(19)
(11)EP 3 142 230 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 15822415.4

(22)Date of filing:  23.02.2015
(51)International Patent Classification (IPC): 
H02K 7/116(2006.01)
H02K 7/00(2006.01)
H02K 16/00(2006.01)
F16H 3/72(2006.01)
(86)International application number:
PCT/JP2015/055064
(87)International publication number:
WO 2016/009668 (21.01.2016 Gazette  2016/03)

(54)

VARIABLE ELECTRIC MOTOR SYSTEM AND ELECTRICALLY POWERED DEVICE THEREOF

VARIABLES ELEKTROMOTORSYSTEM UND ELEKTRISCH ANGETRIEBEN VORRICHTUNG DAFÜR

SYSTÈME DE MOTEUR ÉLECTRIQUE VARIABLE ET DISPOSITIF ASSOCIÉ ALIMENTÉ ÉLECTRIQUEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.07.2014 WO PCT/JP2014/069253

(43)Date of publication of application:
15.03.2017 Bulletin 2017/11

(73)Proprietor: Mitsubishi Heavy Industries Compressor Corporation
Minato-ku Tokyo 108-0014 (JP)

(72)Inventors:
  • KOBAYASHI, Masahiro
    Hiroshima-shi Hiroshima 733-8553 (JP)
  • OKAMOTO, Yoshiyuki
    Hiroshima-shi Hiroshima 733-8553 (JP)
  • MORI, Yasushi
    Hiroshima-shi Hiroshima 733-8553 (JP)

(74)Representative: Studio Torta S.p.A. 
Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
EP-A1- 1 961 602
WO-A1-03/071160
DE-A1- 2 236 588
FR-A- 822 746
JP-A- S5 970 497
JP-A- 2001 152 901
JP-A- 2005 153 727
JP-A- 2014 087 170
JP-U- H01 176 247
US-A- 2 916 642
US-A1- 2013 249 444
WO-A1-01/85483
WO-A1-2014/183142
DE-A1- 19 751 231
FR-A5- 2 094 518
JP-A- 2000 324 607
JP-A- 2003 034 153
JP-A- 2006 521 517
JP-U- H0 373 745
US-A- 2 578 015
US-A- 5 947 854
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a variable electric motor system and an electrically powered device thereof.

    [0002] This application claims priority based on International Application No. PCT/JP2014/069253, filed in Japan on July 18, 2014.

    Background Art



    [0003] A system including an electrically powered device that generates rotational driving force, a transmission device that changes the speed of the rotational driving force generated by the electrically powered device and transmits that force to a driving target, and the driving target that is driven by the rotational driving force from the electrically powered device can be given as an example of a variable electric motor system.

    [0004] Patent Document 1 listed below discloses this type of variable electric motor system. The transmission device of this variable electric motor system is a planet gear transmission device. The transmission device includes a sun gear that rotates about the axis, a plurality of planet gears that mesh with the sun gear and revolve around the axis as well as rotating about their own center lines, an arm or carrier that supports the plurality of planet gears, and an internal gear that has a plurality of teeth arranged in an annular shape around the axis and that meshes with the planet gears. An arm shaft extending in the axial direction centered on the axis is fixed to the arm. This arm shaft constitutes an output shaft connected to the driving target.

    [0005] The electrically powered device of this variable electric motor system includes a sub-motor that rotates the sun gear about the axis, a transmission mechanism that transmits rotational driving force of the sub-motor to the sun gear, a main motor that rotates the internal gear about the axis, and a transmission mechanism that transmits rotational driving force of the main motor to the internal gear. A rotor shaft of the sub-motor and a rotor shaft of the main motor are both disposed parallel to the axis of the transmission device and distanced from that axis in a radial direction. Each transmission mechanism includes belts and pulleys.

    [0006] According to this variable electric motor system, the RPM of the output shaft connected to the driving target can be changed by changing the RPM of the sub-motor.

    [0007] Patent Document 2 discloses a variable electric motor system according to the preamble of claim 1 comprising a driving unit having a planetary gear system, a variable-speed motor and a constant-speed motor. This variable-speed motor drives the sun gear of such system. Patent Document 3 shows an actuator having two motors interconnected with an actuator output by a planetary gear system, so that the output can be driven by one motor independently from the other one.

    Citation List


    Patent Document



    [0008] 

    Patent Document 1: Japanese Unexamined Patent Application Publication No. S59-070497;

    Patent Document 2: German Patent Application Publication No. DE2236588;

    Patent Document 3: US Patent Application Publication No. US20130249444.


    Summary of Invention


    Technical Problem



    [0009] In the variable electric motor system according to Patent Document 1, the two motors are disposed distanced from the axis of the transmission device in the radial direction, and there is thus a problem in that the overall size of the system is increased. Furthermore, because the two motors are disposed distanced from the axis of the transmission device in the radial direction, this variable electric motor system requires the transmission mechanism including belts, pulleys, and the like to be provided for each of the motors, and there is thus a problem in that the device becomes complicated and incurs higher manufacturing costs.

    [0010] Accordingly, an object of the present invention is to provide a variable electric motor system and an electrically powered device thereof that allow for a reduction in size and a reduction in manufacturing cost.

    Solution to Problem



    [0011] To solve the above-described problems, a variable electric motor system according to the appended set of claims is provided.

    Advantageous Effects of Invention



    [0012] An aspect of the present invention allows for a reduction in size of the device and a reduction in manufacturing cost.

    Brief Description of Drawings



    [0013] 

    FIG. 1 is a cross-sectional view of a variable electric motor system according to a first embodiment of the present invention.

    FIG. 2 is a cross-sectional view of a transmission device according to the first embodiment of the present invention.

    FIG. 3 is a cross-sectional view of an electrically powered motor device according to the first embodiment of the present invention.

    FIG. 4 is a schematic view illustrating the configuration of the transmission device according to the first embodiment of the present invention.

    FIG. 5 is a flowchart illustrating operations of a controller according to the first embodiment of the present invention.

    FIG. 6 is a cross-sectional view of a variable electric motor system according to a second embodiment that is not part of the present invention.

    FIG. 7 is a flowchart illustrating operations of a controller according to the second embodiment.

    FIG. 8 is a cross-sectional view of a variable electric motor system according to a third embodiment that is not part of the present invention.

    FIG. 9 is a flowchart illustrating operations of a controller according to the third embodiment.


    Description of Embodiments



    [0014] Several embodiments of a variable electric motor system and variations on the embodiments will be described in detail below with reference to the drawings.

    First Embodiment



    [0015] A first embodiment of the variable electric motor system according to the present invention will be described with reference to FIGS. 1 to 5.

    [0016] As illustrated in FIG. 1, the variable electric motor system according to the present embodiment includes an electrically powered motor device 50 that generates rotational driving force and a transmission device 10 that changes the speed of the rotational driving force generated by the electrically powered device 50 and transmits that force to a driving target. The electrically powered device 50 is supported on a frame 90 (a predetermined structure) by an electrically powered device support portion 50S. The transmission device 10 is supported on the frame 90 by a transmission device support portion 10S. The electrically powered device 50 and the transmission device 10, which are heavy objects, can be securely fixed by using these support portions.

    [0017] Note that the frame 90 may be divided for the electrically powered device 50, the transmission device 10, and a compressor C, or may be integrated as any combination thereof.

    [0018] The transmission device 10 is a planet gear transmission device. As illustrated in FIG. 2, the transmission device 10 includes a sun gear 11 that rotates about an axis Ar extending in a horizontal direction; a sun gear shaft 12 fixed to the sun gear 11, a plurality of planet gears 15 that revolve around the axis Ar, that rotates about their own center lines Ap, and that mesh with the sun gear 11, an internal gear 17 in which a plurality of teeth are arranged in an annular shape around the axis Ar and that meshes with the plurality of planet gears 15, a planet gear carrier 21 that supports the plurality of planet gears 15 so as to allow the plurality of planet gears 15 to revolve around the axis Ar and to rotate about their own center lines Ap, an internal gear carrier 31 that supports the internal gear 17 so as to allow the internal gear 17 to rotate about the axis Ar; and a transmission casing 41 that houses these elements.

    [0019] Here, a direction in which the axis Ar extends is defined as an axial direction, with one side in the axial direction defined as an output side and a side opposite to the output side defined as an input side. Additionally, a radial direction around the axis Ar will be called simply a "radial direction" hereinafter.

    [0020] The sun gear shaft 12 has a circular column shape centered on the axis Ar, and extends from the sun gear 11 toward the output side in the axial direction. A flange 13 is formed at an output-side end of the sun gear shaft 12. For example, a rotor of the compressor C, which serves as the driving target, is connected to the flange 13. The sun gear shaft 12 is rotatably supported about the axis Ar by a sun gear bearing 42 disposed on the output side of the sun gear 11. The sun gear bearing 42 is attached to the transmission casing 41.

    [0021] The planet gear carrier 21 includes a planet gear shaft 22 provided for each of the plurality of planet gears 15, a carrier main body 23 that fixes the relative positions of the plurality of planet gear shafts 22, and a planet gear carrier shaft 27 that is fixed to the carrier main body 23 and extends in the axial direction centered on the axis Ar.

    [0022] The planet gear shaft 22 passes through the planet gear(s) 15 along the center line Ap in the axial direction, and supports the planet gears 15 so as to allow the planet gears 15 to rotate about its center line. The carrier main body 23 includes an output-side arm portion 24 extending outward in the radial direction from the plurality of planet gear shafts 22, a cylindrical portion 25 that has a cylindrical shape centered on the axis Ar and that extends toward the input side from the outer end in the radial direction of the output-side arm portion 24, and an input-side arm portion 26 that extends inward in the radial direction from the input-side end of the cylindrical portion 25.

    [0023]  An output-side planet gear carrier shaft 27o extending toward the output side from the output-side arm portion 24 and an input-side planet gear carrier shaft 27i extending toward the input side from the input-side arm portion 26 are provided as the planet gear carrier shaft 27. The planet gear carrier shafts 27o and 27i both have cylindrical shapes centered on the axis Ar. The output-side planet gear carrier shaft 27o is rotatably supported about the axis Ar by a planet gear carrier bearing 43 disposed on the output side beyond the output-side arm portion 24. The planet gear carrier bearing 43 is attached to the transmission casing 41. The sun gear shaft 12 is inserted through the inner peripheral side of the output-side planet gear carrier shaft 27o. The input-side planet gear carrier shaft 27i is rotatably supported about the axis Ar by a planet gear carrier bearing 44 disposed on the input side beyond the input-side arm portion 26. The planet gear carrier bearing 44 is attached to the transmission casing 41. A flange 28 having an annular shape that extends outward in the radial direction is formed at the input-side end of the input-side planet gear carrier shaft 27i.

    [0024] The internal gear carrier 31 includes a carrier main body 33 to which the internal gear 17 is fixed and an internal gear carrier shaft 37 that is fixed to the carrier main body 33 and extends in the axial direction centered on the axis Ar.

    [0025] The carrier main body 33 includes a cylindrical portion 35 that has a cylindrical shape centered on the axis Ar and that has the internal gear 17 fixed to the inner peripheral side thereof, and an input-side arm portion 36 that extends inward in the radial direction from the input-side end of the cylindrical portion 35.

    [0026] The internal gear carrier shaft 37 has a circular column shape centered on the axis Ar and is disposed on the input side of the sun gear shaft 12, which also has a circular column shape centered on the axis Ar. The internal gear carrier shaft 37 is fixed to the input-side arm portion 36 of the carrier main body 33. A flange 38 having an annular shape or a disk shape that extends outward in the radial direction is formed at the input-side end of the internal gear carrier shaft 37. A portion on the input side of the internal gear carrier shaft 37 is inserted through the inner peripheral side of the cylindrical input-side planet gear carrier shaft 27i. The flange 38 of the internal gear carrier shaft 37 and the flange 28 of the input-side planet gear carrier shaft 27i have substantially the same positions in the axial direction.

    [0027]  As illustrated in FIG. 3, the electrically powered device 50 includes a constant-speed electric motor 51 that rotationally drives the internal gear carrier shaft 37 serving as a constant-speed input shaft Ac, a variable-speed electric motor 71 that rotationally drives the input-side planet gear carrier shaft 27i serving as a variable-speed input shaft Av, a cooling fan 91 for cooling these motors, and a fan cover 92 that covers the cooling fan 91.

    [0028] In the present embodiment, the constant-speed electric motor 51 is, for example, a four-pole induction motor. The variable-speed electric motor 71 is an induction motor having a greater number of poles than the constant-speed electric motor 51, namely 12 poles.

    [0029] The constant-speed electric motor 51 includes a constant-speed rotor 52 that rotates about the axis Ar and is connected to the internal gear carrier shaft 37 serving as the constant-speed input shaft Ac, a constant-speed stator 66 disposed on the outer peripheral side of the constant-speed rotor 52, and a constant-speed electric motor casing 61 having the constant-speed stator 66 fixed to the inner peripheral side thereof.

    [0030] The constant-speed rotor 52 includes a constant-speed rotor shaft 53 and a conductor 56 fixed to the outer periphery of the constant-speed rotor shaft 53. The constant-speed rotor shaft 53 includes a constant-speed rotor main body shaft 54 that has a circular column shape centered on the axis Ar and that has the conductor 56 fixed to the outer periphery thereof, and a constant-speed rotor extension shaft 55 that has a circular column shape centered on the axis Ar and that is fixed to the output side of the constant-speed rotor main body shaft 54. Flanges 55i and 55o each having an annular shape or a disk shape that extends outward in the radial direction are formed at both the ends of the constant-speed rotor extension shaft 55 in the axial direction. A flange 54o having an annular shape or a disk shape that extends outward in the radial direction is formed at the output-side end of the constant-speed rotor main body shaft 54. The constant-speed rotor extension shaft 55 and the constant-speed rotor main body shaft 54 are integrated by the flanges 55i, 55o, and 54o being connected to each other with bolts or the like. The above-described cooling fan 91 is fixed to the input-side end of the constant-speed rotor main body shaft 54.

    [0031]  The constant-speed stator 66 is disposed outward from the conductor 56 of the constant-speed rotor 52 in the radial direction. The constant-speed stator 66 is formed from a plurality of coils.

    [0032] The constant-speed electric motor casing 61 includes a casing main body 62 that has a cylindrical shape centered on the axis Ar and that has the constant-speed stator 66 fixed to the inner peripheral side thereof, and caps 63i and 63o that close both the ends of the cylindrical casing main body 62 in the axial direction. Constant-speed rotor bearings 65i and 65o are attached to the caps 63i and 63o, respectively. The constant-speed rotor bearings 65i and 65 support the constant-speed rotor main body shaft 54 so as to allow the constant-speed rotor main body shaft 54 to rotate about the axis Ar. Additionally, a plurality of openings 64 are formed through the caps 63i and 63o in the axial direction, the openings 64 being positioned on the outer side in the radial direction beyond the constant-speed rotor bearings 65i and 65o.

    [0033] The input-side end of the constant-speed rotor main body shaft 54 projects toward the input side from the cap 63i on the input side of the constant-speed electric motor casing 61. The above-described cooling fan 91 is fixed to the input-side end of the constant-speed rotor main body shaft 54. As such, when the constant-speed rotor 52 rotates, the cooling fan 91 also rotates integrally with the constant-speed rotor 52. The fan cover 92 includes a cylindrical cover main body 93 disposed on the outer peripheral side of the cooling fan 91, and an air-permeable plate 94 that is attached to an inlet-side opening of the cover main body 93 and that has a plurality of air holes formed therethrough. The fan cover 92 is fixed to the cap 63i on the input side of the constant-speed electric motor casing 61.

    [0034] The variable-speed electric motor 71 includes a variable-speed rotor 72 that rotates about the axis Ar and that is connected to the input-side planet gear carrier shaft 27i serving as the variable-speed input shaft Av, a variable-speed stator 86 disposed on the outer peripheral side of the variable-speed rotor 72, and a variable-speed electric motor casing 81 having the variable-speed stator 86 fixed to the inner peripheral side thereof.

    [0035] The variable-speed rotor 72 includes a variable-speed rotor shaft 73 and a conductor 76 fixed to the outer periphery of the constant-speed rotor shaft 53. The variable-speed rotor shaft 73 has a shaft insertion hole 74 formed therethrough in the axial direction, the shaft insertion hole 74 having a cylindrical shape centered on the axis Ar. The constant-speed rotor extension shaft 55 is inserted through the shaft insertion hole 74 of the variable-speed rotor shaft 73. A flange 73o having an annular shape that extends outward in the radial direction is formed at the output-side end of the variable-speed rotor shaft 73. The flange 73o of the variable-speed rotor shaft 73 and the flange 55o formed at the output-side end of the constant-speed rotor extension shaft 55 have substantially the same position in the axial direction.

    [0036] In the present embodiment, the variable-speed rotor 72 through which the shaft insertion hole 74 is formed constitutes a first rotor, and the constant-speed rotor 52 inserted through the shaft insertion hole 74 constitutes a second rotor.

    [0037] The variable-speed stator 86 is disposed on the outer side of the conductors 56 and 76 of the variable-speed rotor 72 in the radial direction. The variable-speed stator 86 is formed from a plurality of coils.

    [0038] The variable-speed electric motor casing 81 includes a casing main body 82 that has a cylindrical shape centered on the axis Ar and that has the variable-speed stator 86 fixed to the inner peripheral side thereof, an output-side cap 83o that closes the output-side end of the cylindrical casing main body 82, and an input-side cap 83i that is disposed on the input side beyond the variable-speed stator 86 and that is fixed to the inner peripheral side of the cylindrical casing main body 82. Variable-speed rotor bearings 85i and 85o are attached to the caps 83i and 83o, respectively. The variable-speed rotor bearings 85i and 85o support the variable-speed rotor shaft 73 so as to allow the variable-speed rotor shaft 73 to rotate about the axis Ar. Additionally, a plurality of openings 84 are formed through the caps 83i and 83o in the axial direction, the openings 84 being positioned on the outer side in the radial direction beyond the constant-speed rotor bearings 85i and 85o.

    [0039] The plurality of openings 84 formed through the caps 83i and 83o of the variable-speed electric motor casing 81 and the plurality of openings 64 formed through the caps 63i and 63o of the constant-speed electric motor casing 61 as described above cause a space within the variable-speed electric motor casing 81 to communicate with a space within the constant-speed electric motor casing 61.

    [0040] Additionally, in the variable electric motor system according to the present embodiment, the constant-speed rotor 52, the variable-speed rotor 72, and the sun gear shaft 12 are disposed on the same axis.

    [0041] The variable electric motor system according to the present embodiment further includes a variable-speed flexible coupling 95 disposed between the input-side planet gear carrier shaft 27i serving as the variable-speed input shaft Av and the variable-speed rotor 72 so as to connect the input-side planet gear carrier shaft 27i and the variable-speed rotor 72, and a constant-speed flexible coupling 97 disposed between the internal gear carrier shaft 37 serving as the constant-speed input shaft Ac and the constant-speed rotor 52 so as to connect the internal gear carrier shaft 37 and the constant-speed rotor 52.

    [0042] The variable-speed flexible coupling 95 includes a cylindrical portion 96 that has a cylindrical shape and that is flexible in at least directions perpendicular to the center axis Ar of the cylinder, and annular flanges 95i and 95o provided on both sides of the cylindrical portion 96.

    [0043] The constant-speed flexible coupling 97 includes a cylindrical portion 98 that has a cylindrical shape or a circular column shape and that is flexible in at least directions perpendicular to the center axis Ar of the cylinder or circular column, and annular or disk-shaped flanges 97i and 97o provided on both sides of the cylindrical portion 98.

    [0044] The variable-speed flexible coupling 95 is disposed on the outer peripheral side of the constant-speed flexible coupling 97. A length dimension of the constant-speed flexible coupling 97 in the axial direction and a length dimension of the variable-speed flexible coupling 95 in the axial direction are the same.

    [0045] Outer diameter dimensions of the flanges 95i and 95o of the variable-speed flexible coupling 95, an outer diameter dimension of the flange 28 of the planet gear carrier 21, and an outer diameter dimension of the flange 73o of the variable-speed rotor 72 are the same. Accordingly, the above-described flanges 28, 73o, 95i, and 95o face each other in the axial direction. As such, the flange 28 of the planet gear carrier 21 and the flange 73o of the variable-speed rotor 72 can be connected via a typical flexible coupling.

    [0046] The output-side flange 95o of the variable-speed flexible coupling 95 and the flange 28 of the planet gear carrier 21 are connected to each other by using bolts or the like. Likewise, the input-side flange 95i of the variable-speed flexible coupling 95 and the flange 73o of the variable-speed rotor 72 are connected to each other by using bolts or the like.

    [0047] Outer diameter dimensions of the flanges 97i and 97o of the constant-speed flexible coupling 97, an outer diameter dimension of the flange 38 of the internal gear carrier 31, and an outer diameter dimension of the output-side flange 55o of the constant-speed rotor extension shaft 55 are the same. Accordingly, the above-described flanges 38, 55o, 97i, and 97o also face each other in the axial direction. As such, the flange 38 of the internal gear carrier 31 and the output-side flange 55o of the constant-speed rotor extension shaft 55 can be connected via a typical flexible coupling.

    [0048] The output-side flange 97o of the constant-speed flexible coupling 97 and the flange 38 of the internal gear carrier 31 are connected to each other by using bolts or the like. Likewise, the input-side flange 97i of the constant-speed flexible coupling 97 and the output-side flange 55o of the constant-speed rotor extension shaft 55 are connected to each other by using bolts or the like.

    [0049] The above describes both the cylindrical portion 96 of the variable-speed flexible coupling 95 and the cylindrical portion 98 of the constant-speed flexible coupling 97 as being flexible in at least the directions perpendicular to the center axis Ar of the cylinder or circular column. However, the cylindrical portions 96 and 98 of these flexible couplings 95 and 97 need not be flexible as long as the output sides of the cylindrical portions are movable relative to the input sides thereof in at least the directions perpendicular to the center axis Ar of the cylinder or circular column.

    [0050] Additionally, in the present embodiment, the variable-speed flexible coupling 95 connected to the variable-speed rotor 72 serving as the first rotor constitutes a first flexible coupling, and the constant-speed flexible coupling 97 connected to the constant-speed rotor 52 serving as the second rotor constitutes a second flexible coupling.

    [0051] Furthermore, in the present embodiment, the variable-speed input shaft Av, which is connected to the variable-speed rotor 72 serving as the first rotor via the variable-speed flexible coupling 95 serving as the first flexible coupling, constitutes a first input shaft. Additionally, in the present embodiment, the constant-speed input shaft Ac, which is connected to the constant-speed rotor 52 serving as the second rotor via the constant-speed flexible coupling 97 serving as the second flexible coupling, constitutes a second input shaft. Accordingly, the flange 73o of the variable-speed rotor 72 serving as the first rotor constitutes a rotor-side connecting portion, and the flange 28 of the variable-speed input shaft Av serving as the first input shaft constitutes a transmission device-side connecting portion.

    [0052] Additionally, in the present embodiment, the constant-speed rotor shaft 53 (constant-speed rotor extension shaft 55) is inserted through the shaft insertion hole 74 of the variable-speed rotor shaft 73, and the constant-speed electric motor 51, the variable-speed electric motor 71, the transmission device, and the compressor C are arranged linearly in that order from the left side in FIG. 1.

    [0053] As illustrated in FIG. 1, the variable electric motor system according to the present embodiment further includes a frequency conversion device 100 that changes the frequency of power to be supplied to the variable-speed electric motor 71, a first switch 111 that puts the constant-speed electric motor 51 into a power-supplied state or a power-cutoff state, a second switch 112 that puts the variable-speed electric motor 71 into a power-supplied state or a power-cutoff state, and a controller 120 that controls the operations of the frequency conversion device 100, the first switch 111, and the second switch 112.

    [0054] The first switch 111 is electrically connected to a power source line 110 and the constant-speed electric motor 51. The second switch 112 is electrically connected to the power source line 110 and the frequency conversion device 100. The frequency conversion device 100 is electrically connected to the variable-speed electric motor 71.

    [0055] The controller 120 is constituted of a computer. The controller 120 includes a receiving unit 121 that receives an instruction directly from an operator or receives an instruction from a host control device, an interface 122 that provides instructions to the first switch 111, the second switch 112, and the frequency conversion device 100, and a computation unit 123 that creates instructions for the first switch 111, the second switch 112, and the frequency conversion device 100 in response to the instructions received by the receiving unit 121 or the like.

    [0056] The first switch 111 is turned on in response to an on instruction from the controller 120, and is turned off in response to an off instruction from the controller 120. When the first switch 111 is turned on, power from the power source line 110 is supplied to the constant-speed electric motor 51, putting the constant-speed electric motor 51 in the power-supplied state. When the first switch 111 is turned off, the supply of power from the power source line 110 to the constant-speed electric motor 51 is cut off, putting the constant-speed electric motor 51 in the power-cutoff state.

    [0057] The second switch 112 is turned on in response to an on instruction from the controller 120, and is turned off in response to an off instruction from the controller 120. When the second switch 112 is turned on, power from the power source line 110 is supplied to the variable-speed electric motor 71 via the frequency conversion device 100, putting the variable-speed electric motor 71 into the power-supplied state. When the second switch 112 is turned off, the supply of power from the power source line 110 to the frequency conversion device 100 and the variable-speed electric motor 71 is cut off, putting the variable-speed electric motor 71 into the power-cutoff state.

    [0058] The frequency conversion device 100 supplies power to the variable-speed electric motor 71 at a frequency instructed by the controller 120. The variable-speed rotor 72 of the variable-speed electric motor 71 rotates at RPM corresponding to this frequency. Because the RPM of the variable-speed rotor 72 changes in this manner, the RPM of the planet gear carrier 21 in the transmission device 10 connected to the variable-speed rotor 72 also changes. The RPM of the sun gear shaft 12, which serves as an output shaft Ao of the transmission device 10, also changes as a result.

    [0059] Relationships between the number of teeth in each gear of the transmission device 10 and the RPM of each shaft in the transmission device 10 will be described below with reference to FIG. 4.

    [0060] Assume that the RPM of the sun gear shaft 12 serving as the output shaft Ao is represented by ωs, the RPM of the internal gear carrier shaft 37 serving as the constant-speed input shaft Ac is represented by ωi, and the RPM of the input-side planet gear carrier shaft 27i serving as the variable-speed input shaft Av is represented by ωh. Furthermore, assume that the number of teeth in the sun gear 11 is represented by Zs and the number of teeth in the internal gear 17 is represented by Zi.

    [0061] In this case, the relationship between the number of teeth in each gear and the RPM of each shaft in the transmission device 10 can be expressed by the following Formula (1):



    [0062] In the case where, for example, the constant-speed electric motor 51 is a four-pole induction motor as described above and a power source frequency is 50 Hz, the RPM of the constant-speed rotor 52 and the RPM ωi of the constant-speed input shaft Ac are 1,500 rpm. In the case where the variable-speed electric motor 71 is a 12-pole induction motor as described above and the power source frequency is 50 Hz, maximum RPM of the variable-speed rotor 72 and maximum RPM ωh of the variable-speed input shaft Av are 500 rpm. Additionally, it is assumed that a ratio between the number of teeth Zs in the sun gear 11 and the number of teeth Zi in the internal gear 17, or Zi/Zs, is 8, for example.

    [0063] In this case, assuming the constant-speed rotor 52 rotates in a forward direction and the variable-speed rotor 72 rotates in a direction opposite to the rotation direction of the constant-speed rotor 52 at the maximum RPM (-500 rpm), the RPM of the output shaft Ao will be -16,500 rpm.

    [0064] Assuming the constant-speed rotor 52 rotates in the forward direction and the variable-speed rotor 72 rotates in the same direction as the constant-speed rotor 52 at the maximum RPM (+500 rpm), the RPM of the output shaft Ao will be -7,500 rpm.

    [0065]  Assuming the constant-speed rotor 52 rotates in the forward direction and the RPM of the variable-speed rotor 72 is 0 rpm, the RPM of the output shaft Ao will be -12,000 rpm.

    [0066] Assuming the constant-speed rotor 52 rotates in the forward direction and the variable-speed rotor 72 rotates in a direction opposite to the rotation direction of the constant-speed rotor 52 at minimum RPM (-50 rpm), the RPM of the output shaft Ao will be -12,450 rpm.

    [0067] Assuming the constant-speed rotor 52 rotates in the forward direction and the variable-speed rotor 72 rotates in the same direction as the constant-speed rotor 52 at the minimum RPM (+50 rpm), the RPM of the output shaft Ao will be -11,550 rpm.

    [0068] As such, for example, in the case where the RPM of the constant-speed rotor 52 is +1,500 rpm and the RPM of the variable-speed rotor 72 can be controlled in a range of -50 to -500 rpm through the frequency control carried out by the frequency conversion device 100, or in other words, in the case where the frequency of the power to be supplied to the variable-speed electric motor 71 can be controlled in a range of 5 to 50 Hz, the RPM of the output shaft Ao can be controlled in a range of -12,450 to -16,500 rpm.

    [0069] Next, operations of the variable electric motor system according to the present embodiment, from when the system is started to when the system is stopped, will be described according to the flowchart illustrated in FIG. 5.

    [0070] Upon receiving an instruction from the outside to start the variable electric motor system (S10), the controller 120 outputs the on instruction to the second switch 112 (S11) and makes an instruction indicating the minimum frequency to the frequency conversion device 100 (S12). Here, the minimum frequency is a minimum frequency that can be set by the frequency conversion device 100 or a minimum frequency preset by an operator or the like. The minimum frequency is assumed here to be 1/10 the power source frequency of 50 Hz, or in other words, 5 Hz, for example.

    [0071] Upon receiving the on instruction from the controller 120, the second switch 112 is turned on, and the power from the power source line 110 is supplied to the frequency conversion device 100. Upon receiving the minimum frequency as the instructed frequency value from the controller 120, the frequency conversion device 100 converts the frequency of the power from the power source line 110 to the minimum frequency and supplies that power to the variable-speed electric motor 71. As a result, the variable-speed electric motor 71 enters the power-supplied state in which power is being supplied at the minimum frequency. In the case where the variable-speed electric motor 71 according to the present embodiment has received power at the same frequency as the power source frequency (a maximum frequency: 50 Hz), the RPM thereof will be the maximum RPM of 500 rpm, as described above. Accordingly, in the case where power at 1/10 the power source frequency, or in other words, at the minimum frequency of 5 Hz, has been received, the RPM of the variable-speed electric motor 71 will be the minimum RPM of 50 rpm, as described above. Note that it is assumed here that the rotation direction of the variable-speed electric motor 71 is opposite to the rotation direction of the constant-speed electric motor 51. Accordingly, the RPM of the variable-speed electric motor 71 will be -50 rpm when the constant-speed electric motor 51 rotates in the forward direction.

    [0072] In the case where the constant-speed electric motor 51 is not rotating and the RPM of the constant-speed electric motor 51 and the RPM of the constant-speed input shaft Ac connected thereto are 0 rpm, the relationship between the number of teeth in each gear of the transmission device 10 and the RPM of each shaft in the transmission device 10 can be expressed by the following Formula (2):



    [0073] Like the case described above, assuming the ratio Zi/Zs between the number of teeth Zs in the sun gear 11 and the number of teeth Zi in the internal gear 17 is 8, the RPM cos of the output shaft Ao will be -450 rpm when the RPM of the variable-speed electric motor 71 and the RPM ωh of the variable-speed input shaft Av connected thereto is the minimum RPM of -50 rpm.

    [0074] In this manner, when the constant-speed electric motor 51 is not rotating, the RPM cos of the output shaft Ao when only the variable-speed electric motor 71 is rotated at the minimum RPM will be extremely low RPM as compared to the range of the RPM ωs of the output shaft Ao when both the constant-speed electric motor 51 and the variable-speed electric motor 71 are rotating (-12,450 to -16,500 rpm).

    [0075] Accordingly, in the present embodiment, a startup load torque of the electrically powered device 50 can be reduced even in the case where the driving target connected to the output shaft Ao is, for example, the compressor C and the GD2 thereof is high.

    [0076] The controller 120 outputs the on instruction to the first switch 111 upon the variable-speed rotor 72 of the variable-speed electric motor 71 starting to rotate and the output shaft Ao starting to rotate (S13).

    [0077] Upon receiving the on instruction from the controller 120, the first switch 111 is turned on, the power from the power source line 110 is supplied to the constant-speed electric motor 51, and the constant-speed electric motor 51 enters the power-supplied state. In the case where the constant-speed electric motor 51 according to the present embodiment has received power from the power source line 110, the RPM thereof will be 1,500 rpm, for example.

    [0078] In the case where the RPM of the constant-speed electric motor 51 and the RPM of the constant-speed input shaft Ac connected thereto is 1,500 rpm, and the RPM of the variable-speed electric motor 71 and the RPM of the variable-speed input shaft Av connected thereto is the minimum of 50 rpm (the rotation direction is opposite to the rotation direction of the constant-speed input shaft Ac, however), the RPM of the output shaft Ao will be, for example, the minimum controllable RPM of 12,450 rpm (the rotation direction is opposite to the rotation direction of the constant-speed input shaft Ac, however).

    [0079] Thereafter, the controller 120 stands by to receive an instruction of target RPM of the output shaft Ao (S14) or a stop instruction (S16). Upon receiving the instruction of the target RPM, the controller 120 makes an instruction indicating a frequency corresponding to the received target RPM to the frequency conversion device 100 (S15).

    [0080] Upon receiving this instruction, the frequency conversion device 100 supplies power to the variable-speed electric motor 71 at the frequency corresponding to the received target RPM. The RPM of the variable-speed electric motor 71 and the RPM of the variable-speed input shaft Av connected thereto becomes RPM corresponding to the target RPM of the output shaft Ao (-50 to -500 rpm), and as a result, the RPM of the output shaft Ao becomes the target RPM (-12,450 to -16,500 rpm).

    [0081] After making the instruction indicating the frequency corresponding to the received target RPM to the frequency conversion device 100 (S15), the controller 120 once again enters the stand-by state for receiving the instruction of the target RPM of the output shaft Ao (S14) or the stop instruction (S16). Upon receiving the stop instruction in this state, the controller 120 outputs the off instruction to the first switch 111 and the second switch 112 (S17).

    [0082] Upon receiving the off instruction from the controller 120, both the first switch 111 and the second switch 112 are turned off. Accordingly, power is no longer supplied to the constant-speed electric motor 51 and the variable-speed electric motor 71 from the power source line 110, and both the constant-speed electric motor 51 and the variable-speed electric motor 71 enter the power-cutoff state. The output shaft Ao stops as a result.

    [0083] As described thus far, according to the present embodiment, the startup load torque of the electrically powered device 50 can be reduced.

    [0084] Additionally, according to the present embodiment, the constant-speed rotor 52 of the constant-speed electric motor 51 and the variable-speed rotor 72 of the variable-speed electric motor 71 are disposed on the axis Ar of the transmission device 10, which makes it possible to reduce the overall size compared to a case where the constant-speed rotor 52 and the variable-speed rotor 72 are disposed distanced from the axis Ar of the transmission device 10 in the radial direction. Furthermore, according to the present embodiment, it is not necessary to provide a transmission mechanism such as belts or pulleys, unlike the case where the constant-speed rotor 52 and the variable-speed rotor 72 are disposed distanced from the axis Ar of the transmission device 10 in the radial direction. This configuration allows for a reduction in size of the device and, furthermore, allows for a reduction in the number of components, which makes it possible to reduce manufacturing costs. Additionally, according to the present embodiment, it is not necessary to provide a transmission mechanism such as belts or pulleys, unlike the case where the constant-speed rotor 52 and the variable-speed rotor 72 are disposed distanced from the axis Ar of the transmission device 10 in the radial direction. This configuration prevents flexural load from being applied to the shafts located on the axis Ar of the transmission device 10 from such belts or the like, which makes it possible to reduce vibrations.

    [0085] According to the present embodiment, the constant-speed rotor 52 of the electrically powered device 50 and the constant-speed input shaft Ac of the transmission device 10 are connected via the constant-speed flexible coupling 97, which permits eccentricity/deviation/wobble between the constant-speed rotor 52 and the constant-speed input shaft Ac. Furthermore, according to the present embodiment, the variable-speed rotor 72 of the electrically powered device 50 and the variable-speed input shaft Av of the transmission device 10 are connected via the variable-speed flexible coupling 95, which permits eccentricity/deviation/wobble between the variable-speed rotor 72 and the variable-speed input shaft Av. As such, according to the present embodiment, the burden of operations for centering the transmission device 10 relative to the electrically powered device 50 can be kept to a minimum, and the transmission of shaft wobble from the electrically powered device 50 to the transmission device 10 and the transmission of shaft wobble from the transmission device 10 to the electrically powered device 50 can be suppressed.

    [0086] Additionally, according to the present embodiment, the constant-speed flexible coupling (second flexible coupling) 97 is disposed on an inner peripheral side of the variable-speed flexible coupling (first flexible coupling) 95, but because the length dimension of the constant-speed flexible coupling (second flexible coupling) 97 in the axial direction is less than or equal to the length dimension of the variable-speed flexible coupling (first flexible coupling) 95 in the axial direction, operations for attaching the flexible couplings 97 and 95 can be carried out with ease.

    [0087] According to the present embodiment, the variable-speed electric motor casing 81 is fixed to the constant-speed electric motor casing 61. As such, according to the present embodiment, the variable-speed rotor 72 can be positioned (centered) accurately relative to the constant-speed rotor 52 before the variable electric motor system is shipped from the factory. Thus according to the present embodiment, operations for positioning the variable-speed rotor 72 relative to the constant-speed rotor 52 need not be carried out at the site where the system is installed.

    [0088] According to the present embodiment, as the constant-speed rotor 52 rotates, the cooling fan 91 provided at the end of the constant-speed rotor 52 also rotates. The rotation of the cooling fan 91 causes air to flow into the constant-speed electric motor casing 61 from the outside and cools the constant-speed rotor 52, the constant-speed stator 66, and the like. Furthermore, according to the present embodiment, the constant-speed electric motor casing 61 and the variable-speed electric motor casing 81 communicate with each other, and thus the air flowing into the constant-speed electric motor casing 61 also flows into the variable-speed electric motor casing 81 and cools the variable-speed rotor 72, the variable-speed stator 86, and the like. Thus according to the present embodiment, the two electric motors can be cooled by the single cooling fan 91. This configuration allows for a reduction in size of the device and allows for a reduction in manufacturing cost.

    [0089] Additionally, according to the present embodiment, the constant-speed rotor 52, the variable-speed rotor 72, and the sun gear shaft 12 are disposed on the same axis, which makes it possible to reduce the amount of space required to install the variable electric motor system (installation space). Components for transmitting rotation (bevel gears and the like) are also unnecessary, which makes it possible to suppress an increase in the number of components and reduce manufacturing costs.

    [0090] Additionally, according to the present embodiment, the constant-speed rotor shaft 53 (constant-speed rotor extension shaft 55), which is a rod-shaped shaft, is inserted through the variable-speed rotor shaft 73, which is a cylindrical shaft through which the shaft insertion hole 74 is formed. In other words, the constant-speed rotor shaft 53 of the constant-speed electric motor 51, which has a high output, is inserted through the variable-speed rotor shaft 73 of the variable-speed electric motor 71, which has a lower output than the constant-speed electric motor 51. As a result, a higher-output (horsepower) motor can be employed as the constant-speed electric motor 51.

    [0091] Additionally, according to the present embodiment, the constant-speed electric motor 51, the variable-speed electric motor 71, the transmission device, and the compressor C are arranged linearly in that order, and thus the overall device can be made more compact.

    Second Embodiment



    [0092] A second embodiment of the variable electric motor system will be described with reference to FIGS. 6 and 7.

    [0093] As illustrated in FIG. 6, the variable electric motor system according to the present embodiment includes the electrically powered device 50, a transmission device 10a, a frequency conversion device 100a, the first switch 111, the second switch 112, and a controller 120a, like the driving force applying device according to the first embodiment. Of these, the electrically powered device 50, the first switch 111, and the second switch 112 are the same as those in the first embodiment.

    [0094] The transmission device 10a according to the present embodiment includes a brake 39 that restricts the rotation of the planet gear carrier 21 about the axis Ar. The planet gear carrier 21 includes a brake disc 29 having an annular shape that extends outward from the carrier main body 23. The brake 39 attached to the transmission casing 41 presses the brake disc 29 of the planet gear carrier 21 from both sides to restrict the rotation of the planet gear carrier 21.

    [0095] The frequency conversion device 100a according to the present embodiment can change the frequency of power to be supplied to the variable-speed electric motor 71 and can change the direction of current to be supplied to the variable-speed electric motor 71. In other words, the variable-speed electric motor 71 can be used to generate power. Accordingly, the frequency conversion device 100a according to the present embodiment, which is a reversible frequency conversion device, can change the rotation direction of the variable-speed rotor 72 of the variable-speed electric motor 71.

    [0096] Like the controller 120 according to the first embodiment, the controller 120a according to the present embodiment controls the operations of the frequency conversion device 100a, the first switch 111, and the second switch 112. Furthermore, the controller 120a according to the present embodiment instructs the frequency conversion device 100a to change the direction of the current to be supplied to the variable-speed electric motor 71. Additionally, the controller 120a according to the present embodiment instructs the brake 39 of the transmission device 10a to restrict the rotation of the planet gear carrier 21, and instructs the brake 39 to cancel the restriction.

    [0097]  In the first embodiment, in the case where the RPM of the constant-speed rotor 52 is +1,500 rpm, the RPM of the variable-speed rotor 72 is controlled in a range of -50 to -500 rpm through the frequency control carried out by the frequency conversion device 100 so that the RPM of the output shaft Ao is controlled in a range of -12,450 to -16,500 rpm. Assuming the direction of the current to be supplied to the variable-speed electric motor 71 can be changed, the RPM of the variable-speed rotor 72 can be set in a range of +50 to +500 rpm, and the RPM of the output shaft Ao can be set in a range of -11,500 to -7,500, as described above.

    [0098] As such, according to the present embodiment, a reversible frequency conversion device capable of changing the direction of the current to be supplied to the variable-speed electric motor 71 is employed as the frequency conversion device 100a, which broadens the range across which the RPM of the output shaft Ao can be varied.

    [0099] Operations for starting up and stopping the variable electric motor system according to the present embodiment are the same as the operations of the variable electric motor system according to the first embodiment. The variable electric motor system according to the present embodiment differs from the variable electric motor system according to the first embodiment in terms of operations carried out when changing the RPM of the output shaft Ao of the transmission device 10a to desired RPM after the output shaft Ao has started to rotate.

    [0100] Accordingly, operations of the variable electric motor system carried out when changing the RPM of the output shaft Ao to desired RPM will be described below according to the flowchart in FIG. 7.

    [0101] As in the first embodiment, the controller 120a outputs the on instruction to the first switch 111 (S13). Then, upon receiving an instruction indicating the target RPM of the output shaft Ao after the constant-speed electric motor 51 has started to rotate at, for example, 1,500 rpm (S14), the controller 120a determines if it is necessary to change the direction of the current to be supplied to the variable-speed electric motor 71 in order to achieve the target RPM (S20: a determination step).

    [0102]  Upon determining that it is necessary to change the direction of the current to be supplied to the variable-speed electric motor 71, the controller 120a makes an instruction indicating the minimum frequency to the frequency conversion device 100a (S21: a first minimum frequency instruction step).

    [0103] Upon receiving the minimum frequency as the instructed frequency value from the controller 120a, the frequency conversion device 100a converts the frequency of the power from the power source line 110 to the minimum frequency and supplies that power to the variable-speed electric motor 71. As a result, the variable-speed electric motor 71 enters the power-supplied state in which power is being supplied at the minimum frequency. Accordingly, in the case where the variable-speed electric motor 71 is rotating in a direction opposite to the rotation direction of the constant-speed electric motor 51, the variable-speed electric motor 71 will rotate at minimum RPM of -50 rpm, whereas in the case where the variable-speed electric motor 71 is rotating in a direction the same as the rotation direction of the constant-speed electric motor 51, the variable-speed electric motor 71 will rotate at minimum RPM of +50 rpm. As a result, the RPM of the output shaft Ao of the transmission device 10a will be -12,450 rpm in the case where the variable-speed electric motor 71 is rotating in a direction opposite to the rotation direction of the constant-speed electric motor 51, and will be -11,550 rpm in the case where the variable-speed electric motor 71 is rotating in a direction the same as the rotation direction of the constant-speed electric motor 51.

    [0104] Upon the RPM of the variable-speed electric motor 71 reaching the minimum RPM (-50 rpm or +50 rpm), the controller 120a outputs the off instruction to the second switch 112 (S22: a switch off instruction step), and instructs the brake 39 to restrict the rotation of the planet gear carrier 21 (or the variable-speed input shaft Av) (S23). This causes the variable-speed electric motor 71 to enter the power-cutoff state, and stops the rotation, about the axis Ar, of the planet gear carrier 21 (or the variable-speed input shaft Av) connected to the variable-speed electric motor 71.

    [0105] Upon the rotation of the planet gear carrier 21 (or the variable-speed input shaft Av) stopping, the controller 120a instructs the brake 39 to cancel the restriction on the rotation of the planet gear carrier 21 (or the variable-speed input shaft Av) (S24), and outputs the on instruction to the second switch 112 (S25). Furthermore, the controller 120a instructs the frequency conversion device 100a to change the direction of the current to be supplied to the variable-speed electric motor 71 (S26), and makes an instruction indicating the minimum frequency (S27: a second minimum frequency instruction step). As a result, the variable-speed electric motor 71 enters the power-supplied state in which the direction of the supplied current is reversed, the RPM of the variable-speed electric motor 71 becomes the minimum RPM, and the rotation direction thereof is reversed. Thus in the case where the variable-speed electric motor 71 is first rotating in the direction opposite to the rotation direction of the constant-speed electric motor 51, the rotation direction of the variable-speed electric motor 71 will become the same as the rotation direction of the constant-speed electric motor 51, and the RPM thereof will be the minimum RPM of +50 rpm. As a result, the RPM of the output shaft Ao of the transmission device 10a will be -11,550 rpm. In the case where the variable-speed electric motor 71 is first rotating in the direction the same as the rotation direction of the constant-speed electric motor 51, the rotation direction of the variable-speed electric motor 71 will become opposite to the rotation direction of the constant-speed electric motor 51, and the RPM thereof will be the minimum RPM of -50 rpm. As a result, the RPM of the output shaft Ao of the transmission device 10a will be -12450 rpm. Note that in the present embodiment, the above-described processing steps of S25 and S26 constitute a switch on/current direction change instruction step. Additionally, in the present embodiment, the above-described processing steps of S23 and S24 constitute a brake operation instruction step.

    [0106] Upon the RPM of the variable-speed electric motor 71 reaching the minimum RPM, the controller 120a makes an instruction to the frequency conversion device 100a indicating a frequency corresponding to the target RPM of the output shaft Ao received in step 14 (S14), in the same manner as in the first embodiment (S15: a target frequency instruction step).

    [0107] Even in the case where the controller 120a has determined in step 20 (S20) that the direction of the current need not be changed, the controller 120a makes an instruction to the frequency conversion device 100a indicating a frequency corresponding to the target RPM of the output shaft Ao received in step 14 (S14) (S15: the target frequency instruction step).

    [0108] Upon receiving this instruction, the frequency conversion device 100a supplies power to the variable-speed electric motor 71 at the frequency corresponding to the received target RPM. The RPM of the variable-speed electric motor 71 and the RPM of the variable-speed input shaft Av connected thereto becomes RPM corresponding to the target RPM of the output shaft Ao (+50 to +500 rpm or -50 to -500 rpm), and as a result, the RPM of the output shaft Ao becomes the target RPM (-7,500 to -11,550 rpm or -12,450 to -16,500 rpm).

    [0109] As described thus far, according to the present embodiment, a reversible frequency conversion device capable of changing the direction of the current to be supplied to the variable-speed electric motor 71 is employed as the frequency conversion device 100a, which makes it possible to broaden the range across which the RPM of the output shaft Ao can be varied.

    [0110] Additionally, according to the present embodiment, in the case where the direction of the current to be supplied to the variable-speed electric motor 71 is changed and the rotation direction of the variable-speed electric motor 71 is changed, the RPM is brought to the minimum RPM in the current rotation direction, before the rotation of the variable-speed electric motor 71 and the rotation of the variable-speed input shaft Av are restricted. According to the present embodiment, after the restriction on the rotation of the variable-speed input shaft Av is canceled, the rotation direction of the variable-speed electric motor 71 is set to a direction opposite to the previous rotation, and the RPM thereof is set to the minimum RPM. The RPM is then set to RPM corresponding to the target RPM of the output shaft Ao. As such, according to the present embodiment, in the case where the direction of the current to be supplied to the variable-speed electric motor 71 is changed, sudden changes in the RPM of the output shaft Ao and the RPM of the variable-speed electric motor 71 can be suppressed, which makes it possible to reduce the load on the variable-speed electric motor 71 in this case.

    [0111] In the embodiment described above, the transmission device 10a is provided with the brake 39, and the rotation of the variable-speed input shaft Av connected to the variable-speed electric motor 71 is temporarily restricted by this brake 39 when the direction of the current to be supplied to the variable-speed electric motor 71 is to be changed. However, the transmission device 10a need not be provided with the brake 39 and need not restrict the rotation of the variable-speed input shaft Av connected to the variable-speed electric motor 71 when the direction of the current to be supplied to the variable-speed electric motor 71 is to be changed. Note that this configuration will apply a load greater than in the present embodiment to the variable-speed electric motor 71 when the direction of the current to be supplied to the variable-speed electric motor 71 is changed.

    Third Embodiment



    [0112] A third embodiment of the variable electric motor system will be described with reference to FIGS. 8 and 9.

    [0113] As illustrated in FIG. 8, in the variable electric motor system according to the present embodiment, the constant-speed electric motor casing 61 of the constant-speed electric motor 51 and the variable-speed electric motor casing 81 of the variable-speed electric motor 71, which constitute the electrically powered device 50, are separated. The variable-speed electric motor casing 81 and the transmission casing 41 of the transmission device 10 are integrated. The electrically powered device 50 is fixed to the frame 90 by the electrically powered device support portion 50S. The variable-speed electric motor 71 is fixed to the frame 90 by a transmission device support portion 71S. The transmission device 10 is fixed to the frame 90 by the transmission device support portion 10S. Additionally, the compressor C serving as the driving target is also fixed to the frame 90 by a support portion (not illustrated). Because the variable-speed electric motor casing 81 and the transmission casing 41 according to the present embodiment are integrated, it is only required that at least one of the transmission device support portion 71S and the transmission device support portion 10S be provided as a support portion.

    [0114] Note that the frame 90 may be divided for the electrically powered device 50, the variable-speed electric motor 71 and transmission device 10, and the compressor C, or may be integrated as any combination thereof.

    [0115] The variable-speed electric motor casing 81 and the transmission casing 41 are strongly connected. That is, the output-side cap 83o of the variable-speed electric motor casing 81 and the transmission casing 41 are strongly joined to each other by using bolts or by welding, for example.

    [0116] The constant-speed rotor main body shaft 54 that constitutes the constant-speed rotor shaft 53 and the constant-speed rotor extension shaft 55 that is inserted through the shaft insertion hole 74 of the variable-speed rotor shaft 73 are connected via the constant-speed flexible coupling 97. In other words, the constant-speed rotor shaft 53 according to the present embodiment includes the constant-speed rotor main body shaft 54, the constant-speed rotor extension shaft 55, and the constant-speed flexible coupling 97.

    [0117] The constant-speed rotor extension shaft 55 and the internal gear carrier shaft 37 are fixed via the flange 55o of the constant-speed rotor extension shaft 55 and the flange 38 of the internal gear carrier shaft 37. In other words, according to the present embodiment, the constant-speed rotor extension shaft 55 and the internal gear carrier shaft 37 are not connected via a flexible coupling. Additionally, the variable-speed rotor shaft 73 of the variable-speed rotor 72 and the input-side planet gear carrier shaft 27i of the planet gear carrier shaft 27 are not connected via a flexible coupling, and are connected directly by using bolts or the like or are connected via a gear coupling or the like. Note that the constant-speed rotor extension shaft 55 and the internal gear carrier shaft 37 may be integrated without the flange 55o and the flange 38.

    [0118] Next, operations of the variable electric motor system according to the present embodiment, from when the system is started to when the system is stopped, will be described according to the flowchart illustrated in FIG. 9.

    [0119] Upon receiving an instruction from the outside to start the variable electric motor system (S10), the controller 120 outputs the on instruction to the first switch 111 (S11a).

    [0120] Here, the controller 120 instructs the brake 39 to restrict the rotation of the planet gear carrier 21 (or the variable-speed input shaft Av) (S28).

    [0121] Upon the RPM of the constant-speed electric motor 51 reaching predetermined RPM (1,500 rpm, for example), the controller 120 outputs the on instruction to the second switch 112 (S12a), and makes an instruction indicating the minimum frequency to the frequency conversion device 100 (S13a). Next, the controller 120 outputs an instruction for canceling the restriction on the rotation of the planet gear carrier 21 (or the variable-speed input shaft Av) by the brake 39 (S29).

    [0122] According to the present embodiment, the constant-speed electric motor 51 and the variable-speed electric motor 71 are separated, and thus a standard (commercial) constant-speed electric motor can be used. This makes it possible to further reduce manufacturing costs.

    [0123] Furthermore, the variable-speed flexible coupling 95 can be omitted. This makes it possible to further reduce manufacturing costs.

    [0124] Additionally, according to the present embodiment, the constant-speed electric motor 51, which has a higher output, is started before the variable-speed electric motor 71, which makes it possible to reduce the load applied to the variable-speed electric motor 71 as compared to a case where the variable-speed electric motor 71 is started first. In other words, this makes it possible to avoid a phenomenon where, in the case where the variable-speed electric motor 71 is started first, the variable-speed electric motor 71 is unable to handle sudden fluctuations in torque arising when the constant-speed electric motor 51 is started, and the RPM is greater or less than the assumed RPM as a result.

    [0125] Note that the method for starting the constant-speed electric motor 51 before the variable-speed electric motor 71 can also be applied to the variable electric motor system according to the first embodiment and to the variable electric motor system according to the second embodiment.

    Variation



    [0126] A variation on the embodiments of the variable electric motor system described above will be described below.

    [0127] All of the variable electric motor systems according to the above-described embodiments take the compressor C as the driving target and drive the compressor C at high RPM of 7,500 rpm or greater. To drive the driving target at high RPM in this manner, the variable electric motor systems according to the above-described embodiments cause the transmission devices 10 and 10a to increase the RPM of the constant-speed electric motor 51. Accordingly, the transmission devices 10 and 10a take the sun gear shaft 12 as the output shaft Ao, the internal gear carrier shaft 37 as the constant-speed input shaft Ac, and the input-side planet gear carrier shaft 27i as the variable-speed input shaft Av.

    [0128] The above embodiments describe examples in which a four-pole induction motor is used as the constant-speed electric motor 51 in order to suitably drive the compressor C at high RPM, and a 12-pole induction motor is used as the variable-speed electric motor 71 in order to suitably change the RPM of the compressor C within a set range. However, in the case where it is not necessary to drive the driving target at high RPM, other types of electric motors may be used as the constant-speed electric motor 51, the variable-speed electric motor 71, and the like.

    Industrial Applicability



    [0129] According to an aspect of the present invention, the size of the device and the manufacturing costs can be reduced.

    Reference Signs List



    [0130] 
    10, 10a
    Transmission device (Planet gear transmission device)
    10S
    Transmission device support portion
    11
    Sun gear
    12
    Sun gear shaft
    15
    Planet gear
    17
    Internal gear
    21
    Planet gear carrier
    22
    Planet gear shaft
    23
    Carrier main body
    27
    Planet gear carrier shaft
    27i
    Input-side planet gear carrier shaft
    28
    Flange (Transmission device-side connecting portion)
    29
    Brake disc
    31
    Internal gear carrier
    33
    Carrier main body
    37
    Internal gear carrier shaft
    38
    Flange
    39
    Brake
    41
    Transmission casing
    50
    Electrically powered device
    50S
    Electrically powered device support portion
    51
    Constant-speed electric motor
    52
    Constant-speed rotor
    53
    Constant-speed rotor shaft
    54
    Constant-speed rotor main body shaft
    55
    Constant-speed rotor extension shaft
    56
    Conductor
    61
    Constant-speed electric motor casing
    62
    Casing main body
    63i, 63o
    Cap
    64
    Opening
    66
    Constant-speed stator
    71
    Variable-speed electric motor
    71S
    Variable-speed electric motor support portion
    72
    Variable-speed rotor
    73
    Variable-speed rotor shaft
    73o
    Flange (Rotor-side connecting portion)
    74
    Shaft insertion hole
    76
    Conductor
    81
    Constant-speed electric motor casing
    82
    Casing main body
    83i, 83o
    Cap
    84
    Opening
    86
    Constant-speed stator
    91
    Cooling fan
    Ar
    Axis
    Ao
    Output shaft
    Ac
    Constant-speed input shaft
    Av
    Variable-speed input shaft
    100, 100a
    Frequency conversion device
    111
    First switch
    112
    Second switch
    120, 120a
    Controller



    Claims

    1. A variable electric motor system comprising:

    an electrically powered device that generates rotational driving force;

    a transmission device (10) that changes speed of the rotational driving force generated by the electrically powered device; and

    a driving target that is driven by the rotational driving force from the electrically powered device,

    the transmission device (10) including:

    a sun gear (11) that rotates about an axis (Ar);

    a sun gear shaft (12) that is fixed to the sun gear (11) and extends in an axial direction centered on the axis (Ar);

    a planet gear (15) that meshes with the sun gear (11), revolves around the axis (Ar), and rotates about its own center line (Ap);

    an internal gear (17) that has a plurality of teeth arranged in an annular shape centered on the axis (Ar), and meshes with the planet gear (15);

    a planet gear carrier (21) that has a planet gear carrier shaft (22) extending in the axial direction centered on the axis (Ar), and supports the planet gear (15) so as to allow the planet gear (15) to revolve around the axis (Ar) and to rotate about its own center line (Ap); and

    an internal gear carrier (31) that has an internal gear carrier shaft (37) extending in the axis direction centered on the axis (Ar), and supports the internal gear (17) so as to allow the internal gear (17) to rotate about the axis (Ar),

    one of the sun gear shaft (12), the planet gear carrier shaft (22), and the internal gear carrier shaft (37) constituting an output shaft connected to a rotor of the driving target, another shaft constituting a constant-speed input shaft, and the other shaft constituting a variable-speed input shaft,

    the electrically powered device including:

    a constant-speed electric motor (51) having a constant-speed rotor (52) that is capable of rotating about the axis (Ar) and is connected directly or indirectly to the constant-speed input shaft of the transmission device; and

    a variable-speed electric motor (71) having a variable-speed rotor (72) that is capable of rotating about the axis (Ar) and is connected directly or indirectly to the variable-speed input shaft of the transmission device;

    of the variable-speed rotor (72) and the constant-speed rotor (52), a first rotor having a shaft insertion hole (74) formed therethrough in the axial direction, the shaft insertion hole (74) having a cylindrical shape centered on the axis (Ar), and a second rotor (52) being inserted through the shaft insertion hole (74) of the first rotor, and

    the rotor of the driving target being disposed on the axis (Ar);

    characterized in that the variable electric motor system further comprises:

    a first switch (111) that puts the constant-speed electric motor (51) into a power-supplied state or a power-cutoff state;

    a second switch (112) that puts the variable-speed electric motor (71) into a power-supplied state or a power-cutoff state;

    a frequency conversion device (100) that changes a frequency of power to be supplied to the variable-speed electric motor (71); and

    a controller (120) that makes an instruction, to the frequency conversion device (100), indicating the frequency of the power to be supplied to the variable-speed electric motor (71), and instructs the first switch and the second switch (111,112) to be turned on and off.


     
    2. The variable electric motor system according to claim 1,
    wherein the variable-speed rotor (72) is the first rotor;
    the constant-speed rotor (52) is divided into a constant-speed rotor main body shaft (54) and the constant-speed rotor extension shaft (55) that is inserted through the shaft insertion hole (74); and
    the system further comprises a constant-speed flexible coupling (97) that connects the constant-speed rotor main body shaft (54) and the constant-speed rotor extension shaft (55).
     
    3. The variable electric motor system according to claim 1 or 2,
    wherein the variable-speed electric motor (71) includes a variable-speed stator (86) disposed on an outer peripheral side of the variable-speed rotor (72) and a variable-speed electric motor casing (81) having the variable-speed stator (86) fixed to an inner peripheral side thereof;
    the transmission device includes the sun gear (11), the sun gear shaft (12), the planet gear (15), the internal gear (17), the planet gear carrier shaft (22), the planet gear carrier (21), and the internal gear carrier (37), and a transmission casing (41) that covers these components; and
    the transmission casing (41) is fixed to the variable-speed electric motor casing (81).
     
    4. The variable electric motor system according to claim 3,
    wherein the constant-speed electric motor (51) includes a constant-speed stator (66) disposed on an outer peripheral side of the constant-speed rotor (52), and a constant-speed electric motor casing (61) having the constant-speed stator (66) fixed to an inner peripheral side thereof; and
    the system further comprises an electrically powered device support portion (50S) that supports the constant-speed electric motor casing (61).
     
    5. The variable electric motor system according to claim 4, further comprising a variable-speed electric motor support portion (71S) that supports the variable-speed electric motor casing (81).
     
    6. The variable electric motor system according to claim 4 or 5, further comprising a transmission device support portion (10a) that supports the transmission casing (41).
     
    7. The variable electric motor system according to claim 4 or 5,
    wherein the transmission casing (41) is fixed to the variable-speed electric motor casing (81).
     
    8. The variable electric motor system according to claim 1, further comprising:

    a constant-speed flexible coupling (97) that connects the constant-speed rotor (52) and the constant-speed input shaft (Ac); and

    a variable-speed flexible coupling (95) that connects the variable-speed rotor (72) and the variable-speed input shaft (Av).


     
    9. The variable electric motor system according to claim 8,
    wherein of the constant-speed flexible coupling (97) and the variable-speed flexible coupling (95), the flexible coupling connected to the first rotor constitutes a first flexible coupling;
    of the constant-speed input shaft and the variable-speed input shaft, the input shaft rotated by rotation of the first rotor constitutes a first input shaft;
    a rotor-side connecting portion having an annular shape centered on the axis (Ar) and connected to the first flexible coupling is formed at an end of the first rotor adjacent to the transmission device (10); and
    a transmission device-side connecting portion having an annular shape centered on the axis (Ar) and connected to the first flexible coupling so as to face the rotor-side connecting portion in the axial direction formed at an end of the first input shaft adjacent to the electrically powered device.
     
    10. The variable electric motor system according to claim 8 or 9,
    wherein of the constant-speed flexible coupling (97) and the variable-speed flexible coupling (95), the flexible coupling connected to the first rotor constitutes the first flexible coupling and the flexible coupling connected to the second rotor constitutes a second flexible coupling;
    the first flexible coupling is disposed on an outer peripheral side of the second flexible coupling relative to the axis (Ar); and
    a length of the second flexible coupling in an axial direction thereof is less than or equal to a length of the first flexible coupling in an axial direction thereof.
     
    11. The variable electric motor system according to any one of claims 1, 7, 8, 9, and 10,
    wherein the constant-speed electric motor (51) includes a constant-speed stator (66) disposed on an outer peripheral side of the constant-speed rotor (52) and a constant-speed electric motor casing (61) having the constant-speed stator (66) fixed to an inner peripheral side thereof;
    the variable-speed electric motor (71) includes a variable-speed stator (86) disposed on an outer peripheral side of the variable-speed rotor (72) and a variable-speed electric motor casing (81) having the variable-speed stator (86) fixed to an inner peripheral side thereof; and
    the variable-speed electric motor casing (81) is fixed to the constant-speed electric motor casing (61).
     
    12. The variable electric motor system according to claim 11, further comprising an electrically powered device support portion (50S) that supports the constant-speed electric motor casing (61).
     
    13. The variable electric motor system according to claim 11 or 12, further comprising a variable-speed electric motor support portion (71S) that supports the variable-speed electric motor casing (81).
     
    14. The variable electric motor system according to any one of claims 11 to 13, further comprising a cooling fan (91) attached to an end of the second rotor remote from the transmission device (10),
    wherein the constant-speed electric motor casing (61) and the variable-speed electric motor casing (81) communicate with each other so that a gas flow is produced within the constant-speed electric motor casing (61) and within the variable-speed electric motor casing (81) by the cooling fan (91) rotating.
     
    15. The variable electric motor system according to claim 1,
    wherein the sun gear shaft (12) constitutes the output shaft, the planet gear carrier shaft (22) constitutes the variable-speed input shaft, and the internal gear carrier shaft (37) constitutes the constant-speed input shaft; and
    upon receiving an instruction to start up, the controller (120) instructs the second switch (112) to be turned on to put the variable-speed electric motor (71) into the power-supplied state; makes an instruction, to the frequency conversion device (100), indicating a predetermined minimum frequency; and
    after the variable-speed electric motor (71) has started to be driven at minimum RPM, instructs the first switch (111) to be turned on to put the constant-speed electric motor (51) into the power-supplied state.
     
    16. The variable electric motor system according to claim 1,
    wherein the sun gear shaft (12) constitutes the output shaft, the planet gear carrier shaft (22) constitutes the variable-speed input shaft, and the internal gear carrier shaft (37) constitutes the constant-speed input shaft; and
    upon receiving an instruction to start up, the controller (120) instructs the first switch (111) to be turned on to put the constant-speed electric motor (51) into the power-supplied state, and after the constant-speed electric motor (51) has started to be driven at predetermined RPM, instructs the second switch (112) to be turned on to put the variable-speed electric motor (71) into the power-supplied state, and makes an instruction, to the frequency conversion device (100), indicating a predetermined minimum frequency.
     
    17. The variable electric motor system according to any one of claims 1 to 16,
    wherein a number of poles in the variable-speed electric motor (71) is greater than a number of poles in the constant-speed electric motor (51).
     
    18. The variable electric motor system according to any one of claims 1 to 17,
    wherein the sun gear shaft (12) and the second rotor are arranged in the axial direction, the axial direction being horizontal.
     
    19. The variable electric motor system according to any one of claims 1 to 18,
    wherein the constant-speed electric motor (51), the variable-speed electric motor (71), the transmission device (10), and the driving target are arranged linearly in that order.
     
    20. The variable electric motor system according to any one of claims 1 to 19,
    wherein the driving target is a compressor.
     


    Ansprüche

    1. Variables Elektromotorsystem, das Folgendes umfasst:

    eine elektrisch angetriebene Vorrichtung, die eine Rotationsantriebskraft erzeugt;

    eine Getriebevorrichtung (10), die die Geschwindigkeit der von der elektrisch angetriebenen Vorrichtung erzeugten Rotationsantriebskraft ändert; und

    ein Antriebsziel, das durch die Rotationsantriebskraft von der elektrisch angetriebenen Vorrichtung aus angetrieben wird, wobei die Getriebevorrichtung ( 10) Folgendes enthält:

    ein Sonnenrad (11), das sich um eine Achse (Ar) dreht;

    eine auf der Achse (Ar) zentrierte Sonnenradwelle (12), die an dem Sonnenrad (11) befestigt ist und sich in einer axialen Richtung erstreckt;

    ein Planetenrad (15), das mit dem Sonnenrad (11) in Eingriff steht, sich um die Achse (Ar) dreht, und um seine eigene Mittellinie (Ap) rotiert;

    ein Innenrad (17), das mehrere Zähne aufweist, die in einer ringförmigen, auf der Achse (Ar) zentrierten Form angeordnet sind, und das mit dem Planetenrad (15) in Eingriff steht;

    einen Planetenradträger (21), der eine sich in axialer Richtung erstreckende, auf der Achse (Ar) zentrierte Planetenradträgerwelle (22) aufweist, und das Planetenrad (15) trägt, sodass sich das Planetenrad (15) um die Achse (Ar) drehen und um seine eigene Mittellinie (Ap) rotieren kann; und

    einen Innenradträger (31), der eine auf der Achse (Ar) zentrierte Innenradträgerwelle (37) aufweist, die sich in Achsenrichtung erstreckt und das Innenrad (17) trägt, sodass sich das Innenrad (17) um die Achse (Ar) drehen kann, wobei die Sonnenradwelle (12), die Planetenradträgerwelle (22) oder die Innenradträgerwelle (37) eine Ausgangswelle bildet, die mit einem Rotor des Antriebsziels verbunden ist, wobei eine weitere Welle eine Eingangswelle mit konstanter Geschwindigkeit und die andere Welle eine Eingangswelle mit variabler Geschwindigkeit bildet, wobei die elektrisch angetriebene Vorrichtung Folgendes enthält:

    einen Elektromotor (51) mit konstanter Geschwindigkeit, der einen Rotor (52) mit konstanter Geschwindigkeit aufweist, der geeignet ist, sich um die Achse (Ar) zu drehen, und der direkt oder indirekt mit der Eingangswelle mit konstanter Geschwindigkeit der Getriebevorrichtung verbunden ist; und

    einen Elektromotor (71) mit variabler Geschwindigkeit, der einen Rotor (72) mit variabler Geschwindigkeit aufweist, der geeignet ist, sich um die Achse (Ar) zu drehen, und der direkt oder indirekt mit der Eingangswelle der Getriebevorrichtung mit variabler Geschwindigkeit verbunden ist;

    wobei von dem Rotor mit variabler Geschwindigkeit (72) und dem Rotor mit konstanter Geschwindigkeit (52) ein erster Rotor ein durch diesen in axialer Richtung ausgebildetes Welleneinführungsloch (74) aufweist, wobei das Welleneinführungsloch (74) eine auf der Achse (Ar) zentrierte zylindrische Form aufweist, und ein zweiter Rotor (52) durch das Welleneinführungsloch (74) des ersten Rotors eingeführt wird und der Rotor des Antriebsziels auf der Achse (Ar) angeordnet ist;

    dadurch gekennzeichnet, dass das variable Elektromotorsystem ferner Folgendes umfasst:

    einen ersten Schalter (111), der den Elektromotor (51) mit konstanter Geschwindigkeit in einen Zustand mit Stromversorgung oder einen Zustand mit abgeschaltetem Strom versetzt;

    einen zweiten Schalter (112), der den Elektromotor (71) mit variabler Geschwindigkeit in einen Zustand mit Stromversorgung oder einen Zustand mit abgeschaltetem Strom versetzt;

    eine Frequenzumwandlungsvorrichtung (100), die eine Frequenz des dem Elektromotor (71) mit variabler Geschwindigkeit zuzuführenden Stroms ändert; und

    eine Steuerung (120), die der Frequenzumwandlungsvorrichtung (100) eine Anweisung unter Angabe der Frequenz des dem Elektromotor (71) mit variabler Geschwindigkeit zuzuführenden Stroms gibt und eine Anweisung gibt, den ersten Schalter und den zweiten Schalter (111, 112) ein- und auszuschalten.


     
    2. Variables Elektromotorsystem nach Anspruch 1, wobei der Rotor mit variabler Geschwindigkeit (72) der erste Rotor ist;
    der Rotor (52) mit konstanter Geschwindigkeit in eine Hauptkörperwelle (54) des Rotors mit konstanter Geschwindigkeit und die Verlängerungswelle (55) des Rotors mit konstanter Geschwindigkeit unterteilt ist, die durch das Welleneinführungsloch (74) eingeführt wird; und
    das System ferner eine flexible Kupplung (97) mit konstanter Geschwindigkeit umfasst, die die Hauptkörperwelle (54) des Rotors mit konstanter Geschwindigkeit und die Verlängerungswelle (55) des Rotors mit konstanter Geschwindigkeit verbindet.
     
    3. Variables Elektromotorsystem nach Anspruch 1 oder 2, wobei der Elektromotor (71) mit variabler Geschwindigkeit einen Stator (86) mit variabler Geschwindigkeit umfasst, der an einer äußeren Umfangsseite des Rotors (72) mit variabler Geschwindigkeit angeordnet ist, und ein Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit umfasst, dessen Stator (86) mit variabler Geschwindigkeit (86) an einer inneren Umfangsseite desselben befestigt ist;
    die Getriebevorrichtung das Sonnenrad (11), die Sonnenradwelle (12), das Planetenrad (15), das Innenrad (17), die Planetenradträgerwelle (22), den Planetenradträger (21) und den Innenradträger (37) sowie ein Getriebegehäuse (41) umfasst, das diese Komponenten abdeckt; und
    das Getriebegehäuse (41) an dem Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit befestigt ist.
     
    4. Variables Elektromotorsystem nach Anspruch 3, wobei der Elektromotor (51) mit konstanter Geschwindigkeit einen Stator (66) mit konstanter Geschwindigkeit, der an einer äußeren Umfangsseite des Rotors (52) mit konstanter Geschwindigkeit angeordnet ist, und ein Gehäuse (61) des Elektromotors mit konstanter Geschwindigkeit umfasst, wobei der Stator (66) mit konstanter Geschwindigkeit an einer inneren Umfangsseite desselben befestigt ist; und
    das System ferner einen Trägerteil (50S) der elektrisch angetriebenen Vorrichtung umfasst, der das Gehäuse (61) des Elektromotors mit konstanter Geschwindigkeit trägt.
     
    5. Variables Elektromotorsystem nach Anspruch 4, das ferner einen Trägerteil (71S) des Elektromotors mit variabler Geschwindigkeit umfasst, der das Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit trägt.
     
    6. Variables Elektromotorsystem nach Anspruch 4 oder 5, das ferner einen Trägerteil (10a) der Getriebevorrichtung umfasst, der das Getriebegehäuse (41) trägt.
     
    7. Variables Elektromotorsystem nach Anspruch 4 oder 5, wobei das Getriebegehäuse (41) an dem Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit befestigt ist.
     
    8. Variables Elektromotorsystem nach Anspruch 1, das ferner Folgendes umfasst:

    eine flexible Kupplung (97) mit konstanter Geschwindigkeit, die den Rotor (52) mit konstanter Geschwindigkeit und die Eingangswelle (Ac) mit konstanter Geschwindigkeit verbindet; und

    eine flexible Kupplung (95) mit variabler Geschwindigkeit, die den Rotor (72) mit variabler Geschwindigkeit und die Eingangswelle (Av) mit variabler Geschwindigkeit verbindet.


     
    9. Variables Elektromotorsystem nach Anspruch 8, wobei von der flexiblen Kupplung (97) mit konstanter Geschwindigkeit und der flexiblen Kupplung (95) mit variabler Geschwindigkeit die flexible Kupplung, die mit dem ersten Rotor verbunden ist, eine erste flexible Kupplung bildet;
    von der Eingangswelle mit konstanter Geschwindigkeit und der Eingangswelle mit variabler Geschwindigkeit die durch die Rotation des ersten Rotors gedrehte Eingangswelle eine erste Eingangswelle bildet;
    wobei ein auf der Achse (Ar) zentrierter und mit der ersten flexiblen Kupplung verbundener, rotorseitiger Verbindungsabschnitt in Ringform an einem Ende des ersten Rotors angrenzend an die Getriebevorrichtung (10) ausgebildet ist; und
    ein auf der Achse (Ar) zentrierter, getriebevorrichtungsseitiger Verbindungsabschnitt in Ringform, der mit der ersten flexiblen Kupplung verbunden ist, so dass er dem rotorseitigen Verbindungsabschnitt in der axialen Richtung zugewandt ist, an einem Ende der ersten Eingangswelle angrenzend an die elektrisch betriebene Vorrichtung ausgebildet ist.
     
    10. Variables Elektromotorsystem nach Anspruch 8 oder 9, wobei von der flexiblen Kupplung (97) mit konstanter Geschwindigkeit und der flexiblen Kupplung (95) mit variabler Geschwindigkeit die mit dem ersten Rotor verbundene flexible Kupplung die erste flexible Kupplung bildet und die mit dem zweiten Rotor verbundene flexible Kupplung eine zweite flexible Kupplung bildet;
    wobei die erste flexible Kupplung an einer äußeren Umfangsseite der zweiten flexiblen Kupplung relativ zur Achse (Ar) angeordnet ist, und
    eine Länge der zweiten flexiblen Kupplung in einer axialen Richtung derselben kleiner oder gleich einer Länge der ersten flexiblen Kupplung in einer axialen Richtung derselben ist.
     
    11. Variables Elektromotorsystem nach einem der Ansprüche 1, 7, 8, 9 und 10, wobei der Elektromotor (51) mit konstanter Geschwindigkeit einen Stator (66) mit konstanter Geschwindigkeit , der auf einer äußeren Umfangsseite des Rotors (52) mit konstanter Geschwindigkeit angeordnet ist, und ein Gehäuse (61) des Elektromotors mit konstanter Geschwindigkeit aufweist, wobei der Stator (66) mit konstanter Geschwindigkeit an einer inneren Umfangsseite desselben befestigt ist;
    wobei der Elektromotor (71) mit variabler Geschwindigkeit einen Stator (86) mit variabler Geschwindigkeit, der an einer äußeren Umfangsseite des Rotors (72) mit variabler Geschwindigkeit angeordnet ist, und ein Gehäuse (81) eines Elektromotors mit variabler Geschwindigkeit aufweist, an dessen innerer Umfangsseite der Stator (86) mit variabler Geschwindigkeit befestigt ist; und
    das Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit an dem Gehäuse (61) des Elektromotors mit konstanter Geschwindigkeit befestigt ist.
     
    12. Variables Elektromotorsystem nach Anspruch 11, das ferner einen Trägerteil (50S) der elektrisch angetriebenen Vorrichtung umfasst, der das Gehäuse (61) des Elektromotors mit konstanter Geschwindigkeit trägt.
     
    13. Variables Elektromotorsystem nach Anspruch 11 oder 12, das ferner einen Trägerteil (71S) des Elektromotors mit variabler Geschwindigkeit umfasst, der das Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit trägt.
     
    14. Variables Elektromotorsystem nach einem der Ansprüche 11 bis 13, das ferner einen Kühlventilator (91) umfasst, der an einem Ende des zweiten Rotors entfernt von der Getriebevorrichtung (10) angebracht ist, wobei das Gehäuse (61) des Elektromotors mit konstanter Geschwindigkeit und das Gehäuse (81) des Elektromotors mit variabler Geschwindigkeit miteinander kommunizieren, so dass durch den rotierenden Kühlventilator (91) ein Gasstrom innerhalb des Gehäuses (61) des Elektromotors mit konstanter Geschwindigkeit und innerhalb des Gehäuses (81) des Elektromotors mit variabler Geschwindigkeit erzeugt wird.
     
    15. Variables Elektromotorsystem nach Anspruch 1, wobei die Sonnenradwelle (12) die Ausgangswelle bildet, die Planetenradträgerwelle (22) die Eingangswelle mit variabler Geschwindigkeit und die Innenradträgerwelle (37) die Eingangswelle mit konstanter Geschwindigkeit bildet; und
    wobei die Steuerung (120) nach Erhalt einer Anweisung zum Starten eine Anweisung zum Anschalten des zweiten Schalters (112) gibt, , um den Elektromotor (71) mit variabler Geschwindigkeit in den Zustand mit Stromversorgung zu versetzen;
    der Frequenzumwandlungsvorrichtung (100) eine Anweisung erteilt, mit der Angabe einer vorbestimmten Mindestfrequenz; und
    eine Anweisung gibt, den ersten Schalter (111) anzuschalten, nachdem der Elektromotor (71) mit variabler Geschwindigkeit begonnen hat, mit minimaler Drehzahl angetrieben zu werden, , um den Elektromotor mit konstanter Geschwindigkeit (51) in den Zustand mit Stromversorgung zu versetzen.
     
    16. Variables Elektromotorsystem nach Anspruch 1, wobei die Sonnenradwelle (12) die Ausgangswelle bildet, die Planetenradträgerwelle (22) die Eingangswelle mit variabler Geschwindigkeit und die Innenradträgerwelle (37) die Eingangswelle mit konstanter Geschwindigkeit bildet; und
    wobei die Steuerung (120) nach Erhalt einer Anweisung zum Starten eine Anweisung zum Einschalten des ersten Schalters (111) gibt um den Elektromotor (51) mit konstanter Geschwindigkeit in den Zustand mit Stromversorgung zu versetzen, und eine Anweisung gibt, den zweiten Schalter (112) einzuschalten, nachdem der Elektromotor (51) mit konstanter Geschwindigkeit begonnen hat, mit einer vorbestimmten Drehzahl angetrieben zu werden, , um den Elektromotor (71) mit variabler Geschwindigkeit in den Zustand mit Stromversorgung zu versetzen, und eine Anweisung an die Frequenzumwandlungsvorrichtung (100) erteilt, mit der Angabe einer vorbestimmten Mindestfrequenz.
     
    17. Variables Elektromotorsystem nach einem der Ansprüche 1 bis 16, wobei eine Anzahl von Polen in dem Elektromotor (71) mit variabler Geschwindigkeit größer ist als eine Anzahl von Polen in dem Elektromotor (51) mit konstanter Geschwindigkeit.
     
    18. Variables Elektromotorsystem nach einem der Ansprüche 1 bis 17, wobei die Sonnenradwelle (12) und der zweite Rotor in der axialen Richtung angeordnet sind, wobei die axiale Richtung horizontal ist.
     
    19. Variables Elektromotorsystem nach einem der Ansprüche 1 bis 18, wobei der Elektromotor (51) mit konstanter Geschwindigkeit, der Elektromotor (71) mit variabler Geschwindigkeit, die Getriebevorrichtung (10) und das Antriebsziel in dieser Reihenfolge linear angeordnet sind.
     
    20. Variables Elektromotorsystem nach einem der Ansprüche 1 bis 19, wobei das Antriebsziel ein Kompressor ist.
     


    Revendications

    1. Système de moteur électrique variable comprenant :

    un dispositif alimenté électriquement qui génère une force d'entraînement rotatif ;

    un dispositif de transmission (10) qui change la vitesse de la force d'entraînement rotatif générée par le dispositif alimenté électriquement ; et

    une cible d'entraînement qui est entraînée par la force d'entraînement rotatif provenant du dispositif alimenté électriquement,

    le dispositif de transmission (10) incluant :

    un planétaire (11) qui tourne autour d'un axe (Ar) ;

    un arbre (12) de planétaire qui est fixé au planétaire (11) et s'étend dans une direction axiale centrée sur l'axe (Ar) ;

    un satellite (15) qui s'emboîte avec le planétaire (11), effectue une rotation autour de l'axe (Ar) et tourne autour de sa propre ligne centrale (Ap) ;

    un engrenage interne (17) qui comporte une pluralité de dents agencées selon une forme annulaire centrée sur l'axe (Ar), et s'emboîte avec le satellite (15) ;

    un porte-satellite (21) qui comporte un arbre (22) de porte-satellite s'étendant dans la direction axiale centrée sur l'axe (Ar), et supporte le satellite (15) de manière à permettre au satellite (15) d'effectuer une rotation autour de l'axe (Ar) et de tourner autour de sa propre ligne centrale (Ap) ; et

    un porte-engrenage interne (31) qui comporte un arbre (37) de porte-engrenage interne s'étendant dans la direction axiale centrée sur l'axe (Ar), et supporte l'engrenage interne (17) de manière à permettre à l'engrenage interne (17) de tourner autour de l'axe (Ar),

    l'un parmi l'arbre (12) de planétaire, l'arbre (22) de porte-satellite et l'arbre (37) de porte-engrenage interne constituant un arbre de sortie relié à un rotor d'une cible d'entraînement, un autre arbre constituant un arbre d'entrée à vitesse constante, et l'autre arbre constituant un arbre d'entrée à vitesse variable,

    le dispositif alimenté électriquement incluant :

    un moteur électrique à vitesse constante (51) comportant un rotor à vitesse constante (52) qui est capable de tourner autour de l'axe (Ar) et est relié directement ou indirectement à l'arbre d'entrée à vitesse constante du dispositif de transmission ; et

    un moteur électrique à vitesse variable (71) comportant un rotor à vitesse variable (72) qui est capable de tourner autour de l'axe (Ar) et est relié directement ou indirectement à l'arbre d'entrée à vitesse variable du dispositif de transmission ;

    du rotor à vitesse variable (72) et du rotor à vitesse constante (52), un premier rotor comportant un trou d'introduction d'arbre (74) formé à travers celui-ci dans la direction axiale, le trou d'introduction d'arbre (74) ayant une forme cylindrique centrée sur l'axe (Ar), et un second rotor (52) étant introduit à travers le trou d'introduction d'arbre (74) du premier rotor, et

    le rotor de la cible d'entraînement étant disposé sur l'axe (Ar) ;

    caractérisé en ce que le système de moteur électrique variable comprend en outre :

    un premier commutateur (111) qui met le moteur électrique à vitesse constante (51) dans un état alimenté ou un état de coupure d'alimentation ;

    un second commutateur (112) qui met le moteur électrique à vitesse variable (71) dans un état alimenté ou un état de coupure d'alimentation ;

    un dispositif de conversion de fréquence (100) qui change une fréquence de puissance à apporter au moteur électrique à vitesse variable (71) ; et

    un dispositif de commande (120) qui génère une instruction, au dispositif de conversion de fréquence (100), indiquant la fréquence de la puissance à apporter au moteur électrique à vitesse variable (71), et donne au premier commutateur et au second commutateur (111, 112) l'ordre d'être activé et désactivé.


     
    2. Système de moteur électrique variable selon la revendication 1,
    dans lequel le rotor à vitesse variable (72) est le premier rotor ;
    le rotor à vitesse constante (52) est divisé en un arbre de corps principal de rotor à vitesse constante (54) et en l'arbre d'extension de rotor à vitesse constante (55) qui est introduit à travers le trou d'introduction d'arbre (74) ; et
    le système comprend en outre un organe d'accouplement flexible à vitesse constante (97) qui relie l'arbre de corps principal de rotor à vitesse constante (54) et l'arbre d'extension de rotor à vitesse constante (55).
     
    3. Système de moteur électrique variable selon la revendication 1 ou 2,
    dans lequel le moteur électrique à vitesse variable (71) inclut un stator à vitesse variable (86) disposé sur un côté périphérique extérieur du rotor à vitesse variable (72) et un carter de moteur électrique à vitesse variable (81) comportant le stator à vitesse variable (86) fixé à un côté périphérique intérieur de celui-ci ;
    le dispositif de transmission inclut un planétaire (11), l'arbre (12) de planétaire, le satellite (15), l'engrenage interne (17), l'arbre (22) de porte-satellite, le porte-satellite (21) et le porte-engrenage interne (37), et un carter de transmission (41) qui recouvre ces composants ; et
    le carter de transmission (41) est fixé au carter de moteur électrique à vitesse variable (81).
     
    4. Système de moteur électrique variable selon la revendication 3,
    dans lequel le moteur électrique à vitesse constante (51) inclut un stator à vitesse constante (66) disposé sur un côté périphérique extérieur du rotor à vitesse constante (52), et un carter de moteur électrique à vitesse constante (61) comportant le stator à vitesse constante (66) fixé à un côté périphérique intérieur de celui-ci ; et
    le système comprend en outre une partie de support (50S) de dispositif alimenté électriquement qui supporte le carter de moteur électrique à vitesse constante (61).
     
    5. Système de moteur électrique variable selon la revendication 4, comprenant en outre une partie de support (71S) de moteur électrique à vitesse variable qui supporte le carter de moteur électrique à vitesse variable (81).
     
    6. Système de moteur électrique variable selon la revendication 4 ou 5, comprenant en outre une partie de support (10a) de dispositif de transmission qui supporte le carter de transmission (41).
     
    7. Système de moteur électrique variable selon la revendication 4 ou 5,
    dans lequel le carter de transmission (41) est fixé au carter de moteur électrique à vitesse variable (81) .
     
    8. Système de moteur électrique variable selon la revendication 1, comprenant en outre :

    un organe d'accouplement flexible à vitesse constante (97) qui relie le rotor à vitesse constante (52) et l'arbre d'entrée à vitesse constante (Ac) ; et

    un organe d'accouplement flexible à vitesse variable (95) qui relie le rotor à vitesse variable (72) et l'arbre d'entrée à vitesse variable (Av).


     
    9. Système de moteur électrique variable selon la revendication 8,
    dans lequel de l'organe d'accouplement flexible à vitesse constante (97) et de l'organe d'accouplement flexible à vitesse variable (95), l'organe d'accouplement flexible relié au premier rotor constitue un premier organe d'accouplement flexible ;
    de l'arbre d'entrée à vitesse constante et de l'arbre d'entrée à vitesse variable, l'arbre d'entrée qui tourne par la rotation du premier rotor constitue un premier arbre d'entrée ;
    une partie de liaison côté rotor ayant une forme annulaire centrée sur l'axe (Ar) et reliée au premier organe d'accouplement flexible est formée au niveau d'une extrémité du premier rotor de manière adjacente au dispositif de transmission (10) ; et
    une partie de liaison côté dispositif de transmission ayant une forme annulaire centrée sur l'axe (Ar) et reliée au premier organe d'accouplement flexible de manière à faire face à la partie de liaison côté rotor dans la direction axiale formée au niveau d'une extrémité du premier arbre d'entrée de manière adjacente au dispositif alimenté électriquement.
     
    10. Système de moteur électrique variable selon la revendication 8 ou 9,
    dans lequel de l'organe d'accouplement flexible à vitesse constante (97) et de l'organe d'accouplement flexible à vitesse variable (95), l'organe d'accouplement flexible relié au premier rotor constitue le premier organe d'accouplement flexible et l'organe d'accouplement flexible relié au second rotor constitue un second organe d'accouplement flexible ;
    le premier organe d'accouplement flexible est disposé sur un côté périphérique extérieur du second organe d'accouplement flexible par rapport à l'axe (Ar) ; et
    une longueur du second organe d'accouplement flexible dans une direction axiale de celui-ci est inférieure ou égale à une longueur du premier organe d'accouplement flexible dans une direction axiale de celui-ci.
     
    11. Système de moteur électrique variable selon l'une quelconque des revendications 1, 7, 8, 9 et 10,
    dans lequel le moteur électrique à vitesse constante (51) inclut un stator à vitesse constante (66) disposé sur un côté périphérique extérieur du rotor à vitesse constante (52) et un carter de moteur électrique à vitesse constante (61) ayant le stator à vitesse constante (66) fixé à un côté périphérique intérieur de celui-ci ;
    le moteur électrique à vitesse variable (71) inclut un stator à vitesse variable (86) disposé sur un côté périphérique extérieur du rotor à vitesse variable (72) et un carter de moteur électrique à vitesse variable (81) ayant le stator à vitesse variable (86) fixé à un côté périphérique intérieure de celui-ci ; et
    le carter de moteur électrique à vitesse variable (81) est fixé au carter de moteur électrique à vitesse constante (61).
     
    12. Système de moteur électrique variable selon la revendication 11, comprenant en outre une partie de support (50S) de dispositif alimenté électriquement qui supporte le carter de moteur électrique à vitesse constante (61).
     
    13. Système de moteur électrique variable selon la revendication 11 ou 12, comprenant en outre une partie de support (71S) de moteur électrique à vitesse variable qui supporte le carter de moteur électrique à vitesse variable (81).
     
    14. Système de moteur électrique variable selon l'une quelconque des revendications 11 à 13, comprenant en outre un ventilateur de refroidissement (91) attaché à une extrémité du second rotor à distance du dispositif de transmission (10),
    dans lequel le carter de moteur électrique à vitesse constante (61) et le carter de moteur électrique à vitesse variable (81) communiquent l'un avec l'autre de telle sorte qu'un écoulement gazeux est produit dans le carter de moteur électrique à vitesse constante (61) et dans le carter de moteur électrique à vitesse variable (81) par le ventilateur de refroidissement (91) qui tourne.
     
    15. Système de moteur électrique variable selon la revendication 1,
    dans lequel l'arbre (12) de planétaire constitue l'arbre de sortie, l'arbre (22) de porte-satellite constitue l'arbre d'entrée à vitesse variable et l'arbre (37) de porte-engrenage interne constitue l'arbre d'entrée à vitesse constante ; et
    à réception d'une instruction de démarrage, le dispositif de commande (120) donne au second commutateur (112) l'ordre d'être activé pour mettre le moteur électrique à vitesse variable (71) dans l'état alimenté ; effectue une instruction, au dispositif de conversion de fréquence (100), indiquant une fréquence minimale prédéterminée ; et
    après que le moteur électrique à vitesse variable (71) a commencé à être entraîné à un tr/min minimal, donne au premier commutateur (111) l'ordre d'être activé pour mettre le moteur électrique à vitesse constante (51) dans l'état alimenté.
     
    16. Système de moteur électrique variable selon la revendication 1,
    dans lequel l'arbre (12) de planétaire constitue l'arbre de sortie, l'arbre (22) de porte-satellite constitue l'arbre d'entrée à vitesse variable et l'arbre (37) de porte-engrenage interne constitue l'arbre d'entrée à vitesse constante ; et
    à réception d'une instruction de démarrage, le dispositif de commande (120) donne au premier commutateur (111) l'ordre d'être activé pour mettre le moteur électrique à vitesse constante (51) dans l'état alimenté, et après que le moteur électrique à vitesse constante (51) a commencé à être entraîné à un tr/min prédéterminé, donne au second commutateur (112) l'ordre d'être activé pour mettre le moteur électrique à vitesse variable (71) dans l'état alimenté, et effectue une instruction, au dispositif de conversion de fréquence (100), indiquant une fréquence minimale prédéterminée.
     
    17. Système de moteur électrique variable selon l'une quelconque des revendications 1 à 16,
    dans lequel un nombre de pôles dans le moteur électrique à vitesse variable (71) est supérieur à un nombre de pôles dans le moteur électrique à vitesse constante (51).
     
    18. Système de moteur électrique variable selon l'une quelconque des revendications 1 à 17,
    dans lequel l'arbre (12) de planétaire et le second rotor sont agencés dans la direction axiale, la direction axiale étant horizontale.
     
    19. Système de moteur électrique variable selon l'une quelconque des revendications 1 à 18,
    dans lequel le moteur électrique à vitesse constante (51), le moteur électrique à vitesse variable (71), le dispositif de transmission (10) et la cible d'entraînement sont agencés linéairement dans cet ordre.
     
    20. Système de moteur électrique variable selon l'une quelconque des revendications 1 à 19,
    dans lequel la cible d'entraînement est un compresseur.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description