(19)
(11)EP 3 143 305 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 15833037.3

(22)Date of filing:  11.05.2015
(51)International Patent Classification (IPC): 
F16H 1/28(2006.01)
F16H 57/08(2006.01)
(86)International application number:
PCT/CA2015/050423
(87)International publication number:
WO 2016/026032 (25.02.2016 Gazette  2016/08)

(54)

ORBITLESS GEARBOX

ORBITLOSES GETRIEBE

BOÎTE DE VITESSES SANS ENGRENAGE ORBITAL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.05.2014 US 201461991700 P
13.06.2014 US 201462012224 P
10.09.2014 US 201462048776 P

(43)Date of publication of application:
22.03.2017 Bulletin 2017/12

(73)Proprietor: Orbitless Drives Inc.
Vancouver, British Columbia V6L 1Y6 (CA)

(72)Inventor:
  • STOCCO, Leo J.
    Vancouver, British Columbia V6L 1Y6 (CA)

(74)Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56)References cited: : 
EP-A2- 0 300 108
WO-A1-2012/139674
GB-A- 2 221 278
EP-A2- 0 300 108
FR-A- 1 053 098
US-A- 4 762 025
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The disclosure herein relates to a gearbox comprising a plurality of gears or other engaging members. More particularly, it relates to an apparatus providing a drive member that rotates at a different rate as a driven member.

    LIST OF REFERENCES CITED



    [0002] 

    US 627,977 (CALDWELL, JA) July 4, 1899.

    US 2,666,345 (AMBERG, WE) January 19, 1954.

    US 2,699,690 (KOBLER, AJ) January 18, 1955.

    US 2,906,143 (MUSSER, CW) September 29, 1959.


    BACKGROUND



    [0003] A typical planetary gearbox (US 627,977) comprises a central pinion (sun), a central ring (orbit), and a group of offset pinions (planets) which ride on a carrier. It has advantages over an offset gearbox that include coaxial drive axes, high load capacity, and low pitch velocity (noise). These come at the expense of the production cost, friction, and reverse bending that result from the orbit ring. In addition, geometric constraints limit the minimum reduction ratio to 2:1 theoretically, and approximately 5:2 practically.

    [0004] Variations on the planetary gearbox are plentiful and include the strain wave (US 2,906,143), cycloid (US 2,666,345), and nutating gearboxes (US 2,699,690). These configurations are more complex, less efficient and are typically used to satisfy special requirements such as anti-backlash or a high ratio.

    [0005] The exemplary embodiments disclosed herein resemble an epicyclic gearbox with its orbit ring replaced by a second carrier which is cheaper to produce, creates less friction, and does not introduce reverse bending. A reduced pitch velocity generates less vibration and noise for improved high speed operation, and a minimum theoretical reduction ratio of 1:1 enables practical ratios of 5:4 or lower.

    [0006] EP 0,300,108 A2 describes a planetary transmission mechanism of involute gears with complex minor teeth-differences, relating to involute gear planetary transmission mechanism. The mechanism incorporates at least two internal meshing gear pairs, and the planet gears of each of which are running sleeved on two crankaxles of a crankshaft used as drive input. Said planet gears are conjuncted by means of a rotational transmission mechanism and the internal gear of one pair of the said internal gear pairs is stationary, whereas the internal gear of the other pair of the same is integrated with the drive output shaft.

    SUMMARY



    [0007] According to the present invention, there is provided a gearbox as set out in Claim 1.

    [0008] The present invention also provides a method for constructing a gearbox as set out in Claim 9.

    BRIEF DESCRIPTION OF DRAWINGS



    [0009] 

    Figs 1A-1G are respectively, a schematic side view, a front view, a cross-sectional side view, two exploded perspective views, an internal front view, and an internal rear view, in accordance with a first exemplary embodiment depicting the present invention.

    Fig 2 is a perspective view of a reference member and its associated axes.

    Fig 3 is a perspective view of a rear carrier and its associated axes.

    Fig 4 is a side and perspective view of an offset member and its associated axes.

    Figs 5A-5D are four partial outline views, in accordance with a first exemplary embodiment depicting the present invention advanced to four incremental angles.

    Fig 6 is a schematic side view in accordance with a second exemplary embodiment depicting the present invention comprising co-axial central and front carrier axes.

    Fig 7 is a schematic side view in accordance with a third exemplary embodiment depicting the present invention comprising co-axial central and rear carrier axes.

    Fig 8 is a schematic side view in accordance with a fourth exemplary embodiment depicting the present invention comprising a floating central member.

    Fig 9 is a schematic side view in accordance with a fifth exemplary embodiment depicting the present invention comprising a floating rear carrier.

    Fig 10 is a schematic side view in accordance with a sixth exemplary embodiment depicting the present invention comprising offset members with crank-shafts.

    Fig 11 is a schematic side view in accordance with a seventh exemplary embodiment depicting the present invention comprising a ring central member.

    Fig 12 is a schematic side view in accordance with an eighth exemplary embodiment depicting the present invention comprising offset members with crank-shafts and a ring central member.

    Fig 13 is a partial outline view in accordance with a ninth exemplary embodiment depicting the present invention comprising plural flexible couplings.

    Fig 14 is a partial outline view in accordance with a tenth exemplary embodiment depicting the present invention comprising a serpentine coupling.

    Figs 15A-15D are respectively, a schematic side view, a perspective view, and two rear views, in accordance with an eleventh exemplary embodiment depicting the present invention comprising a single offset member and a capstan cable coupling.


    REFERENCE NUMERALS



    [0010] 

    1 - central axis

    2 - front carrier axis

    3 - rear carrier axis

    4 - front central axis

    5 - rear central axis

    6 - front offset axis

    7 - rear offset axis

    8 - front member axis

    9 - rear member axis

    10 - reference member

    11 - first drive-shaft

    12 - second drive-shaft

    13 - front shaft

    14 - rear shaft

    20 - front carrier

    21 - rear carrier

    30 - central member

    31 - offset member

    32 - flexible coupling

    33 - serpentine coupling

    34 - capstan cable coupling

    40 - carrier distance

    41 - offset distance

    50 - front

    51 - rear


    DEFINITIONS



    [0011] A gear, sprocket, pulley, friction or magnetic coupling, or any other type of member that engages and transmits power to a mate is defined as an engaging member.

    [0012] An engaging member that engages on its exterior surface is defined as a pinion.

    [0013] An engaging member that engages on its interior surface is defined as a ring.

    [0014] A cable drive comprising two counter-acting, pre-loaded cables that are fixedly attached to two pulleys, is defined as a capstan cable coupling.

    [0015] A chain, belt, cable, or any other means that changes shape while transmitting power between two or more engaging members is defined as a flexible coupling.

    [0016] A flexible coupling that simultaneously couples three or more engaging members is defined as a serpentine coupling.

    [0017] A member that is constrained to rotate about an axis by three or more tangential engaging members but by no other mechanical means is defined as floating.

    [0018] Two parallel, offset shafts integrated by a connecting member is defined as a crankshaft.

    [0019] An apparatus that scales the relative speed and torque of a drive and driven member is defined as a gearbox, whether or not it comprises any gears.

    [0020] A gearbox that reduces velocity and amplifies torque is defined as a reduction gearbox.

    [0021] A gearbox that amplifies velocity and reduces torque is defined as an overdrive gearbox.

    [0022] A gearbox that may function as either a reduction or an overdrive gearbox is defined as back-drivable.

    DESCRIPTION OF EMBODIMENTS



    [0023] Certain exemplary embodiments comprise a reference member, a front carrier, a rear carrier, and one or more offset members. The reference member comprises a central axis, a front carrier axis, and a rear carrier axis. The front carrier comprises one front central axis and a number of front offset axes equal to the number of offset members. The rear carrier comprises one rear central axis and a number of rear offset axes equal to the number of offset members. Each offset member comprises a front member axis and a rear member axis. All axes are parallel. The front and rear carrier axes are spaced apart by a carrier distance. Each front offset axis and the front central axis are spaced apart by an offset distance. Each rear offset axis and the rear central axis are spaced apart by the offset distance. All front offset axes are arranged circumferentially around the front central axis. All rear offset axes are arranged circumferentially around the rear central axis. All associated front and rear member axes are spaced apart by the carrier distance. The front central axis is co-axial and rotatably coupled to the front carrier axis. The rear central axis is co-axial and rotatably coupled to the rear carrier axis. Each front member axis is co-axial and rotatably coupled to a different front offset axis and each rear member axis is co-axial and rotatably coupled to a different rear offset axis.

    [0024] Certain exemplary embodiments further comprise a central member which is co-axial and rotatably coupled to the central axis and all central and offset members are engaging members.

    [0025] In certain exemplary embodiments, the central member simultaneously engages all offset members.

    [0026] Certain exemplary embodiments further comprise one or more flexible couplings engaging the central member with all offset members.

    [0027] In certain exemplary embodiments, the central axis is between the front and rear carrier axes.

    [0028] In certain exemplary embodiments, the central and front carrier axes are co-axial.

    [0029] In certain exemplary embodiments, the central and rear carrier axes are co-axial.

    [0030] Certain exemplary embodiments comprise three offset members and all front and rear offset axes are circumferentially equally spaced around the associated front and rear central axes.

    [0031] Certain exemplary embodiments comprise a reference member, a front carrier, a rear carrier, one or more offset members, and a central member. The reference member comprises a central axis, a front carrier axis, and a rear carrier axis which are all parallel, and wherein the front and rear carrier axes are spaced apart by a carrier distance. The front carrier comprises one front central axis and one front offset axis for each offset member, which are all parallel. All front offset axes are arranged circumferentially around, and spaced an offset distance away from, the front central axis. The rear carrier comprises one rear central axis and one rear offset axis for each offset member, which are all parallel. All rear offset axes are arranged circumferentially around, and spaced the offset distance away from, the rear central axis. Each offset member comprises a front member axis and a rear member axis which are parallel and spaced apart by the carrier distance. The front central axis is co-axial and rotatably coupled to the front carrier axis. The rear central axis is co-axial and rotatably coupled to the rear carrier axis. Each front member axis is co-axial and rotatably coupled to a different front offset axis. Each rear member axis is co-axial and rotatably coupled to a different rear offset axis. The central member is co-axial and rotatably coupled to the central axis. All of the central and offset members are engaging members and the central member simultaneously engages all offset members.

    [0032] In certain exemplary embodiments, the central axis is between the front and rear carrier axes.

    [0033] In certain exemplary embodiments, the central axis is co-axial with the front carrier axis.

    [0034] In certain exemplary embodiments, the central axis is co-axial with the rear carrier axis. In certain exemplary embodiments, a reference member, a front carrier, a rear carrier, and one or more offset members are provided. The reference member is provided with a central axis, a front carrier axis, and a rear carrier axis. The front carrier is provided with one front central axis and a number of front offset axes equal to the number of offset members. The rear carrier is provided with one rear central axis and a number of rear offset axes equal to the number of offset members. Each offset member is provided with a front member axis and a rear member axis. All axes are located whereby they are all parallel. The front and rear carrier axes are spaced apart by a carrier distance. Each front offset axis and the front central axis are spaced apart by an offset distance. Each rear offset axis and the rear central axis are spaced apart by the offset distance. All front offset axes are arranged circumferentially around the front central axis. All rear offset axes are arranged circumferentially around the rear central axis. All associated front and rear member axes are spaced apart by the carrier distance. The front central and front carrier axes are co-axially located, and rotatably coupled. The rear central and rear carrier axes are co-axially located, and rotatably coupled. Each front member axis and a different front offset axis are co-axially located, and rotatably coupled. Each rear member axis and a different rear offset axis are co-axially located, and rotatably coupled.

    [0035] In certain exemplary embodiments, a central member is provided, co-axially located, and rotatably coupled to the central axis, and the central member and all offset members are provided with an engaging means.

    [0036] In certain exemplary embodiments, the central member is simultaneously engaged with all offset members.

    [0037] In certain exemplary embodiments, one or more flexible couplings are provided and simultaneously engaged with the central member and one or more offset members.
    In certain exemplary embodiments, the central axis is located between the front and rear carrier axes.

    [0038] In certain exemplary embodiments, the central axis is co-axially located with the front carrier axis.

    [0039] In certain exemplary embodiments, the central axis is co-axially located with the rear carrier axis.

    [0040] In certain exemplary embodiments, a total of three offset members are provided and all front and rear offset axes are circumferentially equally spaced around the associated front and rear central axes.

    [0041] Wherever possible, the same reference numerals are used throughout the accompanying drawings and descriptions to refer to the same or similar parts. Components such as bearings, retainers and fasteners that do not substantially contribute to the understanding of the invention are neglected for the sake of simplicity.

    [0042] Although spur gears, pulleys, belts and cables are depicted in the accompanying drawings, it is understood that many other engaging means would suffice, such as conical, radial, offset, spiral, helical, double helical, herring-bone, or roller tooth gears, friction or magnetic couplings, and chain drives. It is also understood that associated gears may comprise any face width, tooth profile, pressure angle, or module and may be made from metal, plastic, or any other appropriate material.

    [0043] Although a male shaft and female race are used to depict a rotatable coupling in the accompanying drawings, it is understood that any other means will suffice, such as antifriction bearings, bushings, or low friction coatings, materials, surface treatments or lubricants. It is also understood that the male and female members of a rotatable coupling may often be interchanged.

    [0044] Although a shaft is used to depict a drive or driven member in the accompanying drawings, it is understood that any other means will suffice, such as an engaging member, a keyed, splined, or threaded hole, or a magnetic or electrostatic coupling.

    [0045] Although three offset members 31 are depicted in certain accompanying drawings, it is understood that any number of offset members 31 may be included, as long as they do not mechanically interfere.

    [0046] Although single-stage gearboxes are depicted in the accompanying drawings, it is understood that multiple gearboxes may be connected in series or in parallel and that the present invention may be combined with any other type of gearbox to obtain a desired speed ratio or other characteristic.

    [0047] It is understood that a back-drivable gearbox may provide either reduction or overdrive gearing by interchanging the roles of its drive and driven members. In fact, the roles of the reference, drive member and driven member may all be interchanged to obtain a desired reduction or overdrive ratio, or to cause the drive and driven members to rotate in the same or opposite directions. Similarly, if any one is used as a drive member and the remaining two are used as driven members, a differential mechanism is obtained. Reduction, overdrive, differential, and reverse gearboxes are all contemplated.

    [0048] It is understood that any one of the reference member 10, the central member 30, an offset member 31, or the front or rear carrier 20, 21, may act as the reference with any other member acting as the drive or driven member.

    [0049] A representative sample of embodiments is included in the accompanying drawings for exemplary purposes only. A great number of additional tooth geometries, ring and pinion combinations and kinematic arrangements are also contemplated. The scope of the present invention is not limited to the embodiments included but spans all possible combinations anticipated by the specification and claims.

    [0050] Figs 1A-1G illustrate a first exemplary embodiment of the present invention providing a reduction ratio between a first drive-shaft 11 and a second drive-shaft 12.

    [0051] The first exemplary embodiment comprises a reference member 10, a front carrier 20, a rear carrier 21, a central member 30, and three equivalent offset members 31.

    [0052] The reference member 10 acts as the case of the gearbox and comprises a central axis 1, a front carrier axis 2, and a rear carrier axis 3, all of which are parallel. The front carrier axis 2 is spaced apart from the rear carrier axis 3 by a carrier distance 40, and the central axis 1 is mid-way between the front carrier axis 2 and rear carrier axis 3.

    [0053] The front carrier 20 comprises a front central axis 4 and three front offset axes 6, which are circumferentially equally spaced, and spaced an offset distance 41 away from the front central axis 4. The front carrier 20 and second drive-shaft 12 are co-centric and integral.

    [0054] The second carrier 21 comprises a rear central axis 5 and three rear offset axes 7, which are circumferentially equally spaced, and spaced an offset distance 41 away from the rear central axis 5.

    [0055] The front central axis 4 is rotatably coupled to the front carrier axis 2 and the rear central axis 5 is rotatably coupled to the rear carrier axis 3.

    [0056] Each offset member 31 comprises a front shaft 13 defining a front member axis 6 and a rear shaft 14 defining a rear member axis 7. The front and rear member axes 6, 7 are parallel and spaced apart by the carrier distance 40. The center of each offset member 31 is mid-way between the associated front and rear member axes 6, 7.

    [0057] Each front member axis 8 is rotatably coupled to a different front offset axis 6 and each rear member axis 9 is rotatably coupled to a different rear offset axis 7.

    [0058] The central member 30 and first drive-shaft 11 are co-centric and integral. The first drive-shaft 11 is rotatably coupled to the central axis 1.

    [0059] The central member 30 and all offset members 31 are all substantially equivalent pinion gears. The central member 30 simultaneously engages all offset members 31 providing a fixed, non-slip reduction ratio between the first and second drive-shafts 11, 12.

    [0060] Fig 2 illustrates the reference member 10, the locations of the central, front carrier, and rear carrier axes 1, 2, 3, and the carrier distance 40 separating the front and rear carrier axes 2, 3. The reference member 10 is depicted as two halves but in practice, they would be integral or fastened together.

    [0061] Fig 3 illustrates the rear carrier 21, the locations of the front central and front offset axes 4, 6, and the offset distance 41 separating them.

    [0062] Fig 4 illustrates an offset member 31, the locations of the front and rear member axes 6, 7, and the carrier distance 40 separating them.

    [0063] Figs 5A-5D illustrate the effect of rotating the first drive-shaft 11 to four incremental angles. Rotating the integral central member 30 causes the engaged offset members 31 to circulate around the central axis 1 at a fixed orientation. The circulating offset members 31 cause the front carrier 20, the integral second drive-shaft 12, and the rear carrier 21, to rotate in unison and in the same direction as the first drive-shaft 11, but at half the rate. As a reduction gear, the first drive-shaft 11 is the drive shaft, the second drive-shaft 12 is the driven shaft, and the reduction ratio is 2:1.

    [0064] When the central member 30 is rotated 30°, 60° and 90° respectively, the front and rear carriers 20, 21, advance 15°, 30° and 45° respectively, while all offset members 31 maintain a fixed orientation. Selected teeth on the central and offset members 30, 31 are marked in the associated figures to illustrate orientation.

    [0065] Fig 6 illustrates a second exemplary embodiment of the present invention which is similar to the first exemplary embodiment except for the following. The central axis 1 is co-axial with the front carrier axis 2 and each front member axis 6 intersects the center of the associated offset member 31. This configuration provides co-axial first and second drive-shafts 11, 12.

    [0066] Fig 7 illustrates a third exemplary embodiment of the present invention which is similar to the first exemplary embodiment except for the following. The central axis 1 is co-axial with the rear carrier axis 3 and each rear member axis 7 intersects the center of the associated offset member 31. This configuration provides a co-axial first drive-shaft 11 and rear carrier 21.

    [0067] Fig 8 illustrates a fourth exemplary embodiment of the present invention which is similar to the third exemplary embodiment except for the following. The central member 30 is floating. This configuration allows self-alignment of the central member 30.

    [0068] Fig 9 illustrates a fifth exemplary embodiment of the present invention which is similar to the third exemplary embodiment except for the following. The rear carrier 21 is floating. This configuration allows self-alignment of the offset members 31.

    [0069] Fig 10 illustrates a sixth exemplary embodiment of the present invention which is similar to the first exemplary embodiment except for the following. The central and offset members 30, 31, are to one side of the front and rear carriers 20, 21. Each pair of front and rear shafts 13, 14 are integrated into a crank-shaft that penetrates a floating front carrier 20 to reach the rear carrier 21. This configuration provides cantilever central and offset members 30, 31.

    [0070] Fig 11 illustrates a seventh exemplary embodiment of the present invention which is similar to the fifth exemplary embodiment except for the following. The central member 30 is a ring instead of a pinion. This configuration provides an overdrive ratio.

    [0071] Fig 12 illustrates an eighth exemplary embodiment of the present invention which is similar to the sixth exemplary embodiment except for the following. The central member 30 is a ring instead of a pinion and a hollow first drive-shaft 11 exits the front 50 of the reference member 10. This configuration provides an overdrive ratio and overlapping first and second drive-shafts 11, 12.

    [0072] Fig 13 illustrates a ninth exemplary embodiment of the present invention which is similar to the first exemplary embodiment except for the following. The central member 30 and each offset member 31 are engaged by a flexible coupling 32.

    [0073] Fig 14 illustrates a tenth exemplary embodiment of the present invention which is similar to the first exemplary embodiment except for the following. The central member 30 and all offset members 31 are engaged by a serpentine coupling 33.

    [0074] Figs 15A-D illustrate an eleventh exemplary embodiment of the present invention which is similar to the first exemplary embodiment except for the following. A single offset member 31 acts as the fixed reference and is engaged with the central member 30 by a capstan cable coupling 34.

    [0075] Figs 5C-5D illustrate the effect of rotating the first drive-shaft 11 with respect to the reference member 10. The central member 30 simultaneously rotates and circulates around the offset member 31 while the reference member 10 circulates at a fixed orientation. The second drive-shaft 12 also circulates and may be attached to a load to counter-balance the mass of the central member 30, and possibly an actuator which may be integral with the reference member 10.

    EXAMPLES



    [0076] In each of the following examples, the reduction ratio is RR=T1:T2=T1/T2:1 and the overdrive ratio is RR'=1/RR where T1 is the number of turns of the first drive-shaft 11 and T2 is the corresponding number of turns of the second drive-shaft 12, all with respect to the reference member 10. RR is computed from Pc and Po, which are the pitch diameter of the central member 30, and offset members 31, respectively. When the engaging members are gears, Pc and Po are integer multiples of the tooth module.

    [0077] When all engaging members are pinions, RR and RR' are as follows.



    [0078] When the central member 30 is a ring gear or when it is a pinion engaging a flexible coupling, RR and RR' are as follows.



    [0079] When the central member 30 and offset members 31 are spur gears, the offset distance (OD) 41 for normal engagement is as follows.



    [0080] When friction couplings, magnetic couplings, or gears with a small tooth module are used, the following constraints avoid mechanical interference between adjacent offset members 31. For large tooth modules, these must be adjusted accordingly.
    Po < 6Pc Pinion central engaging member
    13Po < 6Pc Ring central engaging member

    [0081] The following ratios satisfy the above constraints and are theoretically possible in a single stage, although a unity RR requires an infinitely large Pc in either case.
    1 : 1 < RR < 7 : 1 Pinion central engaging member
    53 : 100 < RR < 1 : 1 Ring central engaging member

    [0082] A first example considers the first through sixth and eleventh exemplary embodiments illustrated in Figs 1-10 and 15 where the central member 30 is a pinion.

    [0083] Pc=Po=12 and RR=2:1.

    [0084] A second, third, and fourth example demonstrate that different ratios may be obtained by changing the engaging members only. In all three examples, OD remains constant so the same reference member 10 and carriers 20, 21 may be used.

    [0085] Pc=Po=30, OD=30 and RR=2:1.

    [0086] Pc=33, Po=27, OD=30 and RR=19:10.

    [0087] Pc=27, Po=33, OD=30 and RR=222:100.

    [0088] A fifth example considers the seventh and eighth exemplary embodiment illustrated in Figs 11 and 12 where the central member 30 is a ring.

    [0089] Pc=30, Po=12, RR=6:10 and RR'=167:100.

    [0090] A sixth example considers the ninth and tenth exemplary embodiments illustrated in Figs 13 and 14. A flexible or serpentine coupling 32, 33 engages the pinions so pitch diameters may not necessarily be integer multiples of a particular tooth module.

    [0091] Pc=10, Po=9.9 and RR'=100:1.

    [0092] Although certain exemplary embodiments depict the second drive-shaft 12 and front carrier 20 as integral, both carriers 20, 21 rotate in unison so the second drive-shaft 12 could instead be integral with the rear carrier 21.

    [0093] Although certain exemplary embodiments depict all offset members 31 as being substantially equivalent, it is understood that they need not be. For example, if the number of teeth on a gear central member 30 is not an integer multiple of the number of offset members 31 and all offset members 31 are circumferentially equally spaced around the central axis 1, then the locations of the front and rear member axes 8, 9 on all offset members 31 will not be uniform. They must be out of phase with respect to the gear teeth to make the gearbox assemble-able.

    [0094] It is understood that the offset members 31 may have non-uniform front and rear member axes 8, 9 as long as the associated front and rear offset axes 6, 7 are similarly non-uniform, although vibration may result from the associated imbalance.

    [0095] Although certain exemplary embodiments depict all offset members 31 as being circumferentially equally spaced around the central axis 1, it is understood that they need not be, although vibration may result from the associated imbalance.

    [0096] Although certain exemplary embodiments depict a front and rear carrier 20, 21, that are either floating or rotatably coupled about their centers, it is understood that rotational coupling could often be provided between the interior of the case 10 and the exterior of the associated front or rear carrier 20, 21, or by other means.

    [0097] Certain exemplary embodiments depict front and rear carriers 20, 21 that occupy the same plane. This is possible when there are a small number of offset members 31, but mechanical interference may limit the associated motion range of the apparatus.

    Advantages



    [0098] The exemplary embodiments disclosed herein have a number of advantageous properties.

    [0099] Certain exemplary embodiments comprise only pinions which are economical to manufacture and may engage flexible couplings.

    [0100] Certain exemplary embodiments operate with low pitch velocity resulting in high efficiency, low vibration, and quiet operation at high speeds.

    [0101] Certain exemplary embodiments provide a reduction ratio with a theoretical lower limit of unity, making any desired reduction ratio possible.

    [0102] Certain exemplary embodiments do not experience reverse bending which provides high load capacity and durability.

    [0103] Certain exemplary embodiments may be configured for offset or co-axial drive axes.

    [0104] Certain exemplary embodiments have an easily accommodated assembly criteria and may be configured to include sequential meshing and hunting teeth for low vibration, quiet operation, and uniform break-in.

    [0105] Other advantages are apparent from the disclosure herein.


    Claims

    1. A gearbox comprising:

    a reference member (10), a front carrier (20), a rear carrier (21), and one or more offset members (31);

    the reference member (10) comprises a central axis (1), a front carrier axis (2), and a rear carrier axis (3);

    the front carrier (20) comprises one front central axis (4) and a number of front offset axes (6) equal to the number of offset members (31);

    the rear carrier (21) comprises one rear central axis (5) and a number of rear offset axes (7) equal to the number of offset members (31);

    each offset member (31) comprises a front member axis (8) and a rear member axis (9);

    and wherein:

    all axes (1, 2, 3, 4, 5, 6, 7, 8, 9) are parallel;

    the front carrier axis (2) and rear carrier axis (3) are spaced apart by a carrier distance (40);

    each front offset axis (6) and the front central axis (4) are spaced apart by an offset distance (41);

    each rear offset axis (7) and the rear central axis (5) are spaced apart by the offset distance (41);

    all front offset axes (6) are arranged circumferentially around the front central axis (4);

    all rear offset axes (7) are arranged circumferentially around the rear central axis (5);

    each associated front member axis (8) and rear member axis (9) is spaced apart by the carrier distance (40);

    the front central axis (4) is co-axial and rotatably coupled to the front carrier axis (2);

    the rear central axis (5) is co-axial and rotatably coupled to the rear carrier axis (3);

    each front member axis (8) is co-axial and rotatably coupled to a different front offset axis (6);

    and each rear member axis (9) is co-axial and rotatably coupled to a different rear offset axis (7).


     
    2. The gearbox of claim 1 further comprising a central member (30) which is co-axial and rotatably coupled to the central axis (1) and wherein the central member (30) and all offset members (31) are engaging members.
     
    3. The gearbox of claim 2 wherein the central member (30) simultaneously engages all offset members (31).
     
    4. The gearbox of claim 2 further comprising one or more flexible couplings (32) engaging the central member (30) with all offset members (31).
     
    5. The gearbox of claim 1 wherein the central axis (1) is between the front carrier axis (2) and rear carrier axis (3).
     
    6. The gearbox of claim 1 wherein the central axis (1) and front carrier axis (2) are co-axial.
     
    7. The gearbox of claim 1 wherein the central axis (1) and rear axis (3) are co-axial.
     
    8. The gearbox of claim 1 wherein all front offset axes (6) are circumferentially equally spaced around the front central axis (4) and all rear offset axes (7) are circumferentially equally spaced around the rear central axis (5).
     
    9. A method for constructing a gearbox comprising:

    providing a reference member (10), a front carrier (20), a rear carrier (21), and one or more offset members (31);

    providing the reference member (10) with a central axis (1), a front carrier axis (2), and a rear carrier axis (3);

    providing the front carrier (20) with one front central axis (4) and a number of front offset axes (6) equal to the number of offset members (31);

    providing the rear carrier (21) with one rear central axis (5) and a number of rear offset axes (7) equal to the number of offset members (31);

    providing each offset member (31) with a front member axis (8) and a rear member axis (9);

    locating all axes (1, 2, 3, 4, 5, 6, 7, 8, 9) whereby they are all parallel;

    spacing the front carrier axis (2) and rear carrier axis (3) apart by a carrier distance (40);

    spacing each front offset axis (6) and the front central axis (4) apart by an offset distance (41);

    spacing each rear offset axis (7) and the rear central axis (5) apart by the offset distance (41);

    arranging all front offset axes (6) circumferentially around the front central axis (4);

    arranging all rear offset axes (7) circumferentially around the rear central axis (5);

    spacing each associated front member axis (8) and rear member axis (9) apart by the carrier distance (40);

    co-axially locating, and rotatably coupling the front central axis (4) to the front carrier axis (2) ;

    co-axially locating, and rotatably coupling the rear central axis (5) to the rear carrier axis (3);

    co-axially locating, and rotatably coupling each front member axis (8) to a different front offset axis (6);

    and co-axially locating, and rotatably coupling each rear member axis (9) to a different rear offset axis (7).


     
    10. The method for constructing a gearbox of claim 9 further comprising providing a central member (30), co-axially locating and rotatably coupling the central member (30) to the central axis (1), and providing the central member (30) and all offset members (31) with an engaging means.
     
    11. The method for constructing a gearbox of claim 10, wherein the method comprises simultaneously engaging the central member (30) with all offset members (31).
     
    12. The method for constructing a gearbox of claim 10 further comprising providing one or more flexible couplings (32) simultaneously engaging the central member (30) with all offset members (31).
     
    13. The method for constructing a gearbox of claim 9, wherein the method comprises locating the central axis (1) between the front carrier axis (2) and rear carrier axis (3).
     
    14. The method for constructing a gearbox of claim 9, wherein the method comprises locating the central axis (1) and front carrier axis (2) whereby they are co-axial.
     
    15. The method for constructing a gearbox of claim 9, wherein the method comprises locating the central axis (1) and rear carrier axis (3) whereby they are co-axial.
     
    16. The method for constructing a gearbox of claim 9, wherein the method comprises locating all front offset axes (6) whereby they are circumferentially equally spaced around the front central axis (4) and locating all rear offset axes (7) whereby they are circumferentially equally spaced around the rear central axis (5).
     


    Ansprüche

    1. Getriebe, umfassend:

    ein Referenzelement (10), einen vorderen Träger (20), einen hinteren Träger (21) und ein oder mehrere Versatzelemente (31);

    wobei das Referenzelement (10) eine Mittelachse (1), eine vordere Trägerachse (2), und eine hintere Trägerachse (3) umfasst;

    wobei der vordere Träger (20) eine vordere Mittelachse (4) und eine Anzahl von vorderen Versatzachsen (6) umfasst, die der Anzahl von Versatzelementen (31) entspricht;

    wobei der hintere Träger (21) eine hintere Mittelachse (5) und eine Anzahl von hinteren Versatzachsen (7) umfasst, die der Anzahl von Versatzelementen (31) entspricht;

    wobei jedes Versatzelement (31) eine vordere Elementachse (8) und eine hintere Elementachse (9) umfasst;

    und wobei:

    alle Achsen (1, 2, 3, 4, 5, 6, 7, 8, 9) parallel sind;

    die vordere Trägerachse (2) und die hintere Trägerachse (3) durch einen Trägerabstand (40) beabstandet sind;

    jede vordere Versatzachse (6) und die vordere Mittelachse (4) durch einen Versatzabstand (41) beabstandet sind;

    jede hintere Versatzachse (7) und die hintere Mittelachse (5) durch einen Versatzabstand (41) beabstandet sind;

    alle vorderen Versatzachsen (6) umlaufend um die vordere Mittelachse (4) angeordnet sind;

    alle hinteren Versatzachsen (7) umlaufend um die hintere Mittelachse (5) angeordnet sind;

    jede zugeordnete vordere Elementachse (8) und hintere Elementachse (9) durch einen Trägerabstand (40) beabstandet sind;

    die vordere Mittelachse (4) koaxial und drehbar mit der vorderen Trägerachse (2) verbunden ist;

    die hintere Mittelachse (5) koaxial und drehbar mit der hinteren Trägerachse (3) verbunden ist;

    jede vordere Elementachse (8) koaxial und drehbar mit einer anderen vorderen Versatzachse (6) verbunden ist;

    und jede hintere Elementachse (9) koaxial und drehbar mit einer anderen hinteren Versatzachse (7) verbunden ist.


     
    2. Getriebe nach Anspruch 1, ferner umfassend ein Mittelelement (30), das koaxial und drehbar mit der Mittelachse (1) verbunden ist, und wobei das Mittelelement (30) und alle Versatzelemente (31) eingreifende Elemente sind.
     
    3. Getriebe nach Anspruch 2, wobei das Mittelelement (30) gleichzeitig alle Versatzelemente (31) in Eingriff nimmt.
     
    4. Getriebe nach Anspruch 2, ferner umfassend eines oder mehrere das Mittelelement (30) mit allen Versatzelementen (31) in Eingriff bringende flexible Verbindungsstücke (32).
     
    5. Getriebe nach Anspruch 1, wobei sich die Mittelachse (1) zwischen der vorderen Trägerachse (2) und der hinteren Trägerachse (3) befindet.
     
    6. Getriebe nach Anspruch 1, wobei die Mittelachse (1) und die vordere Trägerachse (2) koaxial sind.
     
    7. Getriebe nach Anspruch 1, wobei die Mittelachse (1) und die hintere Achse (3) koaxial sind.
     
    8. Getriebe nach Anspruch 1, wobei alle vorderen Versatzachsen (6) umlaufend gleich um die vordere Mittelachse (4) beabstandet sind und alle hinteren Versatzachsen (7) umlaufend gleich um die hintere Mittelachse (5) beabstandet sind.
     
    9. Verfahren zum Herstellen eines Getriebes, umfassend:

    ein Bereitstellen eines Referenzelements (10), eines vorderen Trägers (20), eines hinteren Trägers (21) und eines oder mehrerer Versatzelemente (31);

    ein Versehen des Referenzelements (10) mit einer Mittelachse (1), einer vorderen Trägerachse (2) und einer hinteren Trägerachse (3);

    ein Versehen eines vorderen Trägers (20) mit einer vorderen Mittelachse (4) und einer Anzahl von vorderen Versatzachsen (6), die der Anzahl von Versatzelementen (31) entspricht;

    ein Versehen des hinteren Trägers (21) mit einer hinteren Mittelachse (5) und einer Anzahl von hinteren Versatzachsen (7), die der Anzahl von Versatzelementen (31) entspricht;

    ein Versehen jedes Versatzelements (31) mit einer vorderen Elementachse (8) und einer hinteren Elementachse (9);

    ein Fixieren aller Achsen (1, 2, 3, 4, 5, 6, 7, 8, 9), wodurch diese alle parallel sind;

    ein Beabstanden der vorderen Trägerachse (2) und der hinteren Trägerachse (3) um einen Trägerabstand (40);

    ein Beabstanden jeder vorderen Versatzachse (6) und der vorderen Mittelachse (4) um einen Versatzabstand (41);

    ein Beabstanden jeder hinteren Versatzachse (7) und der hinteren Mittelachse (5) um den Versatzabstand (41);

    ein Anordnen aller vorderen Versatzsachsen (6) umlaufend um die vordere Mittelachse (4);

    ein Anordnen aller hinteren Versatzachsen (7) umlaufend um die hintere Mittelachse (5);

    ein Beabstanden jeder zugeordneten vorderen Elementachse (8) und hinteren Elementachse (9) um den Trägerabstand (40);

    ein koaxiales Fixieren und drehbares Verbinden der vorderen Mittelachse (4) mit der vorderen Trägerachse (2);

    ein koaxiales Fixieren und drehbares Verbinden der hinteren Mittelachse (5) mit der hinteren Trägerachse (3);

    ein koaxiales Fixieren und drehbares Verbinden jeder vorderen Elementachse (8) mit einer anderen vorderen Versatzachse (6);

    und ein koaxiales Fixieren und drehbares Verbinden jeder hinteren Elementachse (9) mit einer anderen hinteren Versatzachse (7).


     
    10. Verfahren zum Herstellen eines Getriebes nach Anspruch 9, ferner umfassend ein Bereitstellen eines Mittelelements (30), ein koaxiales Fixieren und drehbares Verbinden des Mittelelements (30) mit der Mittelachse (1), und ein Versehen des Mittelelements (30) und aller Versatzelemente (31) mit einem Eingriffsmittel.
     
    11. Verfahren zum Herstellen eines Getriebes nach Anspruch 10, wobei das Verfahren das gleichzeitige Ineingriffbringen des Mittelelements (30) mit allen Versatzelementen (31) umfasst.
     
    12. Verfahren zum Herstellen eines Getriebes nach Anspruch 10, ferner umfassend ein Bereitstellen eines oder mehrerer flexibler Verbindungsstücke (32), die das Mittelelement (30) mit allen Versatzelementen (31) gleichzeitig in Eingriff bringen.
     
    13. Verfahren zum Herstellen eines Getriebes nach Anspruch 9, wobei das Verfahren ein Fixieren der Mittelachse (1) zwischen der vorderen Trägerachse (2) und der hinteren Trägerachse (3) umfasst.
     
    14. Verfahren zum Herstellen eines Getriebes nach Anspruch 9, wobei das Verfahren ein Fixieren der Mittelachse (1) und der vorderen Trägerachse (2) umfasst, wodurch diese koaxial sind.
     
    15. Verfahren zum Herstellen eines Getriebes nach Anspruch 9, wobei das Verfahren ein Fixieren der Mittelachse (1) und der hinteren Trägerachse (3) umfasst, wodurch diese koaxial sind.
     
    16. Verfahren zum Herstellen eines Getriebes nach Anspruch 9, wobei das Verfahren ein Fixieren aller vorderen Versatzachsen (6) umfasst, wodurch diese umlaufend gleich um die vordere Mittelachse (4) beabstandet sind und ein Fixieren aller hinteren Versatzachsen (7) umfasst, wodurch diese umlaufend gleich um die hintere Mittelachse (5) beabstandet sind.
     


    Revendications

    1. Boîte de vitesses comprenant :

    un élément de référence (10), un porteur avant (20), un porteur arrière (21), et un ou plusieurs éléments déportés (31) ;

    l'élément de référence (10) comprend un axe central (1), un axe de porteur avant (2), et un axe de porteur arrière (3) ;

    le porteur avant (20) comprend un axe central avant (4) et un nombre d'axes déportés avant (6) égal au nombre d'éléments déportés (31) ;

    le porteur arrière (21) comprend un axe central arrière (5) et un nombre d'axes déportés arrière (7) égal au nombre d'éléments déportés (31) ;

    chaque élément déporté (31) comprend un axe d'élément avant (8) et un axe d'élément arrière (9) ;

    et dans lequel :

    tous les axes (1, 2, 3, 4, 5, 6, 7, 8, 9) sont parallèles ;

    l'axe de porteur avant (2) et l'axe de porteur arrière (3) sont espacés l'un de l'autre par une distance de porteur (40) ;

    chaque axe déporté avant (6) et l'axe central avant (4) sont espacés l'un de l'autre par une distance de déport (41) ;

    chaque axe déporté arrière (7) et l'axe central arrière (5) sont espacés l'un de l'autre par la distance de déport (41) ;

    tous les axes déportés avant (6) sont agencés de manière circonférentielle autour de l'axe central avant (4) ;

    tous les axes déportés arrière (7) sont agencés de manière circonférentielle autour de l'axe central arrière (5) ;

    chaque axe d'élément avant (8) et axe d'élément arrière (9) associés sont espacés l'un de l'autre par la distance de porteur (40) ;

    l'axe central avant (4) est co-axial et couplé de manière rotative à l'axe de porteur avant (2) ;

    l'axe central arrière (5) est co-axial et couplé de manière rotative à l'axe de porteur arrière (3) ;

    chaque axe d'élément avant (8) est co-axial et couplé de manière rotative à un axe déporté avant différent (6) ;

    et chaque axe d'élément arrière (9) est co-axial et couplé de manière rotative à un axe déporté arrière différent (7).


     
    2. Boîte de vitesses selon la revendication 1, comprenant en outre un élément central (30) qui est co-axial et couplé de manière rotative à l'axe central (1) et dans lequel l'élément central (30) et tous les éléments déportés (31) sont des éléments de solidarisation.
     
    3. Boîte de vitesses selon la revendication 2, dans lequel l'élément central (30) solidarise simultanément tous les éléments déportés (31).
     
    4. Boîte de vitesses selon la revendication 2, comprenant en outre un ou plusieurs accouplements flexibles (32) solidarisant l'élément central (30) avec tous les éléments déportés (31).
     
    5. Boîte de vitesses selon la revendication 1, dans lequel l'axe central (1) se situe entre l'axe de porteur avant (2) et l'axe de porteur arrière (3).
     
    6. Boîte de vitesses selon la revendication 1, dans lequel l'axe central (1) et l'axe de porteur avant (2) sont coaxiaux.
     
    7. Boîte de vitesses selon la revendication 1, dans lequel l'axe central (1) et l'axe arrière (3) sont coaxiaux.
     
    8. Boîte de vitesses selon la revendication 1, dans lequel tous les axes déportés avant (6) sont espacés à égale distance de manière circonférentielle autour de l'axe central avant (4) et tous les axes déportés arrière (7) sont espacés à égale distance de manière circonférentielle autour de l'axe central arrière (5).
     
    9. Procédé de construction d'une boîte de vitesses comprenant :

    la fourniture d'un élément de référence (10), un porteur avant (20), un porteur arrière (21), et un ou plusieurs éléments déportés (31) ;

    la fourniture à l'élément de référence (10) d'un axe central (1), un axe de porteur avant (2), et un axe de porteur arrière (3) ;

    la fourniture au porteur avant (20) d'un axe central avant (4) et un nombre d'axes déportés avant (6) égal au nombre d'éléments déportés (31) ;

    la fourniture au porteur arrière (21) d'un axe central arrière (5) et un nombre d'axes déportés arrière (7) égal au nombre d'éléments déportés (31) ;

    la fourniture à chaque élément déporté (31) d'un axe d'élément avant (8) et un axe d'élément arrière (9) ;

    la localisation de tous les axes (1, 2, 3, 4, 5, 6, 7, 8, 9) de manière à ce qu'ils soient tous parallèles ;

    l'espacement de l'axe de porteur avant (2) et l'axe de porteur arrière (3) l'un de l'autre par une distance de porteur (40) ;

    l'espacement de chaque axe déporté avant (6) et l'axe central avant (4) l'un de l'autre par une distance de déport (41) ;

    l'espacement de chaque axe déporté arrière (7) et l'axe central arrière (5) l'un de l'autre par la distance de déport (41) ;

    l'agencement de tous les axes déportés avant (6) de manière circonférentielle autour de l'axe central avant (4) ;

    l'agencement de tous les axes déportés arrière (7) de manière circonférentielle autour de l'axe central arrière (5) ; l'espacement de chaque axe d'élément avant (8) et axe d'élément arrière (9) associés l'un de l'autre par la distance de porteur (40) ;

    la localisation de manière coaxiale, et l'accouplement de manière rotative de l'axe central avant (4) à l'axe de porteur avant (2) ;

    la location de manière coaxiale, et l'accouplement de manière rotative de l'axe central arrière (5) à l'axe de porteur arrière (3) ;

    la localisation de manière coaxiale, et l'accouplement de manière rotative de chaque axe d'élément avant (8) à un axe déporté avant (6) différent ;

    et la localisation de manière coaxiale, et l'accouplement de manière rotative de chaque axe d'élément arrière (9) à un axe déporté arrière (7) différent.


     
    10. Procédé de construction d'une boîte de vitesses selon la revendication 9, comprenant en outre la fourniture d'un élément central (30), la localisation de manière coaxiale, et l'accouplement de manière rotative de l'élément central (30) à l'axe central (1), et la fourniture de l'élément central (30) de tous les éléments déportés (31) avec un moyen de solidarisation.
     
    11. Procédé de construction d'une boîte de vitesses selon la revendication 10, dans lequel le procédé comprend la solidarisation de manière simultanée de l'élément central (30) avec tous les éléments déportés (31).
     
    12. Procédé de construction d'une boîte de vitesses selon la revendication 10, comprenant en outre la fourniture d'un ou plusieurs accouplements flexibles (32) solidarisant simultanément l'élément central (30) avec tous les éléments déportés (31).
     
    13. Procédé de construction d'une boîte de vitesses selon la revendication 9, dans lequel le procédé comprend la localisation de l'axe central (1) entre l'axe de porteur avant (2) et l'axe de porteur arrière (3).
     
    14. Procédé de construction d'une boîte de vitesses selon la revendication 9, dans lequel le procédé comprend la localisation de l'axe central (1) et l'axe de porteur avant (2) de manière à ce qu'ils soient coaxiaux.
     
    15. Procédé de construction d'une boîte de vitesses selon la revendication 9, dans lequel le procédé comprend la localisation de l'axe central (1) et l'axe de porteur arrière (3) de manière à ce qu'ils soient coaxiaux.
     
    16. Procédé de construction d'une boîte de vitesses selon la revendication 9, dans lequel le procédé comprend la localisation de tous les axes déportés avant (6) de manière à ce qu'ils soient espacés à égale distance de manière circonférentielle autour de l'axe central avant (4) et la localisation de tous les axes déportés arrière (7) de manière à ce qu'ils soient espacés à égale distance de manière circonférentielle autour de l'axe central arrière (5).
     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description