consists of one or two polyols P2 one or two polyols CSP which consist of the reaction product of a macromere M, styrene and acrylonitrile in P2.

    [0030] In another embodiment, the macromere M has an average molecular weight of from 1000 to 50000 g/mol, preferably 2000 to 30000 g/mol, more preferably 3000 to 20,000 g/mol.

    [0031] In another embodiment, the macromere M has from 0.2 to 1.2 polymerizable ethylenically unsaturated groups per molecule in average and/or from 2 to 8 hydroxyl groups per molecule.

    [0032] In another embodiment, the macromere M is obtained by reacting TMI with a polyether polyol PM, optionally in the presence of a Lewis acid catalyst.

    [0033] In another embodiment, the polyether polyol PM used in the production of the macromere M is selected from the group consisting of three- and sixfunctional polyether polyols, preferably from the group consisting of glycerine, sorbitol and 1,1,1-trimethylol propane (TMP).

    [0034] In another embodiment, the ratio of styrene to acrylonitrile is greater than 1:1, preferentially greater 1:1.5, most preferred greater 1:2.

    [0035] In another embodiment, the viscosity of the stabilizer is between 1000 and 100000 mPas, preferably 5000 to 80000 mPas at 25 °C, determined according to DIN EN ISO 3219 and a shear rate of 100 1/s.

    [0036] In another embodiment, the overall content of styrene of the stabilizer (S) is between 0,5-20 wt%, preferably 4 to 15 wt%, and/or the overall content of acrylonitrile of the stabilizer (S) is between 0,5-15 wt%, preferably 2 to 7 wt%, and/or the overall content of polyol P2 of the stabilizer (S) is between 20-70 wt%, preferably 32 to 55 wt%.

    [0037] In another embodiment, no additional solvent is used in the stabilizer.

    [0038] General procedure for synthesizing a stabilizer:
    A macromere is defined as a molecule which comprises one or more polymerizable double bonds and one or more polymerizable double bonds and one or more hydroxyl-terminated polyether chains. A number of methods for inducing reactive unsaturation into a polyol are known in the art. The synthesis of useful macromere is described in WO2005/003200 (page 10, line 26). Macromere A is a product obtained by reaction of a three-functional polyether polyol with 1,1-Dimethyl meta-isopropenylbenzylisocyanat (TMI). The viscosity was 1440 mPas at 25 °C and the OH value was 23 mg KOH/g.

    [0039] A reactor was charged with a carrier polyol, a portion of the macromere A, a chain transfer agent and heated to 125°C. A mixture of carrier polyol, initiator, styrene, acrylonitrile and macromere A were added over 100 minutes. The reaction mixture was stirred for another 20 minutes at 125 °C. The mixture was subsequently evacuated under reduced pressure for 120 minutes at 125 °C to remove residual monomers. The obtained stabilizer is characterized and used without further purification.
    Table 1
    Experiment Nr.styrene in weight%Acrylonitrile in weight%.Macromere A in weight% carrier PolyolOH-value in mg KOH/gViscosity in mPas
    1 7,8 4,2 50 (1531)   37 25,3 14990


    [0040] The following dispersions were obtained by using commercially available styrene-acrylonitrile copolymer types with different compositions of styrene and acrylonitrile. For example Starex® types from Samsung, Luran® types from Styrolution, Lustran® types from Ineos can be used.

    [0041] Extruder setup, dosing of polyol, stabilizer, SAN (Flow rates, temperature):
    The twin screw extruder used has an L/D (ratio of length and diameter) of 42, and is divided into a number of process zones, each zone corresponding to one barrel. The extruder is composed of 10 barrels plus extruder head. Styrene acrylonitrile copolymer with a styrene to acrylonitrile rate of 65/35) is cold fed into barrel 1 under nitrogen atmosphere in granulate form and via a gravimetric dosing unit. Shear and heat transfer through the barrels contribute to the melting of the polymer. Lupranol® 2095 and stabilizer are dosed individually in the liquid form using gear pumps. Both are pre-heated and injected into the extruder at approximately 180°C. The stabilizer is injected into extruder barrel 3 and the polyol can be dosed in barrels 4 and 7. Both or either feed points for the polyol are possible and defined for each experiment in the table below. The screw configuration is optimized for melting the polymer upstream, later mixing it with the stabilizer and finally emulsifying the mixture in polyol, by use of appropriate kneading, mixing, forward and reverse elements.

    [0042] The extruder outlet is connected to a rotor-stator device via a heated pipe with a three-way valve for sample collection. A buffer tank can be installed between the extruder and the rotor-stator device to decouple these two devices and ensure a constant filling degree of the extruder.

    [0043] A "Process-Pilot" (IKA®-Werke,GmbH & Co. KG, Staufen, Germany) rotor-stator device was used to carry out the experiments. The machine was equipped with three successive rotor-stator combinations ("generators"). The rotors were mounted on the same shaft and driven with the same rotational speed. Generator 1 at the inlet was equipped with coarse teeth, generator 2 with medium and generator 3 with fine teeth. The circumferential speed (tip speed) of the rotors is adjustable in a wide range up to approx. 41 m/s. The product was fed from a buffer tank by means of a gear pump. The product temperature at the inlet of the rotor-stator device was in the range of 160 to 250°, preferentially 180 °C to 220 °C Another three-way valve is installed after the rotor stator device for sample collection. Optionally a stripping column can be installed to remove any residual material. The product was cooled to 60 °C.

    Example 1



    [0044] A recipe comprised of the 40 wt% of SAN, 15 wt% stabilizer 1 and 45 wt% Lupranol® 2095 was used. All the SAN was fed into the extruder in zone 1, all the stabilizer was injected into extruder zone 3 and all the Lupranol® was injected into extruder zone 4. The respective extruder processing parameters such as barrel temperature profile, screw rotation speed and throughput can be found in Table 2. The extruder set-up used is schematically represented in Fig. 2.
    The sample collected after the extruder had a particle size of D50= 8,955 µm, D90= 88,658 µm. The sample collected after the rotor-stator device had a particle size of D50 = 2,089 µm, D90= 8,469.

    [0045] The viscosity of the sample collected after rotor stator device was 6837 mPas determined at 25°C in accordance with DIN EN ISO 3219 from 1994.

    [0046] This example shows the important influence of the rotor-stator device in order to obtain small and uniform particles. By using a rotor-stator device the particle size D90 could be reduced by a factor higher than 10. Dosing of the polyol after the PFS was observed to be beneficial for efficient stabilization.

    Example 2 (Influence of rotor stator and dosing position):



    [0047] A recipe comprised of the 40 wt% of SAN, 15 wt% stabilizer 1 and 45 wt% Lupranol® 2095 was used. SAN was fed into the extruder in zone 1, all the stabilizer was injected into extruder zone 3 and Lupranol® 2095 was injected into extruder zone 7. The respective extruder processing parameters such as barrel temperature profile, screw rotation speed and throughput can be found in Table 2. The extruder set-up used is schematically represented in Fig. 2.

    [0048] The sample collected after the extruder had a particle size of D50= 5,455 µm, D90= 14,852 µm. The sample collected after the rotor-stator device had a particle size of D50 = 1,410 µm, D90= 2,116.

    [0049] The viscosity of the sample collected after rotor stator device was 10266 mPas determined at 25°C in accordance with DIN EN ISO 3219 from 1994.

    Recipe & Parameters



    [0050] 
    Cavitron speed: 265 Hz
    Cooling temp: 60°C


    [0051] This example shows once again the important influence of the rotor-stator device in order to obtain small and uniform particles. Alteration of the dosing position of the carrier polyol leads to a significant decrease in particle size. Dosing of the polyol at a later stage (zone 7 instead of zone 4) of the extruder may be important for obtaining smaller particles This difference is observed after the extruder in comparison to example 1 and consequently after the rotor-stator device. By dosing the Lupranol® 2095 at a later stage in the extruder the particle size D90 after extruder could be reduced by a factor of 6 compared to example 1 and by using a rotor-stator device the particle size D90 could be reduced again by a factor of 7.

    Example 3 (Split polyol dosing)



    [0052] The sample collected after the rotor-stator device had a particle size of D50 = 1,343 µm, D90= 1,949.

    [0053] The viscosity of the sample collected after rotor stator device was 7145 mPas determined at 25°C in accordance with DIN EN ISO 3219 from 1994

    Recipe & Parameters



    [0054] 
    Cavitron speed: 265 Hz
    Cooling temp: 60°C


    [0055] A recipe comprised of the 41 wt% of SAN, 12 wt% stabilizer 1 and 47 wt% Lupranol® 2095 was used. SAN was fed into the extruder in zone 1, all the stabilizer was injected into extruder zone 3. Lupranol® 2095 dosing was split between extruder zones 4 and 7 with 30 wt% and 17 wt% respectively. The respective extruder processing parameters such as barrel temperature profile, screw rotation speed and throughput can be found in Table 2. The extruder set-up used is schematically represented in Fig. 2.

    [0056] This example shows that the dosing of polyol can be split up in different parts of the extruder, in this case with a decrease in particle size distribution. As mentioned above, it is important that the polyol is dosed after the stabilizer. By using a split polyol dosing the particle size D90 could be reduced by 9%, compared to example 2.

    [0057] Some figures have been added to illustrate some aspects of the present invention.

    Figure 1 shows an exemplary set-up of devices for the inventive process. Optionally, a stripping column is used to remove residual volatile components, like styrene or acrylonitrile. In a preferred embodiment of the inventive process, at least one stripping column is used. Thus, the amount of residual styrene in the product may be reduced to levels below 20 ppm and the amount of acrylonitrile below 5 ppm. Optionally at least one filter can be installed.

    Figure 2 shows a preferred embodiment of the inventive process, where in the first place, SAN is added to the extruder (E) into the first process zone, and then, later on, stabilizer (S) and polyol (P) are added successively into separate process zones of the extruder (E).

    Table 2 - Process parameters used in extrusion step for examples given above.
    (GK 3496-024-01: example 1; GK 3496-024-02: example 2; GK 3496-030.01: example 3)
    Experiment numberBarrel set temperatureRPMThroughputThroughputThroughputThroughput
    Zone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7Zone 8Zone 9Zone 10Zone 11 HeadPolymer Zone 1Stabilizer Zone 3Polyol Zone 4Polyol Zone 7
    [°C][°C][°C][°C][°C][°C][°C][°C][°C][°C][°C][min-1][kg/h][kg/h][kg/h][kg/h]
    GK3496-024-01 30 230 210 210 190 190 190 190 190 190 190 500 2,4 0,9 2,7  
    GK3496-024-02 30 230 210 210 190 190 190 190 190 190 190 500 2,4 0,9   2,7
    GK3496-030-01 30 230 210 210 190 190 190 190 190 190 190 500 4,920 1,44 3,60 2,040


    [0058] The polymer polyol obtainable by the inventive process may be used for the production of polyurethanes, in particular for flexible polyurethane foams.

    [0059] Polymer polyols made according to the present invention may be reacted with polyisocyanate. The polyisocyanates may be selected from the group comprising aliphatic, cycloaliphatic, arylaliphatic and aromatic isocyanates. Among them, aromatic polyisocyanates are preferred. Examples of suitable aromatic isocyanates include 2 , 4'-, 2,6-isomers of toluene diisocyanate (TDI), 4,4'-, 2,4' and 2,2'-isomers of diphenylmethane diisocyante (MDI), or mixtures thereof. Optionally, a blowing agent may also be used.

    [0060] The polymer polyols obtainable by the inventive process may be used in a variety of applications. Inter alia, the may be used for the production of polyurethane (PU) foams, like microcellular foams, flexible foams, formed flexible foams, viscoelastic foams, rigid foams for construction or insulation applications, or PU elastomers, thermoplastic polyurethanes (TPU), PU coatings, PU sealants, PU adhesives, surfactants, lubricants, dispersants, concrete liquefiers. as seed or starting material for the production of polymer polyols, as seed or starting material for aqueous polymer dispersions, as seed or starting material

    [0061] In one embodiment, the polymer polyols obtainable by the inventive process are used for the production of flexible polyurethane foams. Preferred applications of the polyurethane foams include footware applications and applications in the car sector and furniture, for example car seats.


    Claims

    1. Continuous process for making a polymer polyol, comprising mixing at least one melted thermoplastic styrene-acrylonitrile-copolymer (TP) with at least one polyol (P) in the presence of at least one stabilizer (S), comprising from 10 to 70% by weight, preferably 30 to 60% by weight, more preferably 40 to 55% by weight, based on the sum of all components, at least one polyol P2, and at least one polyol CSP which comprises the reaction product of at least one macromere M, styrene and acrylonitrile in P2, optionally with an initiator and/ or a chain transfer agent, wherein the content of macromere M of the stabilizer (S) is between 30-70 wt%, preferably 35 to 54 wt%, based on the sum of all components, and/or wherein the polyol CSP is preferably comb-structured , and wherein, in a first step (1), TP, P and S are fed into an extruder (E) to form an initial dispersion, and the initial dispersion obtained from the extruder is then fed, in a second step (2), into at least one rotor-stator device (RS) comprising at least one rotor-stator combination, and (3) the dispersion is cooled below the Tg of the thermoplastic styrene-acrylonitrile-copolymer (TP) after passing all of the rotor-stators (RS) to obtain the final polymer polyol, wherein a macromonomere is defined as a molecule which comprises one or more polymerizable double bonds and one or more hydroxyl-terminated polyether tails.
     
    2. Process according to claim 1, wherein the extruder (E) is divided into at least two, preferably at least three separate process zones, more preferably at least four separate process zones and an extruder head.
     
    3. Process according to claim 1 or 2, wherein TP is fed into the first process zone Z1 of the extruder E, S is fed into the second process zone Z2 or a later process zone, and P is fed into one of the process zones following the process zone of addition of S, wherein the terms "first" and "second" refer to the flow direction of the reaction mixture in the extruder E.
     
    4. Process according to any of claims 1 to 3, wherein there is at least one process zone of the extruder E with no addition of components between the addition of the stabilizer S and the addition of the polyol P.
     
    5. Process according to any of claims 1 to 4, wherein P is fed into at least two different process zones of the extruder E.
     
    6. Process according to any of claims 1 to 5, wherein the extruder (E) is operated at a barrel temperature in the range of between 160° to 250 °C, preferably 180° to 210 °C in at least one of the process zones, preferably in all of the process zones but the first.
     
    7. Process according to any of claims 1 to 6, wherein the extruder (E) has a rotation speed in the range of 400 to 1200 rpm, preferably 500 to 900 rpm.
     
    8. Process according to any of claims 1 to 7, wherein a stripping column or stripping-vessel is used after the rotor-stator device to remove volatile material.
     
    9. Process according to any of claims 1 to 8, wherein at least one, preferably all of the at least one-level rotor-stator devices (RS) are operated at a set temperature in the range of between 160° to 250 °C, preferably 180 °C to 220 °C.
     
    10. Process according to any of claims 1 to 9, wherein at least one, preferably all of the rotor-stator devices (RS) have a circumferential speed in the range of 10 to 60 s-1, preferably 20 to 50 s-1.
     
    11. Process according to any of claims 1 to 10, wherein at least one, preferably all of the rotor-stator devices comprise at least two, preferably at least three rotor-stator combinations.
     
    12. Process according to any of claims 1 to 11, wherein the single rotor-stator combinations have differing teeth, wherein preferably, the first rotor-stator combination has coarse teeth, and the next rotor-stator combination in the flow direction has medium fine teeth, and the third rotor-stator combination in the flow direction has fine teeth.
     
    13. Process according to any of claims 1 to 12, wherein the polyol (P) is added to the extruder (E) at a temperature of above 100 °C, preferably above 150 °C.
     
    14. Process according to any of claims 1 to 13, wherein the stabilizer (S) is added to the extruder (E) at a temperature of above 100 °C, preferably above 150 °C.
     
    15. Process according to any of claims 1 to 14, wherein the polyol (P) is liquid at room temperature.
     
    16. Process according to any of claims 1 to 15, wherein the polyol (P) is selected from the group of polyols used for slabstock foam applications and polyols used for molded foam applications.
     
    17. Process according to any of claims 1 to 16, wherein the polyol (P) has an average OH value between 20 and 300 mg KOH/g, preferentially between 25 and 100 mg KOH/g.
     
    18. Process according to any of claims 1 to 17, wherein the polyol (P) has an average functionality between 2 and 6, preferentially between 2.5 and 4.
     
    19. Process according to any of claims 1 to 18, wherein the product has an average particle size of D50 below 25 µm, preferentially below 10 µm, most preferentially below 5 µm, as determined by static laser diffraction.
     
    20. Process according to any of claims 1 to 19, wherein the polyol P2 contained in the stabilizer S is selected from polyether polyols (PEOLs), preferably from the group consisting of PEOLs with a molecular weight between 1000 and 6000 g/mol, more preferably selected from the group consisting of PEOLs with a molecular weight between 2000 and 5000 g/mol.
     
    21. Process according to any of claims 1 to 20, wherein the macromere M contained in the stabilizer S has an average molecular weight of from 1000 to 50000 g/mol, preferably 2000 to 30000 g/mol, more preferably 3000 to 20,000 g/mol.
     
    22. Process according to any of claims 1 to 21, wherein the macromere M contained in the stabilizer S is obtained by reacting 1,1-dimethyl meta isopropenyl benzyl isocyanat (TMI) with a polyether polyol PM, selected from the group consisting of three- and sixfunctional polyether polyols, preferably from the group consisting of glycerine, sorbitol and 1,1,1-trimethylol propane (TMP), optionally in the presence of a Lewis acid catalyst.
     
    23. Process according to any of claims 1 to 22, wherein the ratio of styrene to acrylonitrile in the polyol CSP contained in the stabilizer S is greater than 1:1, preferentially greater 1:1.5, most preferred greater 1:2.
     
    24. Process according to any of claims 1 to 23, wherein the chain transfer agent optionally used in the production of the stabilizer S is selected from the group consisting of dodecane thiol, isopropanol and 2-butanol, and/ or the initiator optionally used in the production of the stabilizer S is selected from the group consisting of azoisobutyro nitrile (AIBN) and Dimethyl 2,2'-azobis(2-methylpropionate).
     
    25. Process according to any of claims 1 to 24, wherein the ratio of styrene to acrylonitrile in the styrene-acrylonitrile-copolymer (TP) is greater than 1:1, preferentially greater 1:1.5, most preferred greater 1:2.
     
    26. Process according to any of claims 1 to 25, wherein the dispersion is cooled below the Tg of the thermoplastic styrene-acrylonitrile-copolymer (TP) within a maximum time range of four hours after passing all of the rotor-stator devices (RS), preferably within a maximum time range of two hours, more preferably one hour.
     
    27. Process according to any of claims 1 to 26, wherein the dispersion is cooled to a temperature of equal to or less than 60 °C, preferably below 50 °C, within a maximum time range of four hours after passing all of the rotor-stator devices (RS), preferably within a maximum time range of two hours, more preferably one hour.
     
    28. Process according to any of claims 1 to 27, wherein the polymer polyol has a monomodal, bimodal or multimodal particle size distribution, preferably a monomodal distribution.
     
    29. Polymer polyol, obtainable by the process according to any of claims 1 to 28.
     
    30. Process for the production of a polyurethane, comprising reacting at least one polymer polyol obtainable by the process according to any of claims 1 to 28 and optionally at least one further polyether polyol with at least one di- or polyisocyanate and optionally a blowing agent.
     


    Ansprüche

    1. Kontinuierliches Verfahren zur Herstellung eines Polymerpolyols, bei dem man mindestens ein geschmolzenes thermoplastisches Styrol-Acrylnitril-Copolymer (TP) mit mindestens einem Polyol (P) in Gegenwart mindestens eines Stabilisators (S) mischt, der 10 bis 70 Gew.-%, vorzugsweise 30 bis 60 Gew.-%, weiter bevorzugt 40 bis 55 Gew.-%, bezogen auf die Summe aller Komponenten, mindestens eines Polyols P2 und mindestens ein Polyol CSP umfasst, das das Reaktionsprodukt von mindestens einem Makromer M, Styrol und Acrylnitril in P2, gegebenenfalls mit einem Initiator und/oder einem Kettenübertragungsmittel, umfasst, wobei der Gehalt an Makromer M des Stabilisators (S) zwischen 30-70 Gew.-%, vorzugsweise 35 bis 54 Gew.-%, bezogen auf die Summe aller Komponenten, beträgt und/oder wobei das Polyol CSP vorzugsweise eine Kammstruktur aufweist und wobei man in einem ersten Schritt (1) TP, P und S unter Bildung einer Ausgangsdispersion in einen Extruder (E) einspeist und die aus dem Extruder erhaltene Ausgangsdispersion dann in einem zweiten Schritt (2) in mindestens eine mindestens eine Rotor-Stator-Kombination umfassende Rotor-Stator-Vorrichtung (RS) einspeist und (3) die Dispersion nach dem Passieren aller Rotor-Stator-Vorrichtungen (RS) zum Erhalt des fertigen Polymerpolyols unter die Tg des thermoplastischen Styrol-Acrylnitril-Copolymers (TP) abkühlt, wobei ein Makromer als ein Molekül definiert ist, das eine oder mehrere polymerisierbare Doppelbindungen und eine oder mehrere hydroxylterminierte Polyetherschwänze umfasst.
     
    2. Verfahren nach Anspruch 1, bei dem der Extruder (E) in mindestens zwei, vorzugsweise mindestens drei separate Prozesszonen, weiter bevorzugt mindestens vier separate Prozesszonen und einen Extruderkopf eingeteilt ist.
     
    3. Verfahren nach Anspruch 1 oder 2, bei dem man TP in die erste Prozesszone Z1 des Extruders E einspeist, S in die zweite Prozesszone Z2 oder eine spätere Prozesszone einspeist und P in eine der auf die Prozesszone der Zugabe von S folgenden Prozesszonen einspeist, wobei sich die Begriffe "erste" und "zweite" auf die Strömungsrichtung der Reaktionsmischung im Extruder E beziehen.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem es mindestens eine Prozesszone des Extruders E ohne Zugabe von Komponenten zwischen der Zugabe des Stabilisators S und der Zugabe des Polyols P gibt.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem man P in mindestens zwei verschiedene Prozesszonen des Extruders E einspeist.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem man den Extruder (E) bei einer Zylindertemperatur betreibt, die in mindestens einer der Prozesszonen, vorzugsweise in allen der Prozesszonen außer der ersten, im Bereich zwischen 160 °C und 250 °C, vorzugsweise 180 °C und 210 °C, liegt.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem der Extruder (E) eine Rotationsgeschwindigkeit im Bereich von 400 bis 1200 U/min, vorzugsweise 500 bis 900 U/min, aufweist.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem man nach der Rotor-Stator-Vorrichtung eine Strippkolonne oder einen Strippbehälter zur Entfernung flüchtigen Materials verwendet.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem man mindestens eine, vorzugsweise alle der mindestens einstufigen Rotor-Stator-Vorrichtungen (RS) bei einer Solltemperatur im Bereich von 160 °C bis 250 °C, vorzugsweise 180 °C bis 220 °C, betreibt.
     
    10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem mindestens eine und vorzugsweise alle der Rotor-Stator-Vorrichtungen (RS) eine Umfangsgeschwindigkeit im Bereich von 10 bis 60 s-1, vorzugsweise 20 bis 50 s-1, aufweisen.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10, bei dem mindestens eine und vorzugsweise alle der Rotor-Stator-Vorrichtungen mindestens zwei und vorzugsweise mindestens drei Rotor-Stator-Kombinationen umfassen.
     
    12. Verfahren nach einem der Ansprüche 1 bis 11, bei dem die einzelnen Rotor-Stator-Kombinationen voneinander verschiedene Zähne aufweisen, wobei vorzugsweise die erste Rotor-Stator-Kombination grobe Zähne aufweist und die nächste Rotor-Stator-Kombination in Strömungsrichtung mittelfeine Zähne aufweist und die dritte Rotor-Stator-Kombination in Strömungsrichtung feine Zähne aufweist.
     
    13. Verfahren nach einem der Ansprüche 1 bis 12, bei dem man das Polyol (P) bei einer Temperatur von über 100 °C, vorzugsweise über 150 °C, in den Extruder (E) gibt.
     
    14. Verfahren nach einem der Ansprüche 1 bis 13, bei dem man den Stabilisator (S) bei einer Temperatur von über 100 °C, vorzugsweise über 150 °C, in den Extruder (E) gibt.
     
    15. Verfahren nach einem der Ansprüche 1 bis 14, bei dem das Polyol (P) bei Raumtemperatur flüssig ist.
     
    16. Verfahren nach einem der Ansprüche 1 bis 15, bei dem das Polyol (P) aus der Gruppe von für Weichblockschaumanwendungen verwendeten Polyolen und für Formschaumanwendungen verwendeten Polyolen ausgewählt wird.
     
    17. Verfahren nach einem der Ansprüche 1 bis 16, bei dem das Polyol (P) einen durchschnittlichen OH-Wert zwischen 20 und 300 mg KOH/g, bevorzugt zwischen 25 und 100 mg KOH/g, aufweist.
     
    18. Verfahren nach einem der Ansprüche 1 bis 17, bei dem das Polyol (P) eine durchschnittliche Funktionalität zwischen 2 und 6, bevorzugt zwischen 2,5 und 4, aufweist.
     
    19. Verfahren nach einem der Ansprüche 1 bis 18, bei dem das Polyol (P) eine durch statische Laserstreuung bestimmte durchschnittliche D50-Teilchengröße unter 25 µm, bevorzugt unter 10 µm, ganz besonders bevorzugt unter 5 µm, aufweist.
     
    20. Verfahren nach einem der Ansprüche 1 bis 19, bei dem das in dem Stabilisator S enthaltene Polyol P2 aus Polyetherpolyolen (PEOL) ausgewählt ist, vorzugsweise aus der Gruppe bestehend aus PEOL mit einem Molekulargewicht zwischen 1000 und 6000 g/mol und weiter bevorzugt aus der Gruppe bestehend aus PEOL mit einem Molekulargewicht zwischen 2000 und 5000 g/mol ausgewählt ist.
     
    21. Verfahren nach einem der Ansprüche 1 bis 20, bei dem das in dem Stabilisator S enthaltene Makromer M ein durchschnittliches Molekulargewicht von 1000 bis 50000 g/mol, vorzugsweise 2000 bis 30000 g/mol, weiter bevorzugt 3000 g/mol bis 20.000 g/mol, aufweist.
     
    22. Verfahren nach einem der Ansprüche 1 bis 21, bei dem man das in dem Stabilisator S enthaltene Makromer M durch Umsetzung von 1,1-Dimethyl-metaisopropenyl-benzyl-isocyanat (TMI) mit einem Polyetherpolyol PM, das aus der Gruppe bestehend aus drei- und sechsfunktionellen Polyetherpolyolen, vorzugsweise aus der Gruppe bestehend aus Glycerin, Sorbit und 1,1,1-Trimethylolpropan (TMP) ausgewählt wird, erhält, gegebenenfalls in Gegenwart eines Lewis-SäureKatalysators.
     
    23. Verfahren nach einem der Ansprüche 1 bis 22, bei dem das Verhältnis von Styrol zu Acrylnitril in dem in dem Stabilisator S enthaltenen Polyol CSP größer als 1:1, bevorzugt größer 1:1,5, ganz besonders bevorzugt größer 1:2 ist.
     
    24. Verfahren nach einem der Ansprüche 1 bis 23, bei dem das gegebenenfalls in der Herstellung des Stabilisators S verwendete Kettenübertragungsmittel aus der Gruppe bestehend aus Dodecanthiol, Isopropanol und 2-Butanol ausgewählt ist und/oder bei dem der gegebenenfalls in der Herstellung des Stabilisators S verwendete Initiator aus der Gruppe bestehend aus Azoisobutyronitril (AIBN) und 2,2'-Azobis(2-methylpropionsäure)dimethylester ausgewählt wird.
     
    25. Verfahren nach einem der Ansprüche 1 bis 24, bei dem das Verhältnis von Styrol zu Acrylnitril in dem Styrol-Acrylnitril-Copolymer (TP) größer als 1:1, bevorzugt größer 1:1,5, ganz besonders bevorzugt größer 1:2 ist.
     
    26. Verfahren nach einem der Ansprüche 1 bis 25, bei dem man die Dispersion innerhalb eines Zeitraums von höchstens vier Stunden, vorzugsweise innerhalb eines Zeitraums von höchstens zwei Stunden, weiter bevorzugt einer Stunde, nach dem Passieren aller Rotor-Stator-Vorrichtungen (RS) unter die Tg des thermoplastischen Styrol-Acrylnitril-Copolymers (TP) abkühlt.
     
    27. Verfahren nach einem der Ansprüche 1 bis 26, bei dem man die Dispersion innerhalb eines Zeitraums von höchstens vier Stunden, vorzugsweise innerhalb eines Zeitraums von höchstens zwei Stunden, weiter bevorzugt einer Stunde, nach dem Passieren aller Rotor-Stator-Vorrichtungen (RS) auf eine Temperatur von kleiner oder gleich 60 °C, vorzugsweise kleiner 50 °C, abkühlt.
     
    28. Verfahren nach einem der Ansprüche 1 bis 27, bei dem das Polymerpolyol eine monomodale, bimodale oder multimodale Teilchengrößenverteilung und vorzugsweise eine monomodale Teilchengrößenverteilung aufweist.
     
    29. Polymerpolyol, erhältlich durch das Verfahren nach einem der Ansprüche 1 bis 28.
     
    30. Verfahren zur Herstellung eines Polyurethans, bei dem man mindestens ein durch das Verfahren nach einem der Ansprüche 1 bis 28 erhältliches Polymerpolyol und gegebenenfalls mindestens ein weiteres Polyetherpolyol mit mindestens einem Di- oder Polyisocyanat und gegebenenfalls einem Treibmittel umsetzt.
     


    Revendications

    1. Procédé en continu pour la préparation d'un polyol polymère, comprenant le mélange d'au moins un copolymère thermoplastique fondu styrène-acrylonitrile (TP) avec au moins un polyol (P) en présence d'au moins un stabilisant (S), comprenant de 10 à 70 % en poids, préférablement 30 à 60 % en poids, plus préférablement 40 à 55 % en poids, sur la base de la somme de tous les composants, d'au moins un polyol P2, et d'au moins un polyol CSP qui comprend le produit de réaction d'au moins un macromère M, de styrène et d'acrylonitrile dans P2, éventuellement avec un initiateur et/ou un agent de transfert de chaîne, la teneur en macromère M du stabilisant (S) étant comprise entre 30 et 70 % en poids, préférablement 35 à 54 % en poids, sur la base de la somme de tous les composants, et/ou le polyol CSP étant préférablement structuré en peigne, et, dans une première étape (1), TP, P et S étant alimentés à une extrudeuse (E) pour former une dispersion initiale, et la dispersion initiale obtenue de l'extrudeuse étant ensuite alimentée, dans une deuxième étape (2), dans au moins un dispositif rotor-stator (RS) comprenant au moins une combinaison rotor-stator, et (3) la dispersion étant refroidie en dessous de la Tv du copolymère thermoplastique (TP) styrène-acrylonitrile après le passage de tous les rotor-stators (RS) pour obtenir le polyol polymère final, un macromonomère étant défini comme une molécule qui comprend une ou plusieurs doubles liaisons polymérisables et une ou plusieurs queues de type polyéther à terminaison hydroxyle.
     
    2. Procédé selon la revendication 1, l'extrudeuse (E) étant divisée en au moins deux, préférablement au moins trois zones de procédé distinctes, plus préférablement au moins quatre zones de procédé distinctes et une tête d'extrudeuse.
     
    3. Procédé selon la revendication 1 ou 2, TP étant alimenté dans la première zone de procédé Z1 de l'extrudeuse E, S étant alimenté dans la deuxième zone de procédé Z2 ou une zone de procédé ultérieure, et P étant alimenté dans l'une des zones de procédé suivant la zone de procédé d'ajout de S, les termes « première » et « deuxième » se référant à la direction d'écoulement du mélange réactionnel dans l'extrudeuse E.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel il y a au moins une zone de procédé de l'extrudeuse E sans ajout de composants entre l'ajout du stabilisant S et l'ajout du polyol P.
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, P étant alimenté dans au moins deux zones de procédé différentes de l'extrudeuse E.
     
    6. Procédé selon le quelconque des revendications 1 à 5, l'extrudeuse (E) fonctionnant à une température de cylindre dans la plage comprise entre 160° et 250 °C, préférablement à 180° à 210 °C dans au moins l'une des zones de procédé, préférablement dans toutes les zones de procédé sauf la première.
     
    7. Procédé selon l'une quelconque des revendications 1 à 6, l'extrudeuse (E) possédant une vitesse de rotation dans la plage de 400 à 1 200 tpm, préférablement 500 à 900 tpm.
     
    8. Procédé selon l'une quelconque des revendications 1 à 7, une colonne de strippage ou une cuve de strippage étant utilisée après le dispositif rotor-stator pour éliminer des matières volatiles.
     
    9. Procédé selon l'une quelconque des revendications 1 à 8, au moins un, préférablement tous les dispositifs rotor-stator (RS) à au moins un niveau fonctionnant à une température déterminée dans la plage comprise entre 160° et 250 °C, préférablement 180 °C à 220 °C.
     
    10. Procédé selon l'une quelconque des revendications 1 à 9, au moins un, préférablement tous les dispositifs rotor-stator (RS) possédant une vitesse circonférentielle dans la plage de 10 à 60 s-1, préférablement 20 à 50 s-1.
     
    11. Procédé selon l'une quelconque des revendications 1 à 10, au moins un, préférablement tous les dispositifs rotor-stator comprenant au moins deux, préférablement au moins trois combinaisons rotor-stator.
     
    12. Procédé selon l'une quelconque des revendications 1 à 11, les combinaisons rotor-stator individuelles possédant différentes dents, préférablement, la première combinaison rotor-stator possédant des dents grossières, et la prochaine combinaison rotor-stator dans la direction d'écoulement possédant des dents moyennement fines, et la troisième combinaison rotor-stator dans la direction d'écoulement possédant des dents fines.
     
    13. Procédé selon l'une quelconque des revendications 1 à 12, le polyol (P) étant ajouté à l'extrudeuse (E) à une température supérieure à 100 °C, préférablement supérieure à 150 °C.
     
    14. Procédé selon l'une quelconque des revendications 1 à 13, le stabilisant (S) étant ajouté à l'extrudeuse (E) à une température supérieure à 100 °C, préférablement supérieure à 150 °C.
     
    15. Procédé selon l'une quelconque des revendications 1 à 14, le polyol (P) étant liquide à température ambiante.
     
    16. Procédé selon l'une quelconque des revendications 1 à 15, le polyol (P) étant choisi dans le groupe des polyols utilisés pour des applications de grands blocs de mousse et des polyols utilisés pour des applications de mousse moulée.
     
    17. Procédé selon l'une quelconque des revendications 1 à 16, le polyol (P) possédant une indice d'OH moyen compris entre 20 et 300 mg de KOH/g, de préférence entre 25 et 100 mg de KOH/g.
     
    18. Procédé selon l'une quelconque des revendications 1 à 17, le polyol (P) possédant une fonctionnalité moyenne comprise entre 2 et 6, préférentiellement entre 2,5 et 4.
     
    19. Procédé selon l'une quelconque des revendications 1 à 18, le produit possédant une grosseur moyenne de particule de D50 inférieure à 25 µm, préférentiellement inférieure à 10 µm, le plus préférentiellement inférieure à 5 µm, telle que déterminée par diffraction laser statique.
     
    20. Procédé selon l'une quelconque des revendications 1 à 19, le polyol P2 contenu dans le stabilisant S étant choisi parmi des polyéther polyols (PEOL), préférablement dans le groupe constitué par des PEOL dotés d'un poids moléculaire compris entre 1 000 et 6 000 g/mole, plus préférablement choisi dans le groupe constitué par des PEOL dotés d'un poids moléculaire compris entre 2 000 et 5 000 g/mole.
     
    21. Selon l'une quelconque des revendications 1 à 20, le macromère M contenu dans le stabilisant S possédant un poids moléculaire moyen de 1 000 à 50 000 g/mole, préférablement 2 000 à 30 000 g/mole, plus préférablement 3 000 à 20 000 g/mole.
     
    22. Procédé selon l'une quelconque des revendications 1 à 21, le macromère M contenu dans le stabilisant S étant obtenu par la mise en réaction d'isocyanate de 1,1-diméthyl-méta-isopropénylbenzyle (TMI) avec un polyéther polyol PM, choisi dans le groupe constitué par des polyéther polyols fonctionnalisés trois et six fois, préférablement dans le groupe constitué par la glycérine, le sorbitol et le 1,1,1-triméthylolpropane (TMP), éventuellement en présence d'un catalyseur de type acide de Lewis.
     
    23. Procédé selon l'une quelconque des revendications 1 à 22, le rapport de styrène à acrylonitrile dans le polyol CSP contenu dans le stabilisant S étant supérieur à 1:1, préférentiellement supérieur à 1:1,5, de manière plus préférée supérieur à 1:2.
     
    24. Procédé selon l'une quelconque des revendications 1 à 23, l'agent de transfert de chaîne éventuellement utilisé dans la production du stabilisant S étant choisi dans le groupe constitué par le dodécanethiol, l'isopropanol et le 2-butanol, et/ou l'initiateur éventuellement utilisé dans la production du stabilisant S étant choisi dans le groupe constitué par l'azoisobutyronitrile (AIBN) et le diméthyl-2,2'-azobis(2-méthylpropionate).
     
    25. Procédé selon l'une quelconque des revendications 1 à 24, le rapport de styrène à acrylonitrile dans le copolymère (TP) styrène-acrylonitrile étant supérieur à 1:1, préférentiellement supérieur à 1:1,5, de manière plus préférée supérieur à 1:2.
     
    26. Procédé selon l'une quelconque des revendications 1 à 25, la dispersion étant refroidie en dessous de la Tv du copolymère thermoplastique (TP) styrène-acrylonitrile dans une plage maximale de temps de quatre heures après le passage de tous les dispositifs rotor-stator (RS), préférablement dans une plage maximale de temps de deux heures, plus préférablement une heure.
     
    27. Procédé selon l'une quelconque des revendications 1 à 26, la dispersion étant refroidie jusqu'à une température inférieure ou égale à 60 °C, préférablement inférieure à 50 °C, dans une plage maximale de temps de quatre heures après le passage de tous les dispositifs rotor-stator (RS), préférablement dans une plage maximale de temps de deux heures, plus préférablement une heure.
     
    28. Procédé selon l'une quelconque des revendications 1 à 27, le polyol polymère possédant une granulométrie monomodale, bimodale ou multimodale, préférablement une distribution monomodale.
     
    29. Polyol polymère, pouvant être obtenu par le procédé selon l'une quelconque des revendications 1 à 28.
     
    30. Procédé pour la production d'un polyuréthane, comprenant la mise en réaction d'au moins un polyol polymère pouvant être obtenu par le procédé selon l'une quelconque des revendications 1 à 28 et éventuellement d'au moins un autre polyéther polyol avec au moins un diisocyanate ou polyisocyanate et éventuellement un agent d'expansion.
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description