(19)
(11)EP 3 137 793 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 14890578.9

(22)Date of filing:  29.04.2014
(51)International Patent Classification (IPC): 
F16J 15/02(2006.01)
(86)International application number:
PCT/US2014/035907
(87)International publication number:
WO 2015/167465 (05.11.2015 Gazette  2015/44)

(54)

PRESSURE CONTROLLED DYNAMIC SEAL WITH CAPTURED FLUID TRANSFER TUBES

DRUCKGESTEUERTE DYNAMISCHE DICHTUNG MIT AUFGENOMMENEN FLÜSSIGKEITSTRANSFERRÖHREN

JOINT D'ÉTANCHÉITÉ DYNAMIQUE COMMANDÉ EN PRESSION AVEC TUYAUX DE TRANSFERT DE FLUIDE CAPTURÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
08.03.2017 Bulletin 2017/10

(73)Proprietor: Cummins, Inc.
Columbus, Indiana 47201 (US)

(72)Inventors:
  • GENTER, David P.
    Columbus, Indiana 47203 (US)
  • SHAW, Terrence M.
    Columbus, Indiana 47201 (US)
  • SOLZAK, Timothy A.
    Indianapolis, Indiana 46237 (US)
  • COX, Stephen
    Columbus, Indiana 47201 (US)
  • LECLERC, Donald P.
    Seymour, Indiana 47274 (US)

(74)Representative: Roberts, Peter David 
Marks & Clerk LLP 1 New York Street
Manchester M1 4HD
Manchester M1 4HD (GB)


(56)References cited: : 
US-A- 4 312 512
US-A1- 2012 223 487
US-B2- 7 624 993
US-A- 5 280 769
US-B1- 6 293 245
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates generally to the field of cylinder head sealing systems and methods.

    BACKGROUND



    [0002] Seals are used to fluidly seal interfaces, such as an interface between an engine block and a cylinder head of an internal combustion (IC) engine. Cylinder head seals (e.g., head gaskets) typically extend around cylinder bores of an IC engine to provide a combustion seal, which retains high temperature and high pressure gases within the cylinder bores. In addition, cylinder head seals (e.g., head gaskets or discrete seals) fluidly seal fluid transfer orifices that extend between the engine block and the cylinder head to communicate fluid (e.g., water, coolant, or oil) therebetween.

    [0003] The interface between an engine block and a cylinder head is particularly difficult to seal for multiple reasons. For example, forces from the combustion process, especially for high combustion (e.g., diesel and natural gas) engines, force the engine block and the cylinder head apart, causing slight movement therebetween. In addition, that interface experiences significant thermal cycling due to the repeated heating and cooling of the engine. Further, the fasteners connecting the cylinder head to the engine block may be unevenly loaded, which can overcompress and/or under-compress certain portions of a cylinder head seal. Lastly, intake manifold overpressure (IMOP) events produce elevated peak cylinder pressures, which may result in charge leakage.

    [0004] During IMOP events, charge leakage (e.g., high pressure exhaust gas) may travel through the interface between the cylinder head and the engine block and may leak into and/or damage one or more fluid transfer tubes, thereby contaminating the fluid (e.g., water, coolant, oil, etc.) contained therein. Such contamination can result in significant engine damage if not addressed immediately. To that end, some IC engines have replaced unitary cylinder head gaskets with a combustion seal and discrete fluid transfer tube seals. However, although certain combustion seals may survive an IMOP event without incurring damage, the individual fluid transfer tubes may incur damage from the charge leakage traveling through the interface. Furthermore, as the number of individual components increases, technicians may be more likely to forget to install one of the components during assembly or during a rebuild process. Additionally, while complicated valves are sometimes used to deal with IMOP events. such, valves may not respond to IMOP events fast enough, thereby causing significant engine damage.

    [0005] US5280769 describes a means for limiting the pressure within the induction system of an internal combustion engine having a flexible elastomeric sealing wall disposed between components of the intake. When internal pressures reach a predetermined limit, the wall is subject to elastic deformation to thereby vent the pressure increase within the induction system to the exterior thereof. Rates of pressure rise and peak pressures are thereby lowered. Return of normal system pressure levels operate to reseat the sealing wall enabling continuation of engine operation.

    SUMMARY



    [0006] Various embodiments relate to an internal combustion engine. The internal combustion engine includes an engine block that defines a cylinder bore and a first fluid transfer orifice. The internal combustion engine also includes a cylinder head coupled to the engine block. The cylinder head defines a second fluid transfer orifice in fluid communication with the first fluid transfer orifice. An external environment surrounds the engine block and the cylinder head. The internal combustion engine also includes a cylinder head seal apparatus positioned at an interface between the engine block and the cylinder head. The cylinder head seal apparatus includes a perimeter seal disposed on an outer periphery of the cylinder head. The perimeter seal is configured to prevent fluid from the external environment from entering the interface and to allow fluid within the interface to vent to the external environment when the fluid is above a predetermined pressure. The cylinder head seal apparatus also includes a first fluid transfer tube seal to fluidly couple the first fluid transfer orifice and the second fluid transfer orifice The cylinder head seal apparatus is formed as a unitary structure.

    [0007] Other embodiments relate to an apparatus for fluidly sealing a cylinder head interface between an engine block and a cylinder head of an internal combustion engine. The apparatus includes a perimeter seal disposed on an outer periphery of the cylinder head. The perimeter seal has a first surface to abut a cylinder head sealing surface and a second surface to abut an engine block sealing surface. The second surface is substantially opposite the first surface. The perimeter seal is configured to prevent fluid from an external environment from entering the cylinder head interface and to allow fluid within the cylinder head interface to vent to the external environment when the fluid is above a predetermined pressure. The apparatus also includes a first fluid transfer tube seal to fluidly seal a first fluid transfer orifice extending between the engine block and the cylinder head. The perimeter seal and the first fluid transfer tube seal are formed as a unitary structure.

    [0008] Further embodiments relate to a method of installing a cylinder head seal apparatus on an internal combustion engine. The method includes providing an engine block of the internal combustion engine. The engine block defines a cylinder bore and a first fluid transfer orifice. A combustion seal is positioned on the engine block coaxial to the cylinder bore. A cylinder head seal apparatus is positioned on the engine block such that a fluid transfer tube seal of the cylinder head seal apparatus is disposed within a first counterbore adjacent and coaxial to the first fluid transfer orifice. A cylinder head of the internal combustion engine is aligned relative to the engine block such that the fluid transfer tube seal is disposed within a second counterbore adjacent and coaxial to a second fluid transfer orifice of the cylinder head. The fluid transfer tube seal provides fluid communication between the first and second fluid transfer orifices. The cylinder head is fastened to the engine block to sealingly engage the cylinder head seal apparatus between the engine block and the cylinder head.

    [0009] These and other features, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the several drawings described below.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 is an exploded view of an internal combustion engine having a conventional cylinder head seal apparatus.

    FIG. 2A is an exploded view of an internal combustion engine including a cylinder head seal apparatus according to an exemplary embodiment.

    FIG. 2B is a partial cross-sectional detail view of the internal combustion engine including the cylinder head seal apparatus of FIG. 2A.

    FIG. 3 is a cross-sectional view of a perimeter seal according to an exemplary embodiment.

    FIG. 4 is a flow diagram illustrating a method of installing a cylinder head seal apparatus according to an exemplary embodiment.


    DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS



    [0011] Referring to FIG. 1, an exploded view of an internal combustion (IC) engine 100 having a conventional cylinder head seal apparatus is illustrated. The IC engine 100 includes an engine block 102 and a cylinder head 104, which together define a plurality of cylinder bores 106. The engine block 102 and cylinder head 104 also define a plurality of fluid transfer orifices 108 that extend between the engine block 102 and the cylinder head 104. The fluid transfer orifices 108 transmit fluids (e.g., water, coolant, or oil) between the engine block 102 and cylinder head 104 to cool and/or lubricate the IC engine 100.

    [0012] A cylinder head seal (e.g., head gasket) 110 seals an interface between the engine block 102 and the cylinder head 104. More specifically, the cylinder head seal 110 performs least three separate sealing functions. Namely, the cylinder head seal 110 seals (1) the cylinder bores 106; (2) the fluid transfer orifices 108; and (3) a perimeter 112 of the interface. In the example IC engine 100 of FIG. 1, the cylinder head seal 110 performs all three sealing functions mentioned above. However, other IC engines utilize a plurality of discrete seals. The cylinder head seal 110 includes a plurality of cylinder apertures 114 to fluidly seal the cylinder bores 106 and a plurality of fluid transfer apertures 116 to fluidly seal the fluid transfer orifices 108. In addition, the cylinder head seal extends to the perimeter 112 to seal the perimeter 112 of the interface.

    [0013] Cylinder head seals, such as the cylinder head seal 110 of FIG. 1, are exposed to extreme environmental conditions, such as significant variations in temperature and pressure. Intake manifold overpressure (IMOP) events in particular produce extreme pressure levels within the cylinder bores 106 such that excess gases may escape between the engine block 102 and the cylinder head 104, which may damage the cylinder head seal 110. Moreover, the excess gases produced during an IMOP event may contaminate the fluid within the fluid transfer orifices 108, which can accelerate the wear of the IC engine 100. If the cylinder head seal 110 is damaged, the IC engine 100 must be disassembled and the cylinder head seal 110 replaced to prevent further damage to the IC engine 100.

    [0014] Certain conventional IC engines include discrete combustion seals to seal the cylinder bores 106 and a head gasket or individual seals to seal the fluid transfer orifices 108. Such sealing arrangements may allow pressure within the cylinder bores 106 during an IMOP event to vent to the external atmosphere. During such an event, the individual seals to seal the fluid transfer orifices 108 must maintain their respective sealing functions to avoid contamination. However, the excess pressure that is vented from the cylinder bores 106 may damage the individual seals.

    [0015] Such conventional IC engines also typically include a perimeter seal to prevent fluid from the external environment (e.g., from a pressure washer) from leaking into the IC engine 100. However, during assembly and rebuild processes, the perimeter seal tends to block a direct view of the individual seals, which makes it more likely for a technician to forget to install an individual seal.

    [0016] FIG. 2A is an exploded view of an IC engine 200 including a cylinder head seal apparatus 202 according to an exemplary embodiment. The cylinder head seal apparatus 202 and a combustion seal 204 are disposed between an engine block 206 and a cylinder head 208 of the IC engine 200. The IC engine 200 includes discrete cylinder heads 208 for each cylinder 210. However, in other exemplary embodiments, the IC engine 200 includes a unitary cylinder head 208 for each of a plurality of cylinders 210.

    [0017] The combustion seal 204 is configured to retain combustion gas within the cylinder 210 during normal operation of the IC engine 200 and to allow combustion gas above a predetermined pressure (e.g., due to an IMOP event) to escape from the cylinder 210 and vent to the external atmosphere. Specifically, extreme pressure within the cylinder 210 caused by an IMOP event slightly lifts the cylinder head 208 from the engine block 206, thereby allowing combustion gas to escape from the cylinder 210 and past the combustion seal 204. The combustion seal 204 may be formed of a metal (e.g., steel) or metal alloy (e.g., stainless steel). In certain example embodiments, the combustion seal 204 is a discrete part that is separate from the cylinder head seal apparatus 202. However, in other embodiments, the combustion seal 204 is integrally formed with the cylinder head seal apparatus 202.

    [0018] The cylinder head seal apparatus 202 is an assembly comprising a perimeter seal 212, fluid transfer tube seals 214 surrounding fluid transfer tubes 215, and stud seals 216. The perimeter seal 212 fluidly seals a perimeter 218 of the interface between the cylinder head 208 and the engine block 206, such that external fluids are prevented from leaking from an external environment past the perimeter 218 and into the interface between the cylinder head 208 and the engine block 206. However, the perimeter seal 212 is configured to allow combustion gas above a predetermined pressure to escape to the external environment during an IMOP event. In other words, the perimeter seal 212 fluidly seals the perimeter 218 of the interface between the cylinder head 208 and the engine block 206 from the outside in, but not from the inside out.

    [0019] The perimeter seal 212 comprises a sealing material overmolded on a carrier. The sealing material comprises an elastomer (e.g., a fluoroelastomer), a thermoplastic (e.g., nylon or glass-reinforced nylon), or other suitable materials. The carrier is formed from a rigid material, such as a metal (e.g., steel), a metal alloy (e.g., stainless steel), a thermoplastic, or a composite material. The carrier provides a spacer between the engine block 206 and the cylinder head 208 to maintain the position of the perimeter seal 212 between the engine block 206 and the cylinder head 208.

    [0020] The fluid transfer tube seals 214 include cylindrical fluid transfer tubes 215, which are typically formed of a rigid material, such as a metal (e.g., steel), a metal alloy (e.g., stainless steel), or a composite material. The fluid transfer tubes 215 fluidly couple first fluid transfer orifices 220 of the engine block 206 to second fluid transfer orifices 222 of the cylinder head 208. The first and second fluid transfer orifices 220, 222 communicate fluid, such as water, coolant, and/or oil between the engine block 206 and the cylinder head 208 to cool and/or lubricate the IC engine 200. The fluid transfer tubes 215 are also captured by the fluid transfer tube seals 214 during the overmolding process. In addition, the fluid transfer tube seals 214 may each include annular seals 224 (e.g., o-rings) to fluidly seal the fluid transfer tubes 215 and the first and second fluid transfer orifices 220, 222. In addition, the annular seals 224 prevent combustion gases from entering the first and second fluid transfer orifices 220, 222 during an IMOP event.

    [0021] The fluid transfer tube seals 214 are configured to "float" relative to the engine block 206 and the cylinder head 208. Thus, the fluid transfer tube seals 214 maintain sealing engagement between the fluid transfer tubes 215 and the corresponding first and second fluid transfer orifices 220, 222 if there is relative movement between the cylinder head 208 and the engine block 206.

    [0022] The stud seals 216 define apertures 226 to receive studs 228 extending from the engine block 206. The stud seals 216 prevent fluid (e.g., combustion gases) from traveling along the studs 228.

    [0023] The cylinder head seal apparatus 202, according to the various embodiments, provides numerous advantages over conventional seal apparatus. For example, the cylinder head seal apparatus 202 is formed as a unitary structure (i.e., an item that is manufactured as a single, non-separable component) by overmolding the sealing material to capture the carrier and the fluid transfer tubes. In other examples, the cylinder head seal apparatus 202 is partially formed during a molding process and additional components are later assembled to form a unitary structure (i.e., a single, non-separable component). By utilizing a unitary structure, individual component part numbers are reduced, thereby simplifying assembly and rebuild operations, reducing the potential for assembly error, and simplifying inventory management systems.

    [0024] In addition, the cylinder head seal apparatus 202 provides improved performance and reliability over exposure to numerous IMOP events. As mentioned above, the cylinder head 208 lifts slightly from the engine block 206 along a first axis during an IMOP event to allow combustion gases to escape from the cylinder 210 and past the combustion seal 204. Colloquially, this is known as engine "burp." During such an IMOP event, the cylinder head seal apparatus 202 "floats" between the engine block 206 and the cylinder head 208. The perimeter seal 212 permits the combustion gases to escape from the perimeter 218, while the fluid transfer tube seals 214 maintain their fluid sealing engagement with the first and second fluid transfer orifices 220, 222. The stud seals 216 and the fluid transfer tube seals 214 retain the position of the cylinder head seal apparatus 202 relative to the engine block 206 and the cylinder head 208 along a second axis perpendicular to the first axis during such an event. Thus, the cylinder head seal apparatus 202 is configured to retain its position and, therefore, its sealing capabilities after withstanding an IMOP event.

    [0025] In certain example embodiments, the perimeter seal 212 and/or the engine block 206 include escape paths to control the path of exhaust gas during IMOP events. In certain example embodiments, the escape paths are molded into the perimeter seal 212 and/or machined or otherwise formed in the engine block 206. In other example embodiments, the perimeter seal 212 is formed to have localized variations in stiffness such that escape paths are effectively formed in portions of the perimeter seal 212 with the lowest localized stiffness, as those portions are most likely to deform under pressure. The escape paths are positioned to limit direct interaction between the exhaust gas and the stud seals 216 and/or the fluid transfer tube seals 214. Such escape paths minimize potential contamination between exhaust gas and the fluid within the fluid transfer tubes.

    [0026] Many conventional IC engines require human intervention after undergoing an IMOP event because such events can cause permanent damage to engine seals and gaskets. For example, after undergoing an IMOP event that damages an engine seal or gasket, certain IC engines must be rebuilt to replace damaged seals and/or damaged engine components. Such rebuild processes are expensive and time consuming. Furthermore, operators risk further damaging IC engines if they are operated after an IMOP event, such as during a "limp home" mode. By being capable of withstanding multiple IMOP events without incurring damage, the cylinder head seal apparatus 202 provides superior reliability over conventional seal apparatus.

    [0027] FIG. 2B is a partial cross-sectional view of the IC engine 200 including the cylinder head seal apparatus 202 of FIG. 2A. The perimeter seal 212 of the cylinder head seal apparatus 202 has a first surface 230 that abuts a sealing surface 232 of the engine block 206, and a second surface 234 that abuts a sealing surface 236 of the cylinder head 208. The perimeter seal 212 has an outer surface 238 that is configured to provide increasing sealing pressure as pressure applied thereto from an external environment 240 increases. As shown in FIG. 2B, the outer surface 238 of the perimeter seal 212 is convex (e.g., curved). As pressure is applied to the outer surface 238, the outer surface 238 tends to straighten. In doing so, the sealing pressure of the perimeter seal 212 increases. More specifically, the first surface 230 of the perimeter seal 212 is forced towards the sealing surface 232 of the engine block 206, and the second surface 234 of the perimeter seal 212 is forced towards the sealing surface 236 of the cylinder head 208, thereby increasing the sealing pressure of the first and second surfaces 230, 234 of the perimeter seal 212.

    [0028] FIG. 3 is a partial cross-sectional view of a perimeter seal 300 according to an exemplary embodiment. The perimeter seal 300 is an alternative embodiment of the perimeter seal 212 of FIGS. 2A and 2B. The perimeter seal 300 has a first surface 302 to abut a sealing surface of a cylinder head (e.g., the sealing surface 236 of FIG. 2B), and a second surface 304 to abut a sealing surface of an engine block (e.g., the sealing surface 232 of FIG. 2B). As with the perimeter seal 212 of FIGS. 2A and 2B, the perimeter seal 300 is configured to provide increasing sealing pressure as pressure applied thereto from an external environment increases.

    [0029] The perimeter seal 300 has an external face 306 defined by a central wall 308 and first and second walls 310, 312 extending divergently from opposite ends of the central wall 308. In other words, each of the first and second walls 310, 312 have a cross-sectional thickness that generally decreases as the distance from the central wall 308 increases. The local stiffness of the first and second walls 310, 312 is proportional to their respective cross-sectional thicknesses at various points. In other words, the first and second walls 310, 312 are most stiff at points nearest the central wall 308 and least stiff at points furthest from the central wall 308. Therefore, as pressure is applied to the external face 306, the portions of the first and second walls 310, 312 furthest from the central wall 308 will deform the most, thereby increasing the pressure that each of the first and second walls 310, 312 apply to the sealing surfaces of the engine block and the cylinder head, respectively.

    [0030] Turning back to FIG. 2B, the engine block 206 includes a first counterbore 242 coaxial to the first fluid transfer orifice 220 and the cylinder head 208 includes a second counterbore 244 coaxial to the second fluid transfer orifice 222. The fluid transfer tube seal 214 is disposed within both of the first and second counterbores 242, 244. The annular seals 224 fluidly seal the fluid transfer tube seal 214 against the first and second counterbores 242, 244 and prevent combustion gases from entering the first and second fluid transfer orifices 222, 222 during an IMOP event.

    [0031] FIG. 4 is a flow diagram illustrating a method 400 of installing a cylinder head seal apparatus is shown according to an exemplary embodiment. For clarity and brevity, the method 400 is explained below in connection with the cylinder head seal apparatus 202 of FIGS. 2A and 2B. However, the method 400 can be performed in connection with the cylinder head seal apparatus 202 of FIGS. 2A and 2B.

    [0032] At 402, an engine block (e.g., the engine block 206) of an IC engine (e.g., the IC engine 200) is provided. The engine block defines a cylinder bore (e.g., the cylinder 210) and a first fluid transfer orifice (e.g., the first fluid transfer orifice 220 of the engine block 206).

    [0033] At 404, a combustion seal (e.g., the combustion seal 204) is positioned on the engine block such that the combustion seal is coaxial to the cylinder bore. In the exemplary embodiment of FIG. 4, the combustion seal is separate from the cylinder head seal apparatus. However, in other exemplary embodiments, the combustion seal is integrally formed with the cylinder head seal apparatus. In such embodiments, 404 and 406 are combined.

    [0034] At 406, the cylinder head seal apparatus is positioned on the engine block such that a fluid transfer tube seal (e.g., the fluid transfer tube seal 214) of the cylinder head seal apparatus is disposed within a first counterbore adjacent and coaxial to the first fluid transfer orifice. The fluid transfer tube seal includes a cylindrical fluid transfer tube. In some examples, the fluid transfer tubes are press-fit into engagement with the first fluid transfer orifice.

    [0035] Because the cylinder head seal apparatus is formed as a unitary structure, it is much easier to install than many conventional seal apparatus. Conventional seal apparatus utilize a perimeter seal and discrete fluid transfer tube seals. Typically, the perimeter seal blocks a direct view of the fluid transfer tubes, which makes it easy for a mechanic or technician to forget to install one of the individual seals. In addition, the fluid transfer tube seals and the stud seals of the cylinder head seal apparatus align the cylinder head seal apparatus relative to the engine block and the cylinder head. Thus, it is relatively simple for a mechanic or technician to reliably and repeatedly install or replace the cylinder head seal apparatus of the present disclosure.

    [0036] At 408, a cylinder head (e.g., the cylinder head 208) of the internal combustion engine is aligned relative to the engine block such that the fluid transfer tube seal is disposed within a second counterbore adjacent and coaxial to a second fluid transfer orifice of the cylinder head. The fluid transfer tube seal assists a mechanic or technician in locating and positioning the cylinder head on the engine block. Once positioned, the fluid transfer tube seal and a fluid transfer tube disposed within the fluid transfer tube seal provide fluid communication between the first and second fluid transfer orifices such that fluids (e.g., water, coolant, or oil) can be communicated between the engine block and the cylinder head.

    [0037] At 410, the cylinder head is fastened to the engine block to sealingly engage the cylinder head seal apparatus between the engine block and the cylinder head. Thus, the cylinder head seal apparatus fluidly seals the interface between the engine block and the cylinder head such that external fluids are prevented from leaking into the interface, while excessive combustion gas (e.g., due to an IMOP event) is vented to the external atmosphere.

    [0038] It should be noted that the term "example" as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).

    [0039] While various embodiments of the disclosure have been shown and described, it is understood that these embodiments are not limited thereto. The embodiments may be changed, modified and further applied by those skilled in the art. Therefore, these embodiments are not limited to the detail shown and described previously, but also include all such changes and modifications within the scope of the claims.


    Claims

    1. An apparatus (202) for fluidly sealing a cylinder head interface between an engine block (206) and a cylinder head (208) of an internal combustion engine (200), characterised in that the apparatus (202) comprising:

    a perimeter seal (212; 300) configured to be disposed on an outer periphery of the cylinder head (208), the perimeter seal (212; 300) having a first surface (234; 302) configured to abut a cylinder head sealing surface (236) and a second surface (230; 304) to abut an engine block sealing surface (232), the second surface (230;304) opposite the first surface (234; 302), wherein the perimeter seal (212; 300) is configured to prevent fluid from an external environment from entering the cylinder head interface and to allow fluid within the cylinder head interface to vent to the external environment when the fluid is above a predetermined pressure; and

    a first fluid transfer tube seal (214) to fluidly seal a first fluid transfer orifice (220) extending between the engine block (206) and the cylinder head (208); and

    a combustion seal (204) configured to be positioned at the cylinder head interface on a periphery of a cylinder bore (210) defined by the engine block (206) and the cylinder head (208), the combustion seal (204) configured to fluidly seal the cylinder bore (210) during normal engine operation and to allow fluid within the cylinder bore (210) to escape the cylinder bore (210) when the fluid is above a predetermined pressure,

    wherein the perimeter seal (212; 300) and the first fluid transfer tube seal (214) are formed as a unitary structure.


     
    2. The apparatus (202) of claim 1, further comprising a carrier, wherein the perimeter seal (212; 300) and the first fluid transfer tube seal (214) are formed from a sealing material overmolded on the carrier.
     
    3. The apparatus (202) of claim 1, further comprising a fluid transfer tube (215) disposed within the first fluid transfer tube seal (214) to fluidly couple the first fluid transfer orifice (220) between the engine block (206) and the cylinder head (208).
     
    4. The apparatus (202) of any of claims 1 to 3, further comprising a plurality of stud seals (216), each of the plurality of stud seals (216) defining an aperture (226) to receive and to fluidly seal respective studs (228) extending from the engine block sealing surface (232), wherein the plurality of stud seals (216) are formed with the perimeter seal (212; 300) and the first fluid transfer tube seal (214) as the unitary structure.
     
    5. The apparatus (202) of any of claims 1-4, wherein the apparatus (202) is configured to float via the first fluid transfer tube seal (214) and the plurality of stud seals (216) during an intake manifold over pressure event that causes relative movement between the engine block (206) and the cylinder head (208) along a first axis, such that the position of the apparatus (202) relative to the engine block (206) and the cylinder head (208) is maintained along a second axis perpendicular to the first axis.
     
    6. The apparatus (202) of any of claims 1 to 5, , wherein the combustion seal (204) is formed as a unitary structure with the perimeter seal (212; 300) and the first fluid transfer tube seal (214).
     
    7. The apparatus (202) of any of claims 1 to 5, wherein the apparatus (202) further comprises a second fluid transfer tube seal (214) to fluidly seal a second fluid transfer orifice (222) extending between the engine block (206) and the cylinder head (208), wherein the second fluid transfer tube seal (214) is formed as a unitary structure with the perimeter seal (212; 300) and the first fluid transfer tube seal (214).
     
    8. The apparatus (202) of any of claims 1 to 5wherein the apparatus (202) defines an escape path to direct fluid flow within the cylinder head (208) interface to the external environment during an intake manifold overpressure event, wherein the escape path is configured to direct fluid flow away from the first fluid transfer tube seal (214).
     
    9. The apparatus of any of claims 1 to 8, wherein the perimeter seal (212; 300) provides a sealing pressure against the cylinder head sealing surface (236) and against the engine block sealing surface (232), the sealing pressure increasing as pressure is applied to the perimeter seal (212; 300) from the external environment.
     
    10. The apparatus of claim 9, wherein the perimeter seal (300) comprises a convex outer surface (238) configured to straighten as pressure is applied thereto, thereby increasing the sealing pressure of the perimeter seal (300) against the cylinder head sealing surface (236) and the engine block sealing surface (232).
     
    11. The apparatus of claim 9
    wherein the perimeter seal (300) comprises:

    a central wall (308);

    a first wall (310) extending at a first angle from a first end of the central wall (308) towards the cylinder head sealing surface (236); and

    a second wall (312) extending at a second angle opposite the first angle from a second end of the central wall (308) opposite the first end towards the engine block sealing surface (232),

    wherein each of the first wall (310) and the second wall (312) include respective cross-sectional thicknesses that decrease with increasing distances from the central wall (308), wherein the first wall (310) and the second wall (312) are configured to deform as pressure is applied thereto such that the first wall (310) increases its sealing pressure against the cylinder head sealing surface (236) and the second wall (312) increases its sealing surface against the engine block sealing surface.


     
    12. A method of installing a cylinder head seal apparatus (202) on an internal combustion engine (200), the method comprising:

    providing an engine block (206) of the internal combustion engine (200), the engine block (206) defining a cylinder bore (210) and a first fluid transfer orifice (220);

    positioning (404) a combustion seal (204) on the engine block (206) coaxial to the cylinder bore (210);

    positioning (406) a cylinder head seal apparatus (202) of any claim 1-11, on the engine block (206) such that a fluid transfer tube seal (214) of the cylinder head seal apparatus (202) is disposed within a first counterbore adjacent and coaxial to the first fluid transfer orifice (215);

    aligning a cylinder head (208) of the internal combustion engine (200) relative to the engine block (206) such that the fluid transfer tube seal (214) is disposed within a second counterbore adjacent and coaxial to a second fluid transfer orifice (222) of the cylinder head (208), the fluid transfer tube seal (214) providing fluid communication between the first and second fluid transfer orifices (220, 222); and

    fastening the cylinder head (208) to the engine block (206) to sealingly engage the cylinder head seal apparatus (202) between the engine block (206) and the cylinder head (208).


     
    13. The method claim 12, wherein the combustion seal (204) is integral to the cylinder head seal apparatus (202).
     
    14. The method of claim 12, wherein the positioning of the cylinder head seal apparatus (202) on the engine block (206) includes coupling a fluid transfer tube (215) within the fluid transfer tube seal (214) with the first and second fluid transfer orifices (220, 222).
     
    15. An internal combustion engine (200), comprising:

    the apparatus (202) of any of claims 1 to 11;

    the engine block (206) ; and

    the cylinder head (208) coupled to the engine block (206), wherein the external environment surrounds the engine block (206) and the cylinder head (208).


     


    Ansprüche

    1. Vorrichtung (202) zum fluidmäßigen Abdichten einer Zylinderkopf-Grenzfläche zwischen einem Motorblock (206) und einem Zylinderkopf (208) einer Verbrennungskraftmaschine (200), dadurch gekennzeichnet, dass die Vorrichtung (202) Folgendes umfasst:

    eine Umfangsdichtung (212; 300), die dafür konfiguriert ist, an einem Außenumfang des Zylinderkopfs (208) angeordnet zu werden, wobei die Umfangsdichtung (212; 300) eine erste Fläche (234; 302), die dafür konfiguriert ist, an eine Zylinderkopf-Abdichtungsfläche (236) anzustoßen, und eine zweite Fläche (230; 304), um an eine Motorblock-Abdichtungsfläche (232) anzustoßen, aufweist, wobei die zweite Fläche (230; 304) der ersten Fläche (234; 302) gegenüberliegt, wobei die Umfangsdichtung (212; 300) dafür konfiguriert ist, zu verhindern, das Fluid von einer äußeren Umgebung in die Zylinderkopf-Grenzfläche eintritt, und zu ermöglichen, dass Fluid innerhalb der Zylinderkopf-Grenzfläche zu der äußeren Umgebung austritt, wenn sich das Fluid oberhalb eines vorbestimmten Drucks befindet, und

    eine erste Fluidweiterleitungsröhren-Dichtung (214), um eine erste Fluidweiterleitungsöffnung (220), die sich zwischen dem Motorblock (206) und dem Zylinderkopf (208) erstreckt, fluidmäßig abzudichten, und

    eine Verbrennungsdichtung (204), die dafür konfiguriert ist, an der Zylinderkopf-Grenzfläche an einem Umfang einer Zylinderbohrung (210) angeordnet zu werden, die durch den Motorblock (206) und den Zylinderkopf (208) definiert wird, wobei die Verbrennungsdichtung (204) dafür konfiguriert ist, während eines normalen Kraftmaschinenbetriebs die Zylinderbohrung (210) fluidmäßig abzudichten und zu ermöglichen, dass Fluid innerhalb der Zylinderbohrung (210) aus der Zylinderbohrung (210) entweicht, wenn sich das Fluid oberhalb eines vorbestimmten Drucks befindet,

    wobei die Umfangsdichtung (212; 300) und die erste Fluidweiterleitungsröhren-Dichtung (214) als eine einteilige Struktur ausgebildet sind.


     
    2. Vorrichtung (202) nach Anspruch 1, die ferner einen Träger umfasst, wobei die Umfangsdichtung (212; 300) und die erste Fluidweiterleitungsröhren-Dichtung (214) aus einem Abdichtungsmaterial geformt sind, das auf dem Träger überformt ist.
     
    3. Vorrichtung (202) nach Anspruch 1, die ferner eine Fluidweiterleitungsröhre (215) umfasst, die innerhalb der ersten Fluidweiterleitungsröhren-Dichtung (214) angeordnet ist, um die erste Fluidweiterleitungsöffnung (220) zwischen dem Motorblock (206) und dem Zylinderkopf (208) fluidmäßig zu verbinden.
     
    4. Vorrichtung (202) nach einem der Ansprüche 1 bis 3, die ferner mehrere Bolzendichtungen (216) umfasst, wobei jede der mehreren Bolzendichtungen (216) eine Öffnung (226) definiert, um jeweilige Bolzen (228) aufzunehmen und fluidmäßig abzudichten, die sich von der Motorblock-Abdichtungsfläche (232) aus erstrecken, wobei die mehreren Bolzendichtungen (216) mit der Umfangsdichtung (212; 300) und der ersten Fluidweiterleitungsröhren-Dichtung (214) als die einteilige Struktur ausgebildet sind.
     
    5. Vorrichtung (202) nach einem der Ansprüche 1 bis 4, wobei die Vorrichtung (202) dafür konfiguriert ist, über die erste Fluidweiterleitungsröhren-Dichtung (214) und die mehreren Bolzendichtungen (216) während eines Ansaugverteiler-Überdruckereignisses, das eine verhältnismäßige Bewegung zwischen dem Motorblock (206) und dem Zylinderkopf (208) entlang einer ersten Achse bewirkt, derart zu schwimmen, dass die Position der Vorrichtung (202) im Verhältnis zu dem Motorblock (206) und dem Zylinderkopf (208) entlang einer zweiten Achse, senkrecht zu der ersten Achse, aufrechterhalten wird.
     
    6. Vorrichtung (202) nach einem der Ansprüche 1 bis 5, wobei die Verbrennungsdichtung (204) mit der Umfangsdichtung (212; 300) und der ersten Fluidweiterleitungsröhren-Dichtung (214) als eine einteilige Struktur ausgebildet ist.
     
    7. Vorrichtung (202) nach einem der Ansprüche 1 bis 5, wobei die Vorrichtung (202) ferner eine zweite Fluidweiterleitungsröhren-Dichtung (214) umfasst, um eine zweite Fluidweiterleitungsöffnung (222), die sich zwischen dem Motorblock (206) und dem Zylinderkopf (208) erstreckt, fluidmäßig abzudichten, wobei die zweite Fluidweiterleitungsröhren-Dichtung (214) mit der Umfangsdichtung (212; 300) und der ersten Fluidweiterleitungsröhren-Dichtung (214) als eine einteilige Struktur ausgebildet ist.
     
    8. Vorrichtung (202) nach einem der Ansprüche 1 bis 5, wobei die Vorrichtung (202) eine Ablassbahn definiert, um einen Fluidstrom innerhalb der Grenzfläche des Zylinderkopfs (208) während eines Ansaugverteiler-Überdruckereignisses zu der äußeren Umgebung zu leiten, wobei die Ablassbahn dafür konfiguriert ist, Fluid weg von der ersten Fluidweiterleitungsröhren-Dichtung (214) zu leiten.
     
    9. Vorrichtung (202) nach einem der Ansprüche 1 bis 8, wobei die Umfangsdichtung (212; 300) einen Abdichtungsdruck gegenüber der Zylinderkopf-Abdichtungsfläche (236) und gegenüber der Motorblock-Abdichtungsfläche (232) bereitstellt, wobei der Abdichtungsdruck zunimmt, wenn Druck von der äußeren Umgebung auf die Umfangsdichtung (212; 300) ausgeübt wird.
     
    10. Vorrichtung (202) nach Anspruch 9, wobei die Umfangsdichtung (300) eine konvexe Außenfläche (238) umfasst, die dafür konfiguriert ist, sich gerade zu richten, wenn Druck auf dieselbe ausgeübt wird, wodurch der Abdichtungsdruck der Umfangsdichtung (300) gegenüber der Zylinderkopf-Abdichtungsfläche (236) und der Motorblock-Abdichtungsfläche (232) gesteigert wird.
     
    11. Vorrichtung (202) nach Anspruch 9, wobei die Umfangsdichtung (300) Folgendes umfasst:

    eine mittlere Wand (308),

    eine erste Wand (310), die sich in einem ersten Winkel von einem ersten Ende der mittleren Wand (308) zu der Zylinderkopf-Abdichtungsfläche (236) hin erstreckt, und

    eine zweite Wand (312), die sich in einem zweiten Winkel, entgegengesetzt zu dem ersten Winkel, von einem zweiten Ende der mittleren Wand (308), entgegengesetzt zu dem ersten Ende, zu der Zylinderkopf-Abdichtungsfläche (236) hin erstreckt,

    wobei sowohl die erste Wand (310) als auch die zweite Wand (312) jeweilige Querschnittsdicken einschließen, die mit zunehmenden Entfernungen von der mittleren Wand (308) abnehmen, wobei die erste Wand (310) und die zweite Wand (312) dafür konfiguriert sind, sich zu verformen, wenn Druck auf dieselben ausgeübt wird, so dass die erste Wand (310) ihren Abdichtungsdruck gegenüber der Zylinderkopf-Abdichtungsfläche (236) steigert und die zweite Wand (312) ihre Abdichtungsfläche gegenüber der Motorblock-Abdichtungsfläche steigert.


     
    12. Verfahren zum Installieren einer Zylinderkopf-Dichtungsvorrichtung (202) an einer Verbrennungskraftmaschine (200), wobei das Verfahren Folgendes umfasst:

    Bereitstellen eines Motorblocks (206) der Verbrennungskraftmaschine (200), wobei der Motorblock (206) eine Zylinderbohrung (210) und eine erste Fluidweiterleitungsöffnung (220) definiert,

    Anordnen (404) einer Verbrennungsdichtung (204) an dem Motorblock (206) koaxial zu der Zylinderbohrung (210),

    Anordnen (406) einer Zylinderkopf-Dichtungsvorrichtung (202) nach einem der Ansprüche 1 bis 11 an dem Motorblock (206) derart, dass eine Fluidweiterleitungsröhren-Dichtung (214) der Zylinderkopf-Dichtungsvorrichtung (202) innerhalb einer ersten Senkung angrenzend und koaxial zu der ersten Fluidweiterleitungsöffnung (215) angeordnet ist,

    Ausrichten eines Zylinderkopfs (208) der Verbrennungskraftmaschine (200) im Verhältnis zu dem Motorblock (206) derart, dass die Fluidweiterleitungsröhren-Dichtung (214) innerhalb einer zweiten Senkung angrenzend und koaxial zu einer zweiten Fluidweiterleitungsöffnung (222) des Zylinderkopfs (208) angeordnet ist, wobei die Fluidweiterleitungsröhren-Dichtung (214) eine Fluidverbindung zwischen der ersten und der zweiten Fluidweiterleitungsöffnung (220, 222) bereitstellt, und

    Befestigen des Zylinderkopfs (208) an dem Motorblock (206), um die Zylinderkopf-Dichtungsvorrichtung (202) zwischen dem Motorblock (206) und dem Zylinderkopf (208) abdichtend in Eingriff zu bringen.


     
    13. Verfahren nach Anspruch 12, wobei die Verbrennungsdichtung (204) integral mit der Zylinderkopf-Dichtungsvorrichtung (202) ist.
     
    14. Verfahren nach Anspruch 12, wobei das Anordnen der Zylinderkopf-Dichtungsvorrichtung (202) an dem Motorblock (206) das Verbinden einer Fluidweiterleitungsröhre (215) innerhalb der Fluidweiterleitungsröhren-Dichtung (214) mit der ersten und der zweiten Fluidweiterleitungsöffnung (220, 222) einschließt.
     
    15. Verbrennungskraftmaschine (200), die Folgendes umfasst:

    die Vorrichtung (202) nach einem der Ansprüche 1 bis 11,

    den Motorblock (206) und

    den Zylinderkopf (208), der mit dem Motorblock (206) verbunden ist, wobei die äußere Umgebung den Motorblock (206) und den Zylinderkopf (208) umgibt.


     


    Revendications

    1. Appareil (202) permettant de sceller de manière fluidique une interface de culasse entre un bloc moteur (206) et une culasse (208) d'un moteur à combustion interne (200), caractérisé en ce que l'appareil (202) comprend :

    un joint périmétrique (212 ; 300) configuré afin d'être disposé sur une périphérie extérieure de la culasse (208), le joint périmétrique (212 ; 300) présentant une première surface (234 ; 302) configurée afin de venir en butée sur une surface d'étanchéité de la culasse (236) et une seconde surface (230 ; 304) destinée à venir en butée sur une surface d'étanchéité du bloc moteur (232), la seconde surface (230 ; 304) étant opposée à la première surface (234 ; 302), dans lequel le joint périmétrique (212 ; 300) est configuré afin d'empêcher un fluide provenant d'un environnement extérieur d'entrer dans l'interface de culasse et afin de permettre au fluide dans l'interface de culasse de s'évacuer vers l'environnement extérieur lorsque le fluide est au-dessus d'une pression prédéterminée ; et

    un premier joint de tube de transfert de fluide (214) permettant de sceller de manière fluidique un premier orifice de transfert de fluide (220) s'étendant entre le bloc moteur (206) et la culasse (208) ; et

    un joint de combustion (204) configuré afin d'être positionné au niveau de l'interface de culasse sur une périphérie d'un alésage de cylindre (210) défini par le bloc moteur (206) et la culasse (208), le joint de combustion (204) étant configuré afin de sceller de manière fluidique l'alésage de cylindre (210) pendant le fonctionnement normal du moteur et afin de permettre au fluide dans l'alésage de cylindre (210) de s'échapper de l'alésage de cylindre (210) lorsque le fluide est au-dessus d'une pression prédéterminée,

    dans lequel le joint périmétrique (212 ; 300) et le premier joint de tube de transfert de fluide (214) sont formés comme une structure unitaire.


     
    2. Appareil (202) selon la revendication 1, comprenant en outre un support, dans lequel le joint périmétrique (212 ; 300) et le premier joint de tube de transfert de fluide (214) sont formés à partir d'un matériau d'étanchéité surmoulé sur le support.
     
    3. Appareil (202) selon la revendication 1, comprenant en outre un tube de transfert de fluide (215) disposé dans le premier joint de tube de transfert de fluide (214) permettant de raccorder de manière fluidique le premier orifice de transfert de fluide (220) entre le bloc moteur (206) et la culasse (208).
     
    4. Appareil (202) selon l'une quelconque des revendications 1 à 3, comprenant en outre une pluralité de joints à pivots (216) définissant une ouverture (226) permettant de recevoir et de sceller de manière fluidique des pivots respectifs (228) s'étendant depuis la surface d'étanchéité du bloc moteur (232), dans lequel la pluralité de joints à pivot (216) sont formés avec le joint périmétrique (212 ; 300) et le premier joint de tube de transfert de fluide (214) comme une structure unitaire.
     
    5. Appareil (202) selon l'une quelconque des revendications 1 à 4, dans lequel l'appareil (202) est configuré afin de flotter via le joint de tube de transfert de fluide (214) et la pluralité de joints à pivot (216) pendant un événement de surpression de collecteur d'admission qui provoque un mouvement relatif entre le bloc moteur (206) et la culasse (208) le long d'un premier axe, de sorte que la position de l'appareil (202) relativement au bloc moteur (206) et à la culasse (208) soit maintenue le long d'un second axe perpendiculaire au premier axe.
     
    6. Appareil (202) selon l'une quelconque des revendications 1 à 5, dans lequel le joint de combustion (204) est formé comme une structure unitaire avec le joint périmétrique (212 ; 300) et le premier joint de tube de transfert de fluide (214).
     
    7. Appareil (202) selon l'une quelconque des revendications 1 à 5, dans lequel l'appareil (202) comprend en outre un second joint de tube de transfert de fluide (214) permettant de sceller de manière fluidique un second orifice de transfert de fluide (222) s'étendant entre le bloc moteur (206) et la culasse (208), dans lequel le second joint de tube de transfert de fluide (214) est formé comme une structure unitaire avec le joint périmétrique (212 ; 300) et le premier joint de tube de transfert de fluide (214).
     
    8. Appareil (202) selon l'une quelconque des revendications 1 à 5, dans lequel l'appareil (202) définit un chemin d'échappement permettant de diriger un écoulement de fluide dans l'interface de culasse (208) vers l'environnement extérieur pendant un événement de surpression du collecteur d'admission, dans lequel le chemin d'échappement est configuré afin de diriger l'écoulement de fluide loin du premier joint de tube de transfert de fluide (214).
     
    9. Appareil (202) selon l'une quelconque des revendications 1 à 8, dans lequel le joint périmétrique (212 ; 300) fournit une pression d'étanchéité contre la surface d'étanchéité de la culasse (236) et contre la surface d'étanchéité du bloc moteur (232), la pression d'étanchéité augmentant au fur et à mesure que la pression est appliquée au joint périmétrique (212 ; 300) depuis l'environnement extérieur.
     
    10. Appareil (202) selon la revendication 9, dans lequel le joint périmétrique (300) comprend une surface extérieure convexe (238) configurée afin de se redresser au fur et à mesure qu'une pression y est appliquée, en augmentant ainsi la pression d'étanchéité du joint périmétrique (300) contre la surface d'étanchéité de culasse (236) et la surface d'étanchéité du bloc moteur (232).
     
    11. Appareil selon la revendication 9, dans lequel le joint périmétrique (300) comprend :

    une paroi centrale (308) ;

    une première paroi (310) s'étendant selon un premier angle depuis une première extrémité de la paroi centrale (308) vers la surface d'étanchéité de la culasse (236) ; et

    une seconde paroi (312) s'étendant selon un second angle opposé au premier angle depuis une seconde extrémité de la paroi centrale (308) opposée à la première extrémité vers la surface d'étanchéité du bloc moteur (232),

    dans lequel chacune de la première paroi (310) et de la seconde paroi (312) incluent des épaisseurs en coupe transversale respectives qui diminuent au fur et à mesure que les distances par rapport à la paroi centrale (308) augmentent, dans lequel la première paroi (310) et la seconde paroi (312) sont configurées afin de se déformer lorsqu'une pression y est appliquée, de sorte que la première paroi (310) augmente sa pression d'étanchéité contre la surface d'étanchéité de la culasse (236) et la seconde paroi (312) augmente sa surface d'étanchéité contre la surface d'étanchéité du bloc moteur.


     
    12. Procédé d'installation d'un appareil d'étanchéité de culasse (202) sur un moteur à combustion interne (200), le procédé comprenant :

    la fourniture d'un bloc moteur (206) du moteur à combustion interne (200), le bloc moteur (206) définissant un alésage de cylindre (210) et un premier orifice de transfert de fluide (220) ;

    le positionnement (404) d'un joint de combustion (204) sur le bloc moteur (206) coaxial avec l'alésage de cylindre (210) ;

    le positionnement (406) d'un appareil d'étanchéité de culasse (202) selon l'une quelconque des revendications 1 à 11, sur le bloc moteur (206) de sorte qu'un joint de tube de transfert de fluide (214) de l'appareil d'étanchéité de culasse (202) soit disposé dans un premier contre-alésage adjacent et coaxial avec le premier orifice de transfert de fluide (215) ;

    l'alignement d'une culasse (208) du moteur à combustion interne (200) relativement au bloc moteur (206) de sorte que le joint de tube de transfert de fluide (214) soit disposé dans un second contre-alésage adjacent et coaxial avec un second orifice de transfert de fluide (222) de la culasse (208), le joint de tube de transfert de fluide (214) fournissant une communication fluidique entre le premier et le second orifice de transfert de fluide (220, 222) ;et

    la fixation de la culasse (208) au bloc moteur (206) permettant de mettre en prise de manière étanche l'appareil d'étanchéité de culasse (202) entre le bloc moteur (206) et la culasse (208).


     
    13. Procédé selon la revendication 12, dans lequel le joint de combustion (204) est d'un seul tenant avec l'appareil d'étanchéité de culasse (202).
     
    14. Procédé selon la revendication 12, dans lequel le positionnement de l'appareil d'étanchéité de la culasse (202) sur le bloc moteur (206) inclut un raccordement d'un tube de transfert de fluide (215) dans le joint de tube de transfert de fluide (214) avec le premier et le second orifice de transfert de fluide (220, 222).
     
    15. Moteur à combustion interne (200), comprenant :

    l'appareil (202) selon l'une quelconque des revendications 1 à 11 ;

    le bloc moteur (206) ; et

    la culasse (208) raccordée au bloc moteur (206), dans lequel l'environnement extérieur entoure le bloc moteur (206) et la culasse (208).


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description