(19)
(11)EP 3 145 090 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 15792998.5

(22)Date of filing:  14.05.2015
(51)International Patent Classification (IPC): 
H04B 1/10(2006.01)
H04B 17/11(2015.01)
(86)International application number:
PCT/CN2015/078979
(87)International publication number:
WO 2015/172730 (19.11.2015 Gazette  2015/46)

(54)

ACTIVE ANTENNA DEVICE, COMMUNICATION SYSTEM, AND TRANSMISSION AND RECEPTION CALIBRATION METHOD

AKTIVE ANTENNENVORRICHTUNG , KOMMUNIKATIONSSYSTEM SOWIE SENDE- UND EMPFANGSKALIBRIERVERFAHREN

DISPOSITIF D'ANTENNE ACTIVE, SYSTÈME DE COMMUNICATION, ET PROCÉDÉ D'ÉTALONNAGE D'ÉMISSION ET DE RÉCEPTION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.05.2014 CN 201410204038

(43)Date of publication of application:
22.03.2017 Bulletin 2017/12

(73)Proprietor: China Academy of Telecommunications Technology
Haidian District Beijing 100191 (CN)

(72)Inventors:
  • LI, Chuanjun
    Beijing 100191 (CN)
  • SU, Xin
    Beijing 100191 (CN)

(74)Representative: Nony 
11 rue Saint-Georges
75009 Paris
75009 Paris (FR)


(56)References cited: : 
EP-A1- 2 299 774
CN-A- 101 383 647
CN-A- 103 053 072
CN-U- 203 387 519
US-A1- 2013 260 844
WO-A2-2005/002070
CN-A- 102 035 611
CN-A- 103 997 352
US-A1- 2010 321 233
US-B2- 8 320 903
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This application claims the benefit of Chinese Patent Application No. 201410204038.0, filed with the Chinese Patent Office on May 14, 2014 and entitled "Active antenna related devices, a system, and a transmission and reception calibrating method".

    Field



    [0002] The present disclosure relates to the field of communications, and particularly to active antenna devices, communication systems, and a transmission and reception calibrating method.

    Background



    [0003] At present, a communication system architecture including Baseband units (BBUs) and Remote Radio Units (RRUs) is deployed in a Third-Generation (3G) mobile communication network, where the BBUs are connected with the RRUs over optic fibers, and one BBU can support a number of RRUs.

    [0004] Fig. 1 illustrates a schematic architectural diagram of a communication system including BBUs and RRUs, where a BBU is connected with an optical interface of an RRU over an optic fiber, the optical interface in the RRU is connected with a digital intermediate-frequency component, and the digital intermediate-frequency component is connected respectively with an array of transceivers, and a transmission and reception calibrating unit. Here the transceivers are connected with an array of Power Amplifiers (PAs) and Low Noise Amplifiers (LNAs), the array of PAs and LNAs is connected with an array of passive antenna, and the transmission and reception calibrating unit is connected with the array of passive antennas over a calibration radio frequency channel. As can be apparent, the RRU is connected with the passive antennas through (N+1) radio frequency jump-up lines, the number of which increases with the increasing number N of antenna radio frequency channels.

    [0005] In a massive Multiple-Input Multiple-Output (MIMO) communication system, the number N of antenna radio frequency channels is more than or equal to 64, that is, the number of radio frequency jump-up lines is more than 64, and in order to alleviate a transmission loss between the antennas and the RRU, the jump-up lines are typically radio frequency cables with certain diameter, but it is rather difficult to engineer a large number of radio frequency cables, and to guarantee the reliability thereof.

    [0006] Accordingly, the existing solution to the communication system including the BBUs and the RRUs together with the passive antennas is not feasible in the massive MIMO communication system.

    [0007] US2013/260844 patent application discloses in one embodiment, an antenna system has a plurality of antenna paths and a calibration circuit. Each of the antenna paths has a transceiver and an antenna element. The calibration circuit has (i) a calibration transceiver and a different coupler coupled to each antenna path. The couplers are connected in series with one another and with the calibration transceiver. Connecting the couplers in series, rather than in parallel, reduces the amount of cabling needed and the need for a combiner/splitter or switch matrix between the couplers and the calibration transceiver, thereby reducing the cost, volume, and/or weight associated with the calibration circuit.

    Summary



    [0008] Embodiments of the disclosure provide active antenna devices, communication systems, and a transmission and reception calibrating method so as to carry out an extensible design of an array of antennas to thereby make it less difficult to engineer the array of antennas while guaranteeing the implementation reliability thereof.

    [0009] Particular technical solutions according to embodiments of the disclosure are as follows.

    [0010] In a first aspect, an embodiment of the disclosure provides an active antenna device. The active antenna device includes: N arrays of active antennas, a primary calibration coupling circuit unit, a transmission and reception calibrating unit, a calibration parameter storage unit, a Radio Over Fiber (ROF) photoelectric converting unit, where N is more than 1. Each of the arrays of active antennas includes at least an antenna calibration coupling circuit unit, and M antenna dipoles connected with the antenna calibration coupling circuit unit, where M is more than 1. The antenna calibration coupling circuit units of the arrays of active antennas are connected with the primary calibration coupling circuit unit over a calibration radio frequency channel. The primary calibration coupling circuit unit is connected with the transmission and reception calibrating unit. And the transmission and reception calibrating unit and the calibration parameter storage unit are connected respectively with the ROF photoelectric converting unit. The calibration parameter storage unit is configured to store transmission parameters of the calibration radio frequency channels of the N arrays of active antennas and transmit the transmission parameters to the ROF photoelectric converting unit. The ROF photoelectric converting unit is configured to convert the transmission parameters into an optical signal and transmit the optical signal over an optic fiber. The antenna calibration coupling circuit unit of each array of active arrays is configured to couple received M calibration radio frequency signals into one transmission calibration radio frequency signal and output the one transmission calibration radio frequency signal to the primary calibration coupling circuit unit over the calibration radio frequency channel; the primary calibration coupling circuit unit is configured to merge the N transmission calibration radio frequency signals transmitted by the N arrays of active arrays into one transmission calibration radio frequency signal; the transmission and reception calibrating unit is configured to amplify the power of the one transmission calibration radio frequency signal transmitted by the primary calibration coupling circuit unit, then demodulate the one transmission calibration radio frequency signal into a transmission calibration In-phase and Quadrature (IQ) analog signal, and output the transmission calibration IQ analog signal to the ROF photoelectric converting unit; and the ROF photoelectric converting unit is configured to convert the transmission calibration IQ analog signal into an optical signal and transmit the optical signal over the optic fiber. And/or, the transmission and reception calibrating unit is configured to modulate a reception calibration IQ analog signal transmitted by the ROF photoelectric converting unit into a reception calibration radio frequency signal, amplify the power of the reception calibration radio frequency signal, and then transmit the power-amplified reception calibration radio frequency signal to the primary calibration coupling circuit unit; the primary calibration coupling circuit unit is configured to split the power-amplified reception calibration radio frequency signal into N duplicate reception calibration radio frequency signals and transmit the N duplicate reception calibration radio frequency signals to the corresponding antenna calibration coupling circuit units respectively over the calibration radio frequency channel corresponding to the N arrays of active antennas; and each antenna calibration coupling circuit unit is configured to split the received one reception calibration radio frequency signal into M reception calibration radio frequency signals.

    [0011] In an implementation, each array of active antennas further includes: an array of filters, an array of Power Amplifiers (PAs) and Low-Noise Amplifiers (LNAs), and an array of transceivers, which are connected sequentially. The array of filters is connected with the antenna calibration coupling circuit unit, and the array of transceivers is connected with the ROF photoelectric converting unit. The array of filters is configured to filter the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals. The array of PAs and LNAs is configured to amplify the power of the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals. And the array of transceivers is configured to convert the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals into M IQ analog signals, and to transmit the M IQ analog signals; or to convert received M IQ analog signals into the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals.

    [0012] In an implementation, the primary calibration coupling circuit unit includes: more than one merger-splitter; or, more than one merger-splitter and more than one coupler; or, more than one switch matrix.

    [0013] In an implementation, the transmission and reception calibrating unit includes a radio frequency signal amplifying unit and a transceiver unit, both of which are connected with each other. The radio frequency signal amplifying unit is connected with the primary calibration coupling circuit unit, and the transceiver unit is connected with the ROF photoelectric converting unit. Or, each array of filters includes M filters independent of each other. Or, each array of PAs and LNAs includes M power amplifiers independent of each other and M low-noise amplifiers independent of each other. Or, each array of transceivers includes M transceiver units.

    [0014] In a second aspect, an embodiment of the disclosure provides another active antenna device. The active antenna device includes: N arrays of active antennas, a primary calibration coupling circuit unit, a transmission and reception calibrating unit, a calibration parameter storage unit, a digital processing unit, and a digital optic fiber interface unit, where N is more than 1. Each of the arrays of active antennas includes at least an antenna calibration coupling circuit unit, and M antenna dipoles connected with the antenna calibration coupling circuit unit, where M is more than 1. The antenna calibration coupling circuit units of the arrays of active antennas are connected with the primary calibration coupling circuit unit over a calibration radio frequency channel, the primary calibration coupling circuit unit is connected with the transmission and reception calibrating unit, and the transmission and reception calibrating unit and the calibration parameter storage unit are connected respectively with the digital processing unit. The calibration parameter storage unit is configured to store transmission parameters of the calibration radio frequency channel of the N arrays of active antennas and transmit the transmission parameters to the digital processing unit. The antenna calibration coupling circuit unit of each array of active arrays is configured to couple received M calibration radio frequency signals into one transmission calibration radio frequency signal, and output the one transmission calibration radio frequency signal to the primary calibration coupling circuit unit over the calibration radio frequency channel; the primary calibration coupling circuit unit is configured to merge the N transmission calibration radio frequency signals transmitted by the N arrays of active arrays into one transmission calibration radio frequency signal; the transmission and reception calibrating unit is configured to amplify the power of the one transmission calibration radio frequency signal transmitted by the primary calibration coupling circuit unit, then demodulate the one transmission calibration radio frequency signal into a transmission calibration IQ analog signal and output the transmission calibration IQ analog signal to the digital processing unit; and the digital processing unit is configured to convert the transmission calibration IQ analog signal into a transmission calibration IQ digital signal and transmit the transmission calibration IQ digital signal through the digital optic fiber interface unit. And/or, the digital processing unit is configured to convert a reception calibration IQ digital signal received by the digital optic fiber interface unit into a reception calibration IQ analog signal; the transmission and reception calibrating unit is configured to modulate the reception calibration IQ analog signal transmitted by the digital processing unit into a reception calibration radio frequency signal, amplify the power of the reception calibration radio frequency signal and then transmit the power-amplified reception calibration radio frequency signal to the primary calibration coupling circuit unit; the primary calibration coupling circuit unit is configured to split the power-amplified reception calibration radio frequency signal into N duplicate reception calibration radio frequency signals and transmit the N duplicate reception calibration radio frequency signals to the corresponding antenna calibration coupling circuit units respectively over the calibration radio frequency channel corresponding to the N arrays of active antennas; and each antenna calibration coupling circuit unit is configured to split the received one reception calibration radio frequency signal into M reception calibration radio frequency signals.

    [0015] In an implementation, each array of active antennas further includes: an array of filters, an array of PAs and LNAs, and an array of transceivers, which are connected sequentially. The array of filters is connected with the antenna calibration coupling circuit unit, and the array of transceivers is connected with the digital processing unit. The array of filters is configured to filter the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals. The array of PAs and LNAs is configured to amplify the power of the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals. The array of transceivers is configured to convert the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals into M IQ analog signals, and to transmit the M IQ analog signals; or to convert received M IQ analog signals into the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals. Or, the primary calibration coupling circuit unit includes: more than one merger-splitter; or, more than one merger-splitter and more than one coupler; or, more than one switch matrix.

    [0016] In an implementation, the transmission and reception calibrating unit includes a radio frequency signal amplifying unit and a transceiver unit, both of which are connected with each other. The radio frequency signal amplifying unit is connected with the primary calibration coupling circuit unit, and the transceiver unit is connected with the digital processing unit.

    [0017] In a third aspect, an embodiment of the disclosure provides another communication system. The communication system includes the active antenna device according to any of the implementations of the second aspect and a baseband building device. The active antenna device and the baseband building device are connected over an optic fiber, and the baseband building device includes a digital optic fiber interface unit and a baseband unit. The digital optic fiber interface unit and the baseband unit are connected with each other. The baseband unit is configured to convert one preset reception calibration sequence into one reception calibration IQ digital signal and transmit the one reception calibration IQ digital signal to the digital optic fiber interface unit, and the digital optic fiber interface unit is configured to transmit the one reception calibration IQ digital signal over the optic fiber; and the baseband unit is configured to receive N*M reception calibration IQ digital signals transmitted by the digital optic fiber interface unit, revise the N*M reception calibration IQ digital signals using preset transmission parameters of N*M calibration radio frequency channels, and calculate reception calibration amplitude revision parameters and reception calibration phase revision parameters corresponding to respective radio frequency channels corresponding to the N*M calibration radio frequency channels according to the revised N*M reception calibration IQ digital signals, and the one preset reception calibration sequence. And/or, the baseband unit is configured to convert N*M preset transmission calibration sequences into N*M transmission calibration IQ digital signals, revise the N*M transmission calibration IQ digital signals using the preset transmission parameters of the N*M calibration radio frequency channels, and transmit the revised N*M transmission calibration IQ digital signals to the digital optic fiber interface unit, and the digital optic fiber interface unit is configured to convert the revised N*M transmission calibration IQ digital signals into an optical signal and transmit the optical signal over the optic fiber; and the baseband unit is configured to receive one transmission calibration IQ digital signal transmitted by the digital optic fiber interface unit and calculate transmission calibration amplitude revision parameters and transmission calibration phase revision parameters of the respective radio frequency channels corresponding to the N*M calibration radio frequency channels according to the received one transmission calibration IQ digital signal, and the N*M preset transmission calibration sequences. The received N*M reception calibration IQ digital signals are signals obtained after the one reception calibration IQ digital signal has been transmitted firstly over one calibration radio frequency channel of the active antenna device and then over N*M radio frequency channels of the active antenna device, and then received over the optic fiber and processed by the digital optic fiber interface unit. The received one transmission calibration IQ digital signal is a signal obtained after the revised N*M transmission calibration IQ digital signals have been transmitted firstly over the N*M radio frequency channels of the active antenna device and then over the calibration radio frequency channel of the active antenna device, and then received over the optic fiber and processed by the digital optic fiber interface unit. The preset transmission parameters of the N*M calibration radio frequency channels are received over the optic fiber, and then transmitted by the digital optic fiber interface unit to the baseband unit.

    [0018] In an implementation, the baseband unit is further configured to: obtain uplink data, revise the amplitude of the uplink data using the reception calibration amplitude revision parameters, and revise the phase of the uplink data using the reception calibration phase revision parameters. And the uplink data is obtained as a result of an uplink signal being received over the optic fiber, and transmitted by the digital optic fiber interface unit to the baseband unit.

    [0019] In an implementation, the baseband unit is further configured to: perform beam-forming on data to be transmitted, revise the amplitude of the beam-formed data using the transmission calibration amplitude revision parameters, revise the phase of the beam-formed data using the transmission calibration phase revision parameters, and then transmit the data to the digital optic fiber interface unit, so that the digital optic fiber interface unit converts the data into an optical signal, and then transmits the optical signal over the optic fiber.

    [0020] With the technical solutions above, in the embodiments of the disclosure, the antenna calibration coupling circuit unit, the calibration radio frequency channel, the primary calibration coupling circuit unit, the transmission and reception calibrating unit, and the calibration parameter storage unit are additionally arranged in the active antenna unit to thereby provide a hardware support for transmission and reception calibration, so that transmission and reception calibration on the respective radio frequency channels can be performed using the active antenna device including the calibration radio frequency channel and the calibration circuit, and the extensible design of the antenna radio frequency channels can be carried out using the active antenna unit while guaranteeing uniform performance of the respective antenna radio frequency channels to thereby make it less difficult to engineer the array of antennas while guaranteeing the implementation reliability thereof.

    Brief Description of the Drawings



    [0021] In order to make the technical solutions according to the embodiments of the disclosure more apparent, the drawings to which a description of the embodiments art refers will be briefly introduced below, and apparently the drawings to be described below are merely illustrative of some of the embodiments of the disclosure, and those ordinarily skilled in the art can derive from these drawings other drawings without any inventive effort.

    Fig. 1 is a schematic architectural diagram of an existing distributed communication system.

    Fig. 2 is a schematic structural diagram of an array of active antennas according to an embodiment of the disclosure.

    Fig. 3 is a schematic structural diagram of a massive active antenna device according to an embodiment of the disclosure.

    Fig. 4 is a schematic structural diagram of a transmission and reception calibrating unit according to an embodiment of the disclosure.

    Fig. 5 is a schematic structural diagram of another massive active antenna device according to an embodiment of the disclosure.

    Fig. 6 is a schematic structural diagram of a massive baseband building device according to an embodiment of the disclosure.

    Fig. 7 is a schematic structural diagram of another massive baseband building device according to an embodiment of the disclosure.

    Fig. 8 is a schematic architectural diagram of a communication system according to an embodiment of the disclosure.

    Fig. 9 is a schematic architectural diagram of another communication system according to an embodiment of the disclosure.

    Fig. 10 is a schematic diagram of a reception calibrating process according to an embodiment of the disclosure.

    Fig. 11 is a schematic diagram of a transmission calibrating process according to an embodiment of the disclosure.


    Detailed Description of the Embodiments



    [0022] In order to make the objects, technical solutions, and advantages of the disclosure more apparent, the disclosure will be described below in further details with reference to the drawings, and apparently the embodiments described below are only a part but not all of the embodiments of the disclosure. Based upon the embodiments here of the disclosure, all the other embodiments which can occur to those skilled in the art without any inventive effort shall fall into the scope of the disclosure.

    [0023] For a massive active antenna system with N more than or equal to 64, if N radio frequency channels are not uniform, then N uplink signals or downlink signals may not be merged for optimum performance, so it will be crucial to calibrate the N radio frequency channels.

    [0024] Also for the massive active antenna system with N more than or equal to 64, it will be also crucial to extend flexibly the system to a massive active antenna system with N being 128 or 256.

    [0025] There is a tradeoff between the extensibility of the system, and the calibration consistency between the N antennas because the N antennas need to be calibrated by coupling N signals into one signal, and the extensibility of the system needs to take into account the structures of respective sub-arrays.

    [0026] In a first embodiment of the disclosure, there is provided an array of active antennas 21 as illustrated in Fig. 2 including an array of filters 201, an array of PAs and LNAs 202, and an array of transceivers 203, which are connected sequentially, and M antenna dipoles 204, where M is more than 1, the M antenna dipoles 204 are connected with an antenna calibration coupling circuit unit 205, and the antenna calibration coupling circuit unit 205 is connected with the array of filters 201, and further with one calibration radio frequency channel.

    [0027] Here the M antenna dipoles 204 are configured to receive and convert an electromagnetic wave into M radio frequency signals, or to receive and convert M radio frequency signals into an electromagnetic wave, and then transmit the electromagnetic wave.

    [0028] The antenna calibration coupling circuit unit 205 is configured to transmit the radio frequency signals between the array of filters 201 and the M antenna dipoles 204 while the radio frequency signals are being transmitted; and to couple M calibration radio frequency signals transmitted by the array of filters 201 into one calibration radio frequency signal, and to output the calibration radio frequency signal over the calibration radio frequency channel; or to receive one calibration radio frequency signal over the calibration radio frequency channel, to split the received calibration radio frequency signal into M calibration radio frequency signals, and to transmit the M calibration radio frequency signals to the array of filters 201, while the received or transmitted signals are being calibrated.

    [0029] The array of filters 201 is configured to filter the M radio frequency signals.

    [0030] The array of PAs and LNAs 202 is configured to amplify power of the M radio frequency signals.

    [0031] The array of transceivers 203 is configured to convert the M radio frequency signals into M IQ analog signals, and to transmit the M IQ analog signals; or to convert received M IQ analog signals into the radio frequency signals.

    [0032] In a particular implementation, the array of filters 201 includes M filters independent of each other.

    [0033] In a particular implementation, the array of PAs and LNAs 202 includes M power amplifier independent of each other, and M low-noise amplifiers independent of each other.

    [0034] In a particular implementation, the array of transceivers 203 includes M transceiver units.

    [0035] In a particular implementation, the antenna dipoles 204 can be uni-polarized antenna dipoles, or can be duly- polarized antenna dipoles or multi-polarized antenna dipoles.

    [0036] Particularly while the signals are being transmitted, the array of transceivers modulates and up-converts input M IQ analog signals into M radio frequency signals; the power of the M radio frequency signals is amplified by the array of PAs and LNAs, and the M radio frequency signals are filtered by the array of filters into M radio frequency signals with a corresponding spectrum; and the M radio frequency signals with the corresponding spectrum are transmitted by the antenna calibration coupling circuit unit to the M antenna dipoles, and converted by the M antenna dipoles into the electromagnetic wave, and the electromagnetic wave is transmitted to the space.

    [0037] Particularly while the signals are being received, the M antenna dipoles convert the received electromagnetic wave from the space into M radio frequency signals, and the M radio frequency signals are transmitted by the antenna calibration coupling circuit unit to the array of filters for radio frequency filtering into M radio frequency signals with a corresponding spectrum; the power of the M radio frequency signals with the corresponding spectrum is amplified by the array of PAs and LNAs, and then the M radio frequency signals with the corresponding spectrum are output to the array of transceivers; and the array of transceivers down-converts and demodulates the M radio frequency signals from the array of PAs and LNAs into M IQ analog signals, and outputs the M IQ analog signals.

    [0038] Particularly during transmission calibration over the antenna radio frequency channels, M transmission calibration IQ analog signals are input to the array of transceivers, and modulated and up-converted by the array of transceivers into M transmission calibration radio frequency signals; the power of the M transmission calibration radio frequency signals is amplified by the array of PAs and LNAs, and the M transmission calibration radio frequency signals are filtered by the array of filters into M transmission calibration radio frequency signals with a corresponding spectrum; and the M transmission calibration radio frequency signals with the corresponding spectrum are input to the antenna calibration coupling circuit unit, and coupled by the antenna calibration coupling circuit unit into one transmission calibration radio frequency signal, and the one transmission calibration radio frequency signal is output over the one calibration radio frequency channel.

    [0039] Particularly during reception calibration over the antenna radio frequency channels, one reception calibration radio frequency signal is input to the antenna calibration coupling circuit unit, over the one calibration radio frequency channel, and split by the antenna calibration coupling circuit unit into M reception calibration radio frequency signals, and the M reception calibration radio frequency signals are output to the array of filters for radio frequency filtering into M reception calibration radio frequency signals with a corresponding spectrum; the power of the M reception calibration radio frequency signals with the corresponding spectrum is power-amplified by the array of PAs and LNAs, and then the power-amplified M reception calibration radio frequency signals with the corresponding spectrum are output to the array of transceivers; and the array of transceivers down-converts and demodulates the M reception calibration radio frequency signals with the corresponding spectrum from the array of PAs and LNA into M reception calibration IQ analog signals, and outputs the M reception calibration IQ analog signals.

    [0040] Particularly in a particular implementation, if the system operates in non-antenna radio frequency channel calibration, then the antenna calibration coupling circuit unit will receive M radio frequency signals from the array of filters, and transmit the M radio frequency signals to the M antenna dipoles, while the signals are being transmitted; and the antenna calibration coupling circuit unit will receive radio frequency signals from the M antenna dipoles, and transmit the M radio frequency signals to the array of filters, while the signals are being received.

    [0041] While the system operates in antenna radio frequency channel calibration, then the antenna calibration coupling circuit unit will receive M calibration radio frequency signals from the array of filters and couple the M calibration radio frequency signals to the one calibration radio frequency channel and output as one calibration radio frequency signal, during transmission calibration; and the antenna calibration coupling circuit unit will receive an input of a calibration radio frequency signal from the one calibration radio frequency channel, couple the input calibration radio frequency signal into M calibration radio frequency signals, and transmit the M calibration radio frequency signals to the array of filters, during reception calibration.

    [0042] In a particular implementation, the array of filters performs radio frequency filtering on radio frequency signals, and controls the transmitted and received radio frequency signals to lie within certain range of frequencies to thereby alleviate inter-system interference. The array of filters perform radio filtering on the radio frequency signals from the array of PAs and LNAs, and transmit the filtered radio frequency signals to the antennal calibration coupling circuit unit, while the signals are being transmitted. The array of filters performs radio filtering on the radio frequency signals from the antennal calibration coupling circuit unit, and transmit the filtered radio frequency signals to the array of PAs and LNAs, while the signals are being received.

    [0043] In a particular implementation, the array of PAs and LNAs amplifies the power of transmission (or reception) signals by amplifying the power of the M radio frequency signals from the array of transceivers, and inputting the power-amplified M radio frequency signals to the array of filters, while the signals are being transmitted; and amplifying the power of the M radio frequency signals from the array of filters, and inputting the power-amplified M radio frequency signals to the array of transceivers, while the signals are being received.

    [0044] In a particular implementation, the array of transceivers modules and up-converts input M IQ analog signals into radio frequency signals, and outputs the radio frequency signals to the array of PAs and LNAs, while the signals are being transmitted; and down-converts and demodulates M radio frequency signals from the array of PAs and LNAs into M IQ analog signals while the signals are being received.

    [0045] In a second embodiment of the disclosure, there is provided an active antenna device 31 as illustrated in Fig. 3, where the massive active antenna unit includes an ROF photoelectric converting unit 301 and N arrays of active antennas 21, where N is more than 1, and the massive active antenna unit further includes a primary calibration coupling circuit unit 302 and a transmission and reception calibrating unit 303; and further includes a calibration parameter storage unit 304 connected with the ROF photoelectric converting unit 301.

    [0046] Here reference can be made to the description of the first embodiment for a particular implementation of the arrays of active antennas 21, and particularly each array of active antennas 21 includes an array of filters 201, an array of PAs and LNAs 202, and an array of transceivers 203, which are connected sequentially, and M antenna dipoles 204, where M is more than 1, the M antenna dipoles 204 are connected with an antenna calibration coupling circuit unit 205, and the antenna calibration coupling circuit unit 205 is connected with the array of filters 201, and further with one calibration radio frequency channel.

    [0047] Here the antenna calibration coupling circuit unit 205 of each array of active antennas 21 is connected with the primary calibration coupling circuit unit 302 over the calibration radio frequency channel, the primary calibration coupling circuit unit 302 is connected with the transmission and reception calibrating unit 303, and the transmission and reception calibrating unit 303 and the calibration parameter storage unit 304 are connected respectively with the ROF photoelectric converting unit 301.

    [0048] Here the calibration parameter storage unit 304 is configured to store transmission parameters of the calibration radio frequency channels of the N arrays of active antennas 21, and to transmit the stored transmission parameters to the ROF photoelectric converting unit 301, so that the ROF photoelectric converting unit 301 converts the transmission parameters into an optical signal, and transmits the optical signal over an optic fiber.

    [0049] In a particular implementation, the N arrays of active antennas can be configured in a planar array structure, a cylindrical structure, or any other possible structure.

    [0050] Here the ROF photoelectric converting unit 301 and the arrays of active antennas 21 process signals being received, and signals being transmitted in different processes particularly as follows.

    [0051] Firstly signals are received particularly as follows: each array of active antennas 21 converts a received electromagnetic wave into M radio frequency signals through the M antenna dipoles 204, and the antenna calibration coupling circuit unit 205 receives and transmits the M radio frequency signals to the array of filters 201, so that the M radio frequency signals are filtered by the array of filters 201, and then transmitted to the array of PAs and LNAs 202 for power amplification, and the power-amplified M radio frequency signals are converted by the array of transceivers 203 into M IQ analog signals , and the M IQ analog signals are transmitted to the ROF photoelectric converting unit 301; and, the ROF photoelectric converting unit 301 converts the N*M IQ analog signals transmitted by the N arrays of active antennas 21 into an optical signal, and transmits the optical signal over the optic fiber.

    [0052] Secondly signals are transmitted particularly as follows: the ROF photoelectric converting unit 301 converts an optical signal received over the optic fiber into N*M IQ analog signals, splits the N*M IQ analog signals into N groups, and transmits the N groups of IQ analog signals respectively to the N arrays of active antennas 21; and, each array of active antennas 21 converts the M IQ analog signals received through the array of transceivers 203 into M radio frequency signals; and then the power of the M radio frequency signals is amplified by the array of PAs and LNAs 202, and the power-amplified M radio frequency signals are filtered by the array of filters 201, and then the filtered M radio frequency signals are transmitted by the antenna calibration coupling circuit unit 205 respectively to the M antenna dipoles 204, and converted by the M antenna dipoles 204 into an electromagnetic wave which is further transmitted.

    [0053] During calibration, there may be the following two processes of reception calibration and transmission calibration.

    [0054] Firstly signals are processed during transmission calibration particularly as follows: the antenna calibration coupling circuit unit 205 of each array of active arrays 21 couples received M calibration radio frequency signals into one transmission calibration radio frequency signal, and outputs the one transmission calibration radio frequency signal to the primary calibration coupling circuit unit 302 over the calibration radio frequency channel; the primary calibration coupling circuit unit 302 merges the N transmission calibration radio frequency signals transmitted by the N arrays of active arrays 21 into one transmission calibration radio frequency signal; the transmission and reception calibrating unit 303 amplifies the power of the one transmission calibration radio frequency signal transmitted by the primary calibration coupling circuit unit 302, and then demodulates the one transmission calibration radio frequency signal into a transmission calibration IQ analog signal, and outputs the transmission calibration IQ analog signal to the ROF photoelectric converting unit 301; and the ROF photoelectric converting unit 301 converts the transmission calibration IQ analog signal into an optical signal, and transmits the optical signal over the optic fiber.

    [0055] Secondly signals are processed during reception calibration particularly as follows: the transmission and reception calibrating unit 303 modulates a reception calibration IQ analog signal transmitted by the ROF photoelectric converting unit 301 into a reception calibration radio frequency signal, amplifies the power of the reception calibration radio frequency signal, and then transmits the power-amplified reception calibration radio frequency signal to the primary calibration coupling circuit unit 302; the primary calibration coupling circuit unit 302 splits the power-amplified reception calibration radio frequency signal into N duplicate reception calibration radio frequency signals, and transmits the N duplicate reception calibration radio frequency signals to the corresponding antenna calibration coupling circuit units 205 respectively over the calibration radio frequency channel corresponding to the N arrays of active antennas 21; and each antenna calibration coupling circuit unit 205 splits the received one reception calibration radio frequency signal into M reception calibration radio frequency signals.

    [0056] In a particular implementation, the primary calibration coupling circuit unit 302 includes more than one merger-splitter, or more than one merger-splitter and coupler, or more than one switch matrix.

    [0057] In a particular implementation, as illustrated in Fig. 4, the transmission and reception calibrating unit 303 includes a radio frequency signal amplifying unit 401 and a transceiver unit 402, both of which are connected with each other, and particularly the radio frequency signal amplifying unit 401 is connected with the primary calibration coupling circuit unit 302, and the transceiver unit 402 is connected with the ROF photoelectric converting unit 301. In the process of transmission calibration over antenna radio frequency channel, the transmission and reception calibrating unit amplifies the power of the one transmission calibration radio frequency signal from the primary calibration coupling circuit unit, down-converts and demodulates the one transmission calibration radio frequency signal into the transmission calibration IQ analog signal, and outputs the transmission calibration IQ analog signal to the ROF photoelectric converting unit. In the process of reception calibration over antenna radio frequency channel, the transmission and reception calibrating unit modulates and up-converts the reception calibration IQ analog signal from the ROF photoelectric converting unit into the reception calibrated radio frequency signal, amplifies the radio frequency power of the reception calibrated radio frequency signal, and outputs the power-amplified reception calibrated radio frequency signal to the primary calibration coupling circuit unit.

    [0058] In a particular implementation, each array of filters 201 includes M filters independent of each other.

    [0059] In a particular implementation, each array of PAs and LNAs 202 includes M power amplifiers independent of each other, and M low-noise amplifiers independent of each other.

    [0060] In a particular implementation, each array of transceivers 203 includes M transceiver units.

    [0061] In a third embodiment of the disclosure, there is provided an active antenna device 51 as illustrated in Fig. 5, where the massive active antenna device includes a digital processing unit 501, an optic fiber interface unit 502, a primary calibration coupling circuit unit 503, a transmission and reception calibrating unit 504, and N arrays of active antennas 21, where N is more than 1.

    [0062] The N arrays of active antennas 21 are connected respectively with the digital processing unit 501, and the digital processing unit 501 is connected with the optic fiber interface unit 502.

    [0063] The active antenna unit 51 further includes a calibration parameter storage unit 505 connected with the digital processing unit 501.

    [0064] Here reference can be made to the description of the first embodiment for a particular implementation of the arrays of active antennas 21, and particularly each array of active antennas 21 includes an array of filters 201, an array of PAs and LNAs 202, and an array of transceivers 203, which are connected sequentially, and M antenna dipoles 204, where M is more than 1, the M antenna dipoles 204 are connected with an antenna calibration coupling circuit unit 205, and the antenna calibration coupling circuit unit 205 is connected with the array of filters 201, and further with one calibration radio frequency channel.

    [0065] Here the antenna calibration coupling circuit unit 205 of each array of active antennas 21 is connected with the primary calibration coupling circuit unit 503 over the calibration radio frequency channel, the primary calibration coupling circuit unit 503 is connected with the transmission and reception calibrating unit 504, and the transmission and reception calibrating unit 504, and the calibration parameter storage unit 505 are connected respectively with the digital processing unit 501.

    [0066] Here the calibration parameter storage unit 505 is configured to store transmission parameters of the calibration radio frequency channels of the N arrays of active antennas 21, and to transmit the transmission parameters to the digital processing unit 501.

    [0067] In a particular implementation, the N arrays of active antennas can be configured in a planar array structure, a cylindrical structure, or any other possible structure.

    [0068] Here signals being received, and signals being transmitted are processed in different processes particularly as follows.

    [0069] Firstly signals are received particularly as follows: each array of active antennas 21 converts a received electromagnetic wave into M radio frequency signals through the M antenna dipoles 204, and transmits the M radio frequency signals to the array of filters 201 through the antenna calibration coupling circuit unit 205; the M radio frequency signals are filtered by the array of filters 201, and then transmitted to the array of PAs and LNAs 202 for power amplification; and the power-amplified M radio frequency signals are converted by the array of transceivers 203 into M IQ analog signals and then the M IQ analog signals are transmitted to the digital processing unit 501; the digital processing unit 501 converts the N*M IQ analog signals transmitted by the N arrays of active antennas 21 into N*M IQ digital signals; and, the optic fiber interface unit 502 converts the N*M IQ digital signals transmitted by the digital processing unit 501 into an optical signal, and transmits the optical signal over the optic fiber.

    [0070] Secondly signals are transmitted particularly as follows: the optic fiber interface unit 502 converts an optical signal received over the optic fiber into N*M IQ digital signals; the digital processing unit 501 converts the N*M IQ digital signals transmitted by the optic fiber interface unit 502 into N*M IQ analog signals, divides the N*M IQ analog signals into N groups, and transmits the N groups of IQ analog signals respectively to the N arrays of active antennas 21; and, each array of active antennas 21 converts the M IQ analog signals received through the array of transceivers 203 into M radio frequency signals; and then the power of the M radio frequency signals is amplified by the array of PAs and LNAs 202, and the power-amplified M radio frequency signals are filtered by the array of filters 201, and then the filtered M radio frequency signals are transmitted by the antenna calibration coupling circuit unit 205 respectively to the M antenna dipoles 204, and converted by the M antenna dipoles 204 into an electromagnetic wave which is further transmitted.

    [0071] During calibration, there may be the following two processes of reception calibration and transmission calibration.

    [0072] Firstly signals are processed during transmission calibration particularly as follows: the antenna calibration coupling circuit unit of each array of active antennas couples received M calibration radio frequency signals into one transmission calibration radio frequency signal, and outputs the one transmission calibration radio frequency signal to the primary calibration coupling circuit unit over the calibration radio frequency channel; the primary calibration coupling circuit unit merges the N transmission calibration radio frequency signals transmitted by the N arrays of active antennas into one transmission calibration radio frequency signal; the transmission and reception calibrating unit amplifies the power of the one transmission calibration radio frequency signal transmitted by the primary calibration coupling circuit unit, and then demodulates the one transmission calibration radio frequency signal into a transmission calibration IQ analog signal, and outputs the transmission calibration IQ analog signal to the digital processing unit; and the digital processing unit converts the transmission calibration IQ analog signal into a transmission calibration IQ digital signal, and transmits the transmission calibration IQ digital signal through the optic fiber interface unit.

    [0073] Particularly in the process of transmission calibration of antenna radio frequency, the N arrays of active antennas receive N*M transmission calibration IQ analog signals from the digital processing unit, converts the N*M transmission calibration IQ analog signals into N*M transmission calibration radio frequency signals, couples the N*M transmission calibration radio frequency signals into N transmission calibration radio frequency signals, and outputs the N transmission calibration radio frequency signals to the primary calibration coupling circuit unit.

    [0074] Secondly signals are processed during reception calibration particularly as follows: the digital processing unit converts a reception calibration IQ digital signal received through the optic fiber interface unit into a reception calibration IQ analog signal; the transmission and reception calibrating unit modulates the reception calibration IQ analog signal transmitted by the digital processing unit into a reception calibration radio frequency signal, amplifies the power of the reception calibration radio frequency signal, and then transmits the reception calibration radio frequency signal to the primary calibration coupling circuit unit; the primary calibration coupling circuit unit splits the power-amplified reception calibration radio frequency signal into N duplicate reception calibration radio frequency signals, and transmits the N duplicate reception calibration radio frequency signals to the corresponding antenna calibration coupling circuit units respectively over the calibration radio frequency channel corresponding to the N arrays of active antennas; and each antenna calibration coupling circuit unit splits the received one reception calibration radio frequency signal into M reception calibration radio frequency signals.

    [0075] Particularly in the process of reception calibration over antenna radio frequency channel, the N arrays of active antennas receive N reception calibration radio frequency signals from the primary calibration coupling circuit unit, split the received N reception calibration radio frequency signals into N*M reception calibration radio frequency signals, convert the N*M reception calibration radio frequency signals into N*M reception calibration IQ analog signals, and output the N*M reception calibration IQ analog signals to the digital processing unit.

    [0076] In a particular implementation, the primary calibration coupling circuit unit 503 includes more than one merger-splitter, or more than one merger-splitter and coupler, or more than one switch matrix.

    [0077] In a particular implementation, like the previous embodiment, the transmission and reception calibrating unit 504 includes a radio frequency signal amplifying unit and a transceiver unit, both of which are connected with each other, and particularly the radio frequency signal amplifying unit is connected with the primary calibration coupling circuit unit 503, and the transceiver unit is connected with the digital processing unit 501. In the process of transmission calibration over antenna radio frequency channel, the transmission and reception calibrating unit amplifies the power of the one transmission calibration radio frequency signal from the primary calibration coupling circuit unit, down-converts and demodulates the one power-amplified transmission calibration radio frequency signal into the transmission calibration IQ analog signal, and outputs the transmission calibration IQ analog signal to the digital processing unit. In the process of reception calibration over antenna radio frequency channel, the transmission and reception calibrating unit modulates and up-converts the reception calibration IQ analog signal received from the digital processing unit into the reception calibrated radio frequency signal, amplifies the radio frequency power of the reception calibrated radio frequency signal, and outputs the power-amplified reception calibrated radio frequency signal to the primary calibration coupling circuit unit.

    [0078] In a particular implementation, each array of filters 201 includes M filters independent of each other.

    [0079] In a particular implementation, each array of PAs and LNAs 202 includes M power amplifier independent of each other, and M low-noise amplifiers independent of each other.

    [0080] In a particular implementation, each array of transceivers 203 includes M transceiver units.

    [0081] In correspondence to the active antenna device 31 according to the second embodiment, there is provided in a further example a baseband building device 61 as illustrated in Fig. 6 including an ROF photoelectric converting unit 601, a digital processing unit 602, and a baseband unit 603, which are connected sequentially.

    [0082] Here signals being received, and signals being transmitted are processed in different processes particularly as follows.

    [0083] Firstly signals are received particularly as follows: the ROF photoelectric converting unit 601 converts a received optical signal into N*M IQ analog signals, where N is more than 1, and M is more than 1; the digital processing unit 602 converts the N*M IQ analog signals received from the ROF photoelectric converting unit 601 into N*M IQ digital signals; and, the baseband unit 603 performs data processing in the N*M IQ digital signals received from the digital processing unit 602 to obtain received data.

    [0084] Secondly signals are transmitted particularly as follows: the baseband unit 603 performs data process in the data to be transmitted and obtains N*M IQ digital signals; the digital processing unit 602 converts the N*M IQ digital signals received from the baseband unit 603 into N*M IQ analog signals; and, the ROF photoelectric converting unit 601 converts the N*M IQ analog signals received from the digital processing unit 602 into an optical signal, and transmits the optical signal over the optic fiber.

    [0085] During calibration process, there may be the following two processes of reception calibration and transmission calibration.

    [0086] Firstly signals are processed during reception calibration particularly as follows: the baseband unit converts one preset reception calibration sequence into one reception calibration IQ digital signal, and transmits the one reception calibration IQ digital signal to the digital processing unit; and receives N*M reception calibration IQ digital signals, revises the N*M reception calibration IQ digital signals using N*M preset transmission parameters of calibration radio frequency channels, and calculates reception calibration amplitude revision parameters and reception calibration phase revision parameters corresponding to respective radio frequency channels corresponding to the calibration radio frequency channels according to the revised N*M reception calibration IQ digital signals, and the reception calibration sequence.

    [0087] Here the received N*M reception calibration IQ digital signals are obtained as a result of the one reception calibration IQ digital signal being transmitted over the one calibration radio frequency channel and the N*M radio frequency channels of the active antenna device in that order, and then received over the optic fiber, and processed by the ROF photoelectric converting unit and the digital processing unit.

    [0088] Here the N*M preset transmission parameters of the calibration radio frequency channel are received over the optic fiber, and then transmitted by the ROF photoelectric converting unit and the digital processing unit to the baseband unit.

    [0089] In an implementation, the baseband unit 603 obtains uplink data, revises the amplitude of the uplink data using the reception calibration amplitude revision parameters, and revises the phase of the uplink data using the reception calibration phase revision parameters.

    [0090] Here the uplink data is obtained as a result of an uplink signal being received over the optic fiber, and then transmitted by the ROF photoelectric converting unit 601 and the digital processing unit 602 to the baseband unit 603.

    [0091] Secondly signals are processed during transmission calibration particularly as follows: the baseband unit converts N*M preset transmission calibration sequences into N*M transmission calibration IQ digital signals, revises the N*M transmission calibration IQ digital signals of the corresponding calibration radio frequency channels using the N*M preset transmission parameters of the calibration radio frequency channels, and transmits the revised N*M transmission calibration IQ digital signals to the digital processing unit, and the digital processing unit converts the revised N*M transmission calibration IQ digital signals into N*M transmission calibration IQ analog signals, and then the ROF photoelectric converting unit converts the N*M transmission calibration IQ analog signals into an optical signal, and transmits the optical signal over the optic fiber; and the baseband unit receives one transmission calibration IQ digital signal, and calculates transmission calibration amplitude revision parameters and transmission calibration phase revision parameters of the respective radio channels corresponding to the calibration radio frequency channel according to the received one transmission calibration IQ digital signal, and the N*M preset transmission calibration sequences.

    [0092] Here the received one transmission calibration IQ digital signal is obtained as a result of the revised N*M transmission calibration IQ digital signals being transmitted over the N*M radio frequency channels and the one calibration radio frequency channel of the active antenna device in that order, and then received over the optic fiber, and processed by the ROF photoelectric converting unit and the digital processing unit.

    [0093] Here the N*M preset transmission parameters of the calibration radio frequency channels are received over the optic fiber, and then transmitted by the ROF photoelectric converting unit and the digital processing unit to the baseband unit.

    [0094] In an implementation, the baseband unit 603 performs beam-forming on data to be transmitted, revises the amplitude of the beam-formed data using the transmission calibration amplitude revision parameters, revises the phase of the beam-formed data using the transmission calibration phase revision parameters, and then transmits the data to the digital processing unit 602, and the data is processed by the digital processing unit 602 and the ROF photoelectric converting unit 601, and then transmitted over the optic fiber.

    [0095] Particularly the baseband unit performs beam-forming, signal detection, calibration detection, calibration compensation, and other functions. The calibration detection function includes transmission calibration, reception calibration, etc. The calibration compensation function includes transmission calibration compensation and reception calibration compensation. During transmission, the baseband unit performs beam-forming and transmission calibration compensation on the data to be transmitted, and then generates and outputs N*M IQ digital signals to the digital processing unit. During reception, the baseband unit performs reception calibration compensation on N*M IQ digital signals from the digital processing unit, and then performs signal detection thereon to obtain received data.

    [0096] In correspondence to the active antenna unit 51 according to the third embodiment, there is provided in a further example a baseband building device 71 as illustrated in Fig. 7, where the massive baseband building device 71 includes an optic fiber interface unit 701 and a baseband unit 702, both of which are connected with each other.

    [0097] Here signals being received, and signals being transmitted are processed in different processes particularly as follows.

    [0098] Firstly signals are received particularly as follows: the optic fiber interface unit 701 converts a received optical signal into N*M IQ digital signals, where N is more than 1, and M is more than 1; and, the baseband unit 702 performs data processing on the N*M IQ digital signals received from the optic fiber interface unit 701 to obtain receive data.

    [0099] Secondly signals are transmitted particularly as follows: the baseband unit 702 processes data to be transmitted into N*M IQ digital signals; and, the optic fiber interface unit 701 converts the N*M IQ digital signals received from the baseband unit 702 into an optical signal, and transmits the optical signal over the optic fiber.

    [0100] During calibration, there may be the following two processes of reception calibration and transmission calibration.

    [0101] Firstly signals are processed during reception calibration particularly as follows: the baseband unit converts one preset reception calibration sequence into one reception calibration IQ digital signal, and transmits the one reception calibration IQ digital signal to the optic fiber interface unit, and the optic fiber interface unit transmits the one reception calibration IQ digital signal over the optic fiber; and the baseband unit receives N*M reception calibration IQ digital signals transmitted by the optic fiber interface unit, revises the N*M reception calibration IQ digital signals using N*M preset transmission parameters of calibration radio frequency channels, and calculates reception calibration amplitude revision parameters and reception calibration phase revision parameters corresponding to respective radio frequency channels corresponding to the calibration radio frequency channels according to the revised N*M reception calibration IQ digital signals, and the reception calibration sequence.

    [0102] Here the received N*M reception calibration IQ digital signals are obtained as a result of the one reception calibration IQ digital signal being transmitted over the one calibration radio frequency channel and the N*M radio frequency channels of the active antenna device in that order, and then received over the optic fiber, and processed by the optic fiber interface unit.

    [0103] Here the N*M preset transmission parameters of the calibration radio frequency channels are received over the optic fiber, and then transmitted by the optic fiber interface unit to the baseband unit.

    [0104] In an implementation, the baseband unit 702 obtains uplink data, revises the amplitude of the uplink data using the reception calibration amplitude revision parameters, and revises the phase of the uplink data using the reception calibration phase revision parameters.

    [0105] Here the uplink data is obtained as a result of an uplink signal being received over the optic fiber, and then transmitted by the optic fiber interface unit 701 to the baseband unit 702.

    [0106] Secondly signals are processed during transmission calibration particularly as follows: the baseband unit converts N*M preset transmission calibration sequences into N*M transmission calibration IQ digital signals, revises the N*M transmission calibration IQ digital signals of the corresponding calibration radio frequency channels using the N*M preset transmission parameters of the calibration radio frequency channels, and transmits the revised N*M transmission calibration IQ digital signals to the optic fiber interface unit, and the optic fiber interface unit converts the revised N*M transmission calibration IQ digital signals into an optical signal, and transmits the optical signal over the optic fiber; and the baseband unit receives one transmission calibration IQ digital signal transmitted by the optic fiber interface unit, and calculates transmission calibration amplitude revision parameters and transmission calibration phase revision parameters of the respective radio channels corresponding to the calibration radio frequency channels according to the received one transmission calibration IQ digital signal, and the N*M preset transmission calibration sequences.

    [0107] Here the received one transmission calibration IQ digital signal is obtained as a result of the revised N*M transmission calibration IQ digital signals being transmitted over the N*M radio frequency channels and the one calibration radio frequency channel of the active antenna device in that order, and then received over the optic fiber, and processed by the optic fiber interface unit.

    [0108] Here the N*M preset transmission parameters of the calibration radio frequency channels are received over the optic fiber, and then transmitted by the optic fiber interface unit to the baseband unit.

    [0109] In an implementation, the baseband unit 702 performs beam-forming on data to be transmitted, revises the amplitude of the beam-formed data using the transmission calibration amplitude revision parameters, revises the phase of the beam-formed data using the transmission calibration phase revision parameters, and then transmits the data to the optic fiber interface unit 701, and the data is processed by the optic fiber interface unit 701, and then transmitted over the optic fiber.

    [0110] Particularly the baseband unit performs beam-forming, signal detection, calibration detection, calibration compensation, and other functions. The calibration detection function includes transmission calibration, reception calibration, etc. The calibration compensation function includes transmission calibration compensation and reception calibration compensation. During transmission, the baseband unit performs beam-forming and transmission calibration compensation on the data to be transmitted, and then generates and outputs N*M IQ digital signals to the optic fiber interface unit. During reception, the baseband unit performs reception calibration compensation on N*M IQ digital signals from the optic fiber interface unit, and then performs signal detection thereon to obtain received data.

    [0111] In a sixth embodiment of the disclosure, there is further provided a communication system as illustrated in Fig. 8 including the massive Active Antenna Unit (AAU) 31 according to the second embodiment, and the massive Baseband unit (BBU) 61 according to the fourth embodiment.

    [0112] Here the active antenna unit 31 is connected with the baseband unit 61.

    [0113] In this embodiment, reference can be made to the description of the second embodiment above for a particular structure of the active antenna unit 31.

    [0114] In this embodiment, reference can be made to the description of the fourth embodiment above for a particular structure of the baseband unit 61.

    [0115] In a seventh embodiment of the disclosure, there is further provided another communication system as illustrated in Fig. 9 including the massive Active Antenna Unit (AAU) 51 according to the third embodiment, and the massive Baseband unit (BBU) 61 according to the fifth embodiment.

    [0116] Here the active antenna unit 51 is connected with the baseband unit 71.

    [0117] In this embodiment, reference can be made to the description of the third embodiment above for a particular structure of the active antenna unit 51.

    [0118] In this embodiment, reference can be made to the description of the fifth embodiment above for a particular structure of the baseband unit 71.

    [0119] Based upon the same inventive idea, in an eighth embodiment of the disclosure, there is further provided a reception calibrating method for reception calibration on respective antenna radio frequency channels particularly as follows.

    [0120] A baseband unit converts one preset reception calibration sequence into one reception calibration IQ digital signal, and transmits the one reception calibration IQ digital signal to an active antenna unit, and the active antenna unit transmits the one reception calibration IQ digital signal over one calibration radio frequency channel and N*M radio frequency channels in that order, and then obtains N*M reception calibration IQ digital signals; and, the baseband unit receives the N*M reception calibration IQ digital signals, revises the N*M reception calibration IQ digital signals using N*M preset transmission parameters of the calibration radio frequency channels, and calculates reception calibration amplitude revision parameters and reception calibration phase revision parameters corresponding to the respective radio frequency channels corresponding to the calibration radio frequency channels according to the revised N*M reception calibration IQ digital signals, and the reception calibration sequence.

    [0121] Here the N*M preset transmission parameters of the calibration radio frequency channels are pre-stored in the active antenna unit; and the baseband unit retrieves the N*M preset transmission parameters of the calibration radio frequency channels from the active antenna unit.

    [0122] In an implementation, the baseband unit obtains uplink data, revises the amplitude of the uplink data using the reception calibration amplitude revision parameters, and revises the phase of the uplink data using the reception calibration phase revision parameters.

    [0123] Based upon the communication system according to the sixth and seventh embodiments above, a particular reception calibration process as illustrated in Fig. 10 is as follows.

    [0124] The step 1001 is to start reception calibration.

    [0125] In the step 1002, the massive AAU transmits the respective transmission parameters of the calibration radio frequency channels stored in the calibration parameter storage unit to the massive BBU, where the transmission parameters can be represented as Si, i = 1...,NM.

    [0126] In the step 1003, the massive BBU transmits the calibration sequence c over the one calibration radio frequency channel, and then receives respectively over the N*M radio frequency channels for reception calibration.

    [0127] In the step 1004, the massive BBU receives the N*M reception calibration IQ digital signals ri, i = 1,...,NM over the N*M radio frequency channels, where the reception calibration IQ digital signals are signals returned to the massive BBU after the calibration sequence c is transmitted over the calibration radio frequency channel of the massive AAU.

    [0128] In the step 1005, the massive BBU revises the reception calibration IQ digital signal corresponding to the i-th radio frequency channel into ri/si according to the reception calibration IQ digital signal corresponding to the i-th radio frequency channel, and the transmission parameter corresponding to the i-th radio frequency channel.

    [0129] In the step 1006, the massive BBU calculates a reception calibration amplitude revision parameter and a reception calibration phase revision parameter of each radio frequency channel according to the revised reception calibration IQ digital signal, and the calibration sequence.

    [0130] In the step 1007, the massive BBU receives the uplink data, and then revises the amplitude of the received uplink data according to the reception calibration amplitude revision parameters corresponding to the respective radio frequency channels, and revises the phase of the received uplink data according to the reception calibration phase revision parameters corresponding to the respective radio frequency channels to thereby ensure the amplitude and the phase to be uniform at the respective antenna dipole interfaces.

    [0131] In a further example there is further provided a transmission calibrating method for transmission calibration on respective antenna radio frequency channels particularly as follows.

    [0132] A baseband unit converts N*M preset transmission calibration sequences into N*M transmission calibration IQ digital signals, revises the N*M transmission calibration IQ digital signals of corresponding calibration radio frequency channels using N*M preset transmission parameters of the calibration radio frequency channels, and transmits the revised N*M transmission calibration IQ digital signals to an active antenna unit, and the active antenna unit transmits the revised N*M transmission calibration IQ digital signals over N*M radio frequency channels and the one calibration radio frequency channel in that order, and then obtains one transmission calibration IQ digital signal; and, the baseband unit receives the one transmission calibration IQ digital signal, and calculates transmission calibration amplitude revision parameters and transmission calibration phase revision parameters of the respective radio channels corresponding to the calibration radio frequency channels according to the received one transmission calibration IQ digital signal, and the N*M preset transmission calibration sequences.

    [0133] In an implementation, the N*M preset transmission parameters of the calibration radio frequency channels are pre-stored in the active antenna unit. The baseband unit retrieves the N*M preset transmission parameters of the calibration radio frequency channels from the active antenna unit.

    [0134] In an implementation, the baseband unit performs beam-forming on data to be transmitted, revises the amplitude of the beam-formed data using the transmission calibration amplitude revision parameters, revises the phase of the beam-formed data using the transmission calibration phase revision parameters, and then transmits the data to the active antenna unit.

    [0135] Based upon the communication system according to the sixth and seventh embodiments above, a particular reception calibration process as illustrated in Fig. 10 is as follows.

    [0136] The step 1101 is to start transmission calibration.

    [0137] In the step 1102, the massive AAU transmits the respective transmission parameters of the calibration radio frequency channels stored in the calibration parameter storage unit to the massive BBU, where the transmission parameters can be represented as Si, i = 1,...,NM

    [0138] In the step 1103, the massive BBU revises the calibration sequences ci (i = 1,...,NM) corresponding to the respective radio frequency channels to

    according to the transmission parameter of the calibration radio frequency channel corresponding to the respective radio frequency channel.

    [0139] In the step 1104, the massive BBU transmits the revised calibration sequences

    respectively over the N*M radio frequency channels, and then receives over the one calibration radio frequency channel for transmission calibration.

    [0140] In the step 1105, the massive BBU receives one mixed transmission calibration IQ digital signal r over the one calibration radio frequency channel, and calculates the transmission calibration amplitude revision parameter and the reception calibration phase revision parameter of each radio frequency channel according to the one mixed transmission calibration IQ digital signal, and the calibration sequence ci corresponding to the radio frequency channel.

    [0141] In the step 1106, the massive BBU performs beam-forming on the data to be transmitted, revises the amplitude of the beam-formed data according to the transmission calibration amplitude revision parameters, and revises the phase of the beam-formed data according to the transmission calibration phase revision parameters.

    [0142] With the technical solutions above, in the embodiments of the disclosure, the antenna calibration coupling circuit unit, the calibration radio frequency channel, the primary calibration coupling circuit unit, the transmission and reception calibrating unit, and the calibration parameter storage unit are additionally arranged in the active antenna unit to thereby provide a hardware support for transmission and reception calibration, so that transmission and reception calibration on the respective radio frequency channels can be performed using the active antenna unit including the calibration radio frequency channel and the calibration circuit, and the extensible design of the antenna radio frequency channels can be carried out using the active antenna unit while guaranteeing uniform performance of the respective antenna radio frequency channels to thereby make it less difficult to engineer the array of antennas while guaranteeing the implementation reliability thereof.

    [0143] Those skilled in the art shall appreciate that the embodiments of the disclosure can be embodied as a method, a system or a computer program product. Therefore the disclosure can be embodied in the form of an all-hardware embodiment, an all-software embodiment or an embodiment of software and hardware in combination. Furthermore the disclosure can be embodied in the form of a computer program product embodied in one or more computer useable storage mediums (including but not limited to a disk memory, an optical memory, etc.) in which computer useable program codes are contained.

    [0144] The disclosure has been described in a flow chart and/or a block diagram of the method, the device (system) and the computer program product according to the embodiments of the disclosure. It shall be appreciated that respective flows and/or blocks in the flow chart and/or the block diagram and combinations of the flows and/or the blocks in the flow chart and/or the block diagram can be embodied in computer program instructions. These computer program instructions can be loaded onto a general-purpose computer, a specific-purpose computer, an embedded processor or a processor of another programmable data processing device to produce a machine so that the instructions executed on the computer or the processor of the other programmable data processing device create means for performing the functions specified in the flow(s) of the flow chart and or the block(s) of the block diagram.

    [0145] These computer program instructions can also be stored into a computer readable memory capable of directing the computer or the other programmable data processing device to operate in a specific manner so that the instructions stored in the computer readable memory create an article of manufacture including instruction means which perform the functions specified in the flow(s) of the flow chart and/or the block(s) of the block diagram.

    [0146] These computer program instructions can also be loaded onto the computer or the other programmable data processing device so that a series of operational steps are performed on the computer or the other programmable data processing device to create a computer implemented process so that the instructions executed on the computer or the other programmable device provide steps for performing the functions specified in the flow(s) of the flow chart and/or the block(s) of the block diagram

    [0147] Although the preferred embodiments of the disclosure have been described, those skilled in the art benefiting from the underlying inventive concept can make additional modifications and variations to these embodiments. Therefore the appended claims are intended to be construed as encompassing the preferred embodiments and all the modifications and variations coming into the scope of the disclosure.

    [0148] Evidently those skilled in the art can make various modifications and variations to the disclosure without departing from the scope of the disclosure. Thus the disclosure is also intended to encompass these modifications and variations thereto so long as the modifications and variations come into the scope of the claims appended to the disclosure.


    Claims

    1. An active antenna device (31), characterized in that, the active antenna device (31) comprises:

    N arrays of active antennas (21), a primary calibration coupling circuit unit (302), a transmission and reception calibrating unit (303), a calibration parameter storage unit (304), and a Radio Over Fiber, ROF, photoelectric converting unit (301), wherein N is more than 1;

    wherein

    each of the arrays of active antennas (21) comprises at least an antenna calibration coupling circuit unit (205), and M antenna dipoles (204) connected with the antenna calibration coupling circuit unit (205), wherein M is more than 1;

    wherein

    the antenna calibration coupling circuit units (205) of the arrays of active antennas (21) are connected with the primary calibration coupling circuit unit (302) over a calibration radio frequency channel, the primary calibration coupling circuit unit (302) is connected with the transmission and reception calibrating unit (303), and the transmission and reception calibrating unit (303) and the calibration parameter storage unit (304) are connected respectively with the ROF photoelectric converting unit (301);

    wherein

    the calibration parameter storage unit (304) is configured to store transmission parameters of the calibration radio frequency channels of the N arrays of active antennas (21) and transmit the transmission parameters to the ROF photoelectric converting unit (301); the ROF photoelectric converting unit (301) is configured to convert the transmission parameters into an optical signal and transmit the optical signal over an optic fiber; and

    wherein

    the antenna calibration coupling circuit unit (205) of each array of active arrays is configured to couple received M calibration radio frequency signals into one transmission calibration radio frequency signal and output the one transmission calibration radio frequency signal to the primary calibration coupling circuit unit (302) over the calibration radio frequency channel; the primary calibration coupling circuit unit (302) is configured to merge the N transmission calibration radio frequency signals transmitted by the N arrays of active arrays into one transmission calibration radio frequency signal; the transmission and reception calibrating unit (303) is configured to amplify the power of the one transmission calibration radio frequency signal transmitted by the primary calibration coupling circuit unit (302), then demodulate the one transmission calibration radio frequency signal into a transmission calibration In-phase and Quadrature, IQ, analog signal, and output the transmission calibration IQ analog signal to the ROF photoelectric converting unit (301); and the ROF photoelectric converting unit (301) is configured to convert the transmission calibration IQ analog signal into an optical signal and transmit the optical signal over the optic fiber; and/or

    the transmission and reception calibrating unit (303) is configured to modulate a reception calibration IQ analog signal transmitted by the ROF photoelectric converting unit (301) into a reception calibration radio frequency signal, amplify the power of the reception calibration radio frequency signal, and then transmit the power-amplified reception calibration radio frequency signal to the primary calibration coupling circuit unit (302); the primary calibration coupling circuit unit (302) is configured to split the power-amplified reception calibration radio frequency signal into N duplicate reception calibration radio frequency signals and transmit the N duplicate reception calibration radio frequency signals to the corresponding antenna calibration coupling circuit units (205) respectively over the calibration radio frequency channel corresponding to the N arrays of active antennas (21); and each antenna calibration coupling circuit unit (205) is configured to split the received one reception calibration radio frequency signal into M reception calibration radio frequency signals.


     
    2. The active antenna device (31) according to claim 1, wherein each array of active antennas (21) further comprises:

    an array of filters (201), an array of Power Amplifiers, PAs, and Low-Noise Amplifiers, LNAs, (202), and an array of transceivers (203), wherein the array of filters (201), the array of PAs and the LNAs (202) and the array of transceivers (203) are connected sequentially, the array of filters (201) is connected with the antenna calibration coupling circuit unit (205), and the array of transceivers (203) is connected with the ROF photoelectric converting unit (301);

    wherein

    the array of filters (201) is configured to filter the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals;

    wherein

    the array of PAs and LNAs (202) is configured to amplify the power of the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals; and

    wherein

    the array of transceivers (203) is configured to convert the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals into M IQ analog signals, and to transmit the M IQ analog signals; or to convert received M IQ analog signals into the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals.


     
    3. The active antenna device (31) according to claim 1, wherein the primary calibration coupling circuit unit (302) comprises:

    more than one merger-splitter; or

    more than one merger-splitter and more than one coupler; or

    more than one switch matrix.


     
    4. The active antenna device (31) according to claim 2, wherein the transmission and reception calibrating unit (303) comprises a radio frequency signal amplifying unit (401) and a transceiver unit (402), the radio frequency signal amplifying unit (401) and the transceiver unit (402) are connected with each other, wherein:

    the radio frequency signal amplifying unit (401) is connected with the primary calibration coupling circuit unit (302), and the transceiver unit (402) is connected with the ROF photoelectric converting unit (301); or

    wherein each array of filters (201) comprises M filters independent of each other; or

    wherein each array of PAs and LNAs (202) comprises M power amplifiers independent of each other and M low-noise amplifiers independent of each other; or

    wherein each array of transceivers (203) comprises M transceiver units (402).


     
    5. An active antenna device (51), characterized in that, the active antenna device (51) comprises:

    N arrays of active antennas (21), a primary calibration coupling circuit unit (503), a transmission and reception calibrating unit (504), a calibration parameter storage unit (505), a digital processing unit (501), and a digital optic fiber interface unit (502), wherein N is more than 1;

    wherein

    each of the arrays of active antennas (21) comprises at least an antenna calibration coupling circuit unit (205), and M antenna dipoles (204) connected with the antenna calibration coupling circuit unit (205), wherein M is more than 1;

    wherein

    the antenna calibration coupling circuit units (205) of the arrays of active antennas (21) are connected with the primary calibration coupling circuit unit (503) over a calibration radio frequency channel, the primary calibration coupling circuit unit (503) is connected with the transmission and reception calibrating unit (504), and the transmission and reception calibrating unit (504) and the calibration parameter storage unit (505) are connected respectively with the digital processing unit (501);

    wherein

    the calibration parameter storage unit (505) is configured to store transmission parameters of the calibration radio frequency channel of the N arrays of active antenna, (21) and transmit the transmission parameters to the digital processing unit (501); and

    wherein

    the antenna calibration coupling circuit unit (205) of each array of active arrays is configured to couple received M calibration radio frequency signals into one transmission calibration radio frequency signal and output the one transmission calibration radio frequency signal to the primary calibration coupling circuit unit (503) over the calibration radio frequency channel; the primary calibration coupling circuit unit (503) is configured to merge the N transmission calibration radio frequency signals transmitted by the N arrays of active arrays into one transmission calibration radio frequency signal; the transmission and reception calibrating unit (504) is configured to amplify the power of the one transmission calibration radio frequency signal transmitted by the primary calibration coupling circuit unit (503), then demodulate the one transmission calibration radio frequency signal into a transmission calibration In-phase and Quadrature, IQ, analog signal and output the transmission calibration IQ analog signal to the digital processing unit (501); and the digital processing unit (501) is configured to convert the transmission calibration IQ analog signal into a transmission calibration IQ digital signal and transmit the transmission calibration IQ digital signal through the digital optic fiber interface unit (502); and/or

    the digital processing unit (501) is configured to convert a reception calibration IQ digital signal received by the digital optic fiber interface unit (502) into a reception calibration IQ analog signal; the transmission and reception calibrating unit (504) is configured to modulate the reception calibration IQ analog signal transmitted by the digital processing unit (501) into a reception calibration radio frequency signal, amplify the power of the reception calibration radio frequency signal, and then transmit the power-amplified reception calibration radio frequency signal to the primary calibration coupling circuit unit (503); the primary calibration coupling circuit unit (503) is configured to split the power-amplified reception calibration radio frequency signal into N duplicate reception calibration radio frequency signals and transmit the N duplicate reception calibration radio frequency signals to the corresponding antenna calibration coupling circuit units (205) respectively over the calibration radio frequency channel corresponding to the N arrays of active antennas (21); and each antenna calibration coupling circuit unit (205) is configured to split the received one reception calibration radio frequency signal into M reception calibration radio frequency signals.


     
    6. The active antenna device (51) according to claim 5, wherein each array of active antennas (21) further comprises:

    an array of filters (201), an array of Power Amplifiers, PAs, and Low-Noise Amplifiers, LNAs, (202), and an array of transceivers (203), wherein the array of filters (201), the array of PAs and LNAs, and the array of transceivers are connected sequentially, the array of filters (201) is connected with the antenna calibration coupling circuit unit (205), and the array of transceivers (203) is connected with the digital processing unit (501);

    the array of filters (201) being configured to filter the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals;

    the array of PAs and LNAs (202) being configured to amplify the power of the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals; and

    the array of transceivers (203) being configured to convert the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals into M IQ analog signals, and to transmit the M IQ analog signals; or to convert received M IQ analog signals into the M transmission calibration radio frequency signals or the M reception calibration radio frequency signals;

    or
    wherein the primary calibration coupling circuit unit (503) comprises:

    more than one merger-splitter; or

    more than one merger-splitter and more than one coupler; or

    more than one switch matrix.


     
    7. The active antenna device (51) according to claim 6, wherein the transmission and reception calibrating unit (504) comprises a radio frequency signal amplifying unit and a transceiver unit, the radio frequency signal amplifying unit and the transceiver unit being connected with each other, wherein:
    the radio frequency signal amplifying unit is connected with the primary calibration coupling circuit unit (503), and the transceiver unit is connected with the digital processing unit (501).
     
    8. A communication system, characterized in that, the communication system comprises the active antenna device (51) according to any one of the claims 5-7 and a baseband building device (71), wherein the active antenna device (51) and the baseband building device (71) are connected over an optic fiber, and the baseband building device (71) comprises a digital optic fiber interface unit (701) and a baseband unit (702), wherein the digital optic fiber interface unit (701) and the baseband unit (702) are connected with each other, wherein:

    the baseband unit (702) is configured to convert one preset reception calibration sequence into one reception calibration IQ digital signal and transmit the one reception calibration IQ digital signal to the digital optic fiber interface unit (701), and the digital optic fiber interface unit (701) is configured to transmit the one reception calibration IQ digital signal over the optic fiber; and the baseband unit (702) is configured to receive N*M reception calibration IQ digital signals transmitted by the digital optic fiber interface unit (701), revise the N*M reception calibration IQ digital signals using preset transmission parameters of N*M calibration radio frequency channels, and calculate reception calibration amplitude revision parameters and reception calibration phase revision parameters corresponding to respective radio frequency channels corresponding to the N*M calibration radio frequency channels according to the revised N*M reception calibration IQ digital signals, and the one preset reception calibration sequence; and/or

    the baseband unit (702) is configured to convert N*M preset transmission calibration sequences into N*M transmission calibration IQ digital signals, revise the N*M transmission calibration IQ digital signals using the preset transmission parameters of the N*M calibration radio frequency channels, and transmit the revised N*M transmission calibration IQ digital signals to the digital optic fiber interface unit (701), and the digital optic fiber interface unit (701) is configured to convert the revised N*M transmission calibration IQ digital signals into an optical signal and transmit the optical signal over the optic fiber; and the baseband unit (702) is configured to receive one transmission calibration IQ digital signal transmitted by the digital optic fiber interface unit (701) and calculate transmission calibration amplitude revision parameters and transmission calibration phase revision parameters of the respective radio frequency channels corresponding to the N*M calibration radio frequency channels according to the received one transmission calibration IQ digital signal, and the N*M preset transmission calibration sequences;

    wherein the received N*M reception calibration IQ digital signals are signals obtained after the one reception calibration IQ digital signal has been transmitted firstly over one calibration radio frequency channel of the active antenna device (51) and then over N*M radio frequency channels of the active antenna device (51), and then received over the optic fiber and processed by the digital optic fiber interface unit (701);

    wherein the received one transmission calibration IQ digital signal is a signal obtained after the revised N*M transmission calibration IQ digital signals have been transmitted firstly over the N*M radio frequency channels of the active antenna device (51) and then over the calibration radio frequency channel of the active antenna device (51), and then received over the optic fiber and processed by the digital optic fiber interface unit (701); and

    the preset transmission parameters of the N*M calibration radio frequency channels are received over the optic fiber, and then transmitted by the digital optic fiber interface unit (701) to the baseband unit (702).


     
    9. The communication system according to claim 8, wherein
    the baseband unit (702) is further configured to:

    obtain uplink data, revise the amplitude of the uplink data using the reception calibration amplitude revision parameters, and revise the phase of the uplink data using the reception calibration phase revision parameters; and

    the uplink data is obtained as a result of an uplink signal being received over the optic fiber, and transmitted by the digital optic fiber interface unit (701) to the baseband unit (702);

    or

    the baseband unit (702) is further configured to:
    perform beam-forming on data to be transmitted, revise the amplitude of the beam-formed data using the transmission calibration amplitude revision parameters, revise the phase of the beam-formed data using the transmission calibration phase revision parameters, and then transmit the data to the digital optic fiber interface unit (701), so that the digital optic fiber interface unit (701) converts the data into an optical signal, and then transmits the optical signal over the optic fiber.


     


    Ansprüche

    1. Aktive Antenneneinrichtung (31), dadurch gekennzeichnet, dass die aktive Antenneneinrichtung (31) umfasst:

    N Arrays von aktiven Antennen (21), eine primäre Kalibrierungskoppelschaltungseinheit (302), eine Sende- und Empfangskalibriereinheit (303), eine Kalibrierungsparameterablageeinheit (304), und eine photoelektrische Radio-Over-Fiber-, ROF-, Konvertierungseinheit (301), wobei N größer als 1 ist;

    wobei jedes der Arrays von aktiven Antennen (21) mindestens eine Antennenkalibrierkoppelschaltungseinheit (205) und M Antennendipole (204), die mit der Antennenkalibrierkoppelschaltungseinheit (205) verbunden sind, wobei M größer als 1 ist, umfasst;

    wobei

    die Antennenkalibrierkoppelschaltungseinheiten (205) der Arrays von aktiven Antennen (21) über einen Kalibrierungshochfrequenzkanal mit der primären Kalibrierungskoppelschaltungseinheit (302) verbunden sind, wobei die primäre Kalibrierungskoppelschaltungseinheit (302) mit der Sende- und Empfangskalibriereinheit (303) verbunden ist und die Sende- und Empfangskalibriereinheit (303) und die Kalibrierungsparameterablageeinheit (304) jeweils mit der photoelektrischen ROF-Konvertierungseinheit (301) verbunden ist;

    wobei

    die Kalibrierungsparameterablageeinheit (304) dazu ausgebildet ist, Übertragungsparameter der Kalibrierungshochfrequenzkanäle der N Arrays von aktiven Antennen (21) zu speichern und die Übertragungsparameter zu der photoelektrischen ROF-Konvertierungseinheit (301) zu übertragen, die photoelektrische ROF-Konvertierungseinheit (301) dazu ausgebildet ist, die Übertragungsparameter in ein optisches Signal zu konvertieren und das optische Signal über eine Glasfaser zu übertragen; und

    wobei die Antennenkalibrierungskoppelschaltungseinheit (205) jedes Arrays von aktiven Arrays dazu ausgebildet ist, empfangene M Kalibrierungshochfrequenzsignale in ein Sendekalibrierungshochfrequenzsignal zu koppeln und das eine Sendekalibrierungshochfrequenzsignal über den Kalibrierungshochfrequenzkanal zu der primären Kalibrierungskoppelschaltungseinheit (302) auszugeben; die primäre Kalibrierungskoppelschaltungseinheit (302) dazu ausgebildet ist, die durch die N Arrays von aktiven Arrays übertragenen N Sendekalibrierungshochfrequenzsignale in ein Sendekalibrierungshochfrequenzsignal zu mischen; die Sende- und Empfangskalibriereinheit (303) dazu ausgebildet ist, die Leistung des durch die primäre Kalibrierungskoppelschaltungseinheit (302) übertragenen einen Sendekalibrierungshochfrequenzsignals zu verstärken, dann das eine Sendekalibrierungshochfrequenzsignal in ein Sendekalibrierungs-In-Phase- und Quadratur-, IQ-, Analogsignal zu demodulieren und das Sendekalibrierungs-IQ-Analogsignal zu der photoelektrischen ROF-Konvertierungseinheit (301) auszugeben und die photoelektrische ROF-Konvertierungseinheit (301) dazu ausgebildet ist, das Sendekalibrierungs-IQ-Analogsignal in ein optisches Signal zu konvertieren und das optische Signal über die Glasfaser zu übertragen; und/oder

    die Sende- und Empfangskalibriereinheit (303) dazu ausgebildet ist, ein durch die photoelektrische ROF-Konvertierungseinheit (301) übertragenes Empfangskalibrierungs-IQ-Analogsignal in ein Empfangskalibrierungshochfrequenzsignal zu modulieren, die Leistung des Empfangskalibrierungshochfrequenzsignals zu verstärken und dann das leistungsverstärkte Empfangskalibrierungshochfrequenzsignal zu der primären Kalibrierungskoppelschaltungseinheit (302) zu übertragen; die primäre Kalibrierungskoppelschaltungseinheit (302) dazu ausgebildet ist, das leistungsverstärkte Empfangskalibrierungshochfrequenzsignal in N Duplikatempfangskalibrierungshochfrequenzsignale zu teilen und die N Duplikatempfangskalibrierungshochfrequenzsignale zu den entsprechenden Antennenkalibrierkoppelschaltungseinheiten (205) jeweils über den Kalibrierungshochfrequenzkanal entsprechend den N Arrays von aktiven Antennen (21) zu übertragen; und jede Antennenkalibrierkoppelschaltungseinheit (205) dazu ausgebildet ist, das empfangene eine Empfangskalibrierungshochfrequenzsignal in M Empfangskalibrierungshochfrequenzsignale zu teilen.


     
    2. Aktive Antenneneinrichtung (31) nach Anspruch 1, wobei jedes Array von aktiven Antennen (21) weiterhin umfasst:

    ein Array von Filtern (201), ein Array von Leistungsverstärkern, PAs, und rauscharmen Verstärkern, LNAs, (202), und ein Array von Sendeempfängern (203), wobei das Array von Filtern (201), das Array von PAs und der LNAs (202) und das Array von Sendeempfängern (203) sequentiell verbunden sind, das Array von Filtern (201) mit der Antennenkalibrierkoppelschaltungseinheit (205) verbunden ist und das Array von Sendeempfängern (203) mit der photoelektrischen ROF-Konvertierungseinheit (301) verbunden ist;

    wobei

    das Array von Filtern (201) dazu ausgebildet ist, die M Sendekalibrierungshochfrequenzsignale oder die M Empfangskalibrierungshochfrequenzsignale zu filtern;

    wobei

    das Array von PAs und LNAs (202) dazu ausgebildet ist, die Leistung der M Sendekalibrierungshochfrequenzsignale oder der M Empfangskalibrierungshochfrequenzsignale zu verstärken; und

    wobei das Array von Sendeempfängern (203) dazu ausgebildet ist, die M Sendekalibrierungshochfrequenzsignale oder die M Empfangskalibrierungshochfrequenzsignale in M IQ-Analogsignale zu konvertieren und die M IQ-Analogsignale zu übertragen; oder empfangene M IQ-Analogsignale in die M Sendekalibrierungshochfrequenzsignale oder die M Empfangskalibrierungshochfrequenzsignale zu konvertieren.


     
    3. Aktive Antenneneinrichtung (31) nach Anspruch 1, wobei die primäre Kalibrierungskoppelschaltungseinheit (302) umfasst:

    mehr als einen Merger-Splitter; oder

    mehr als einen Merger-Splitter und mehr als einen Koppler; oder

    mehr als eine Schaltmatrix.


     
    4. Aktive Antenneneinrichtung (31) nach Anspruch 2, wobei die Sende- und Empfangskalibriereinheit (303) eine Hochfrequenzsignalverstärkungseinheit (401) und eine Sendeempfängereinheit (402) umfasst, die Hochfrequenzsignalverstärkungseinheit (401) und die Sendeempfängereinheit (402) miteinander verbunden sind, wobei
    die Hochfrequenzsignalverstärkungseinheit (401) mit der primären Kalibrierungskoppelschaltungseinheit (302) verbunden ist und die Sendeempfängereinheit (402) mit der photoelektrischen ROF-Konvertierungseinheit (301) verbunden ist; oder
    wobei jedes Array von Filtern (201) M Filter unabhängig voneinander umfasst; oder
    wobei jedes Array von PAs und LNAs (202) M Leistungsverstärker unabhängig voneinander und M rauscharme Verstärker unabhängig voneinander umfasst; oder
    wobei jedes Array von Sendeempfängern (203) M Sendeempfängereinheiten (402) umfasst.
     
    5. Aktive Antenneneinrichtung (51), dadurch gekennzeichnet, dass die aktive Antenneneinrichtung (51) umfasst:

    N Arrays von aktiven Antennen (21), eine primäre Kalibrierungskoppelschaltungseinheit (503), eine Sende- und Empfangskalibriereinheit (504), eine Kalibrierungsparameterablageeinheit (505), eine Digitalverarbeitungseinheit (501) und eine Digitalglasfaserschnittstelleneinheit (502), wobei N größer als 1 ist;

    wobei

    jedes der Arrays von aktiven Antennen (21) mindestens eine Antennenkalibrierkoppelschaltungseinheit (205) und M Antennendipole (204), die mit der Antennenkalibrierkoppelschaltungseinheit (205) verbunden sind, wobei M größer als 1 ist, umfasst;

    wobei

    die Antennenkalibrierkoppelschaltungseinheiten (205) der Arrays von aktiven Antennen (21) über einen Kalibrierungshochfrequenzkanal mit der primären Kalibrierungskoppelschaltungseinheit (503) verbunden sind, wobei die primäre Kalibrierungskoppelschaltungseinheit (503) mit der Sende- und Empfangskalibriereinheit (504) verbunden ist und die Sende- und Empfangskalibriereinheit (504) und die Kalibrierungsparameterablageeinheit (505) jeweils mit der Digitalverarbeitungseinheit (501) verbunden ist;

    wobei

    die Kalibrierungsparameterablageeinheit (505) dazu ausgebildet ist, Übertragungsparameter der Kalibrierungshochfrequenzkanäle der N Arrays von aktiven Antennen (21) zu speichern und die Übertragungsparameter zu der Digitalverarbeitungseinheit (501) zu übertragen; und

    wobei die Antennenkalibrierungskoppelschaltungseinheit (205) jedes Arrays von aktiven Arrays dazu ausgebildet ist, empfangene M Kalibrierungshochfrequenzsignale in ein Sendekalibrierungshochfrequenzsignal zu koppeln und das eine Sendekalibrierungshochfrequenzsignal über den Kalibrierungshochfrequenzkanal zu der primären Kalibrierungskoppelschaltungseinheit (503) zu übertragen; die primäre Kalibrierungskoppelschaltungseinheit (503) dazu ausgebildet ist, die durch die N Arrays von aktiven Arrays übertragenen N Sendekalibrierungshochfrequenzsignale in ein Sendekalibrierungshochfrequenzsignal zu mischen; die Sende- und Empfangskalibriereinheit (504) dazu ausgebildet ist, die Leistung des durch die primäre Kalibrierungskoppelschaltungseinheit (503) übertragenen einen Sendekalibrierungshochfrequenzsignals zu verstärken, dann das eine Sendekalibrierungshochfrequenzsignal in ein Sendekalibrierungs-In-Phase- und Quadratur-, IQ-, Analogsignal zu demodulieren und das Sendekalibrierungs-IQ-Analogsignal zu der Digitalverarbeitungseinheit (501) auszugeben und die Digitalverarbeitungseinheit (501) dazu ausgebildet ist, das Sendekalibrierungs-IQ-Analogsignal in ein Sendekalibrierungs-IQ-Digitalsignal zu konvertieren und das Sendekalibrierungs-IQ-Digitalsignal durch die Digitalglasfaserschnittstelleneinheit (502) zu übertragen; und/oder

    die Digitalverarbeitungseinheit (501) dazu ausgebildet ist, ein durch die Digitalglasfaserschnittstelleneinheit (502) empfangenes Empfangskalibrierungs-IQ-Digitalsignal in ein Empfangskalibrierungs-IQ-Analogsignal zu konvertieren; die Sende- und Empfangskalibrierungseinheit (504) dazu ausgebildet ist, das durch die Digitalverarbeitungseinheit (501) übertragene Empfangskalibrierungs-IQ-Analogsignal in ein Empfangskalibrierungshochfrequenzsignal zu modulieren, die Leistung des Empfangskalibrierungshochfrequenzsignals zu verstärken und dann das leistungsverstärkte Empfangskalibrierungshochfrequenzsignal zu der primären Kalibrierungskoppelschaltungseinheit (503) zu übertragen; die primäre Kalibrierungskoppelschaltungseinheit (503) dazu ausgebildet ist, das leistungsverstärkte Empfangskalibrierungshochfrequenzsignal in N Duplikatempfangskalibrierungshochfrequenzsignale zu teilen und die N Duplikatempfangskalibrierungshochfrequenzsignale zu den entsprechenden Antennenkalibrierkoppelschaltungseinheiten (205) jeweils über den Kalibrierungshochfrequenzkanal entsprechend den N Arrays von aktiven Antennen (21) zu übertragen; und jede Antennenkalibrierkoppelschaltungseinheit (205) dazu ausgebildet ist, das empfangene eine Empfangskalibrierungshochfrequenzsignal in M Empfangskalibrierungshochfrequenzsignale zu teilen.


     
    6. Aktive Antenneneinrichtung (51) nach Anspruch 5, wobei jedes Array von aktiven Antennen (21) weiterhin umfasst:

    ein Array von Filtern (201), ein Array von Leistungsverstärkern, PAs, und rauscharmen Verstärkern, LNAs, (202), und ein Array von Sendeempfängern (203), wobei das Array von Filtern (201), das Array von PAs und der LNAs (202) und das Array von Sendeempfängern (203) sequentiell verbunden sind, das Array von Filtern (201) mit der Antennenkalibrierkoppelschaltungseinheit (205) verbunden ist und das Array von Sendeempfängern (203) mit der Digitalverarbeitungseinheit (501) verbunden ist;

    das Array von Filtern (201) dazu ausgebildet ist, die M Sendekalibrierungshochfrequenzsignale oder die M Empfangskalibrierungshochfrequenzsignale zu filtern;

    das Array von PAs und LNAs (202) dazu ausgebildet ist, die Leistung der M Sendekalibrierungshochfrequenzsignale oder der M Empfangskalibrierungshochfrequenzsignale zu verstärken; und

    das Array von Sendeempfängern (203) dazu ausgebildet ist, die M Sendekalibrierungshochfrequenzsignale oder die M Empfangskalibrierungshochfrequenzsignale in M IQ-Analogsignale zu konvertieren und die M IQ-Analogsignale zu übertragen; oder empfangene M IQ-Analogsignale in die M Sendekalibrierungshochfrequenzsignale oder die M Empfangskalibrierungshochfrequenzsignale zu konvertieren;

    oder

    wobei die primäre Kalibrierungskoppelschaltungseinheit (503) umfasst:

    mehr als einen Merger-Splitter; oder

    mehr als einen Merger-Splitter und mehr als einen Koppler; oder

    mehr als eine Schaltmatrix.


     
    7. Aktive Antenneneinrichtung (51) nach Anspruch 6, wobei die Sende- und Empfangskalibriereinheit (504) eine Hochfrequenzsignalverstärkungseinheit und eine Sendeempfängereinheit umfasst, die Hochfrequenzsignalverstärkungseinheit und die Sendeempfängereinheit miteinander verbunden sind, wobei
    die Hochfrequenzsignalverstärkungseinheit mit der primären Kalibrierungskoppelschaltungseinheit (503) verbunden ist und die Sendeempfängereinheit mit der Digitalverarbeitungseinheit (501) verbunden ist.
     
    8. Kommunikationssystem, dadurch gekennzeichnet, dass das Kommunikationssystem die aktive Antenneneinrichtung (51) nach einem der Ansprüche 5-7 und eine Basisbandbaueinrichtung (71) umfasst, wobei die aktive Antenneneinrichtung (51) und die Basisbandbaueinrichtung (71) über eine Glasfaser verbunden sind und die Basisbandbaueinrichtung (71) eine Digitalglasfaserschnittstelleneinheit (701) und eine Basisbandeinheit (702) umfasst, wobei die Digitalglasfaserschnittstelleneinheit (701) und die Basisbandeinheit (702) miteinander verbunden sind, wobei
    die Basisbandeinheit (702) dazu ausgebildet ist, eine voreingestellte Empfangskalibrierungssequenz in ein Empfangskalibrierungs-IQ-Digitalsignal zu konvertieren und das eine Empfangskalibrierungs-IQ-Digitalsignal zu der Digitalglasfaserschnittstelleneinheit (701) zu übertragen, und die Digitalglasfaserschnittstelleneinheit (701) dazu ausgebildet ist, das eine Empfangskalibrierungs-IQ-Digitalsignal über die Glasfaser zu übertragen; und die Basisbandeinheit (702) dazu ausgebildet ist, durch die Digitalglasfaserschnittstelleneinheit (701) übertragene N*M Empfangskalibrierungs-IQ-Digitalsignale zu empfangen, die N*M Empfangskalibrierungs-IQ-Digitalsignale unter Verwendung von voreingestellten Übertragungsparametern von N*M Kalibrierungshochfrequenzkanälen zu revidieren und Empfangskalibrierungsamplitudenrevisionsparameter und Empfangskalibrierungsphasenrevisionsparameter entsprechend jeweiligen Hochfrequenzkanälen entsprechend den N*M Kalibrierungshochfrequenzkanälen gemäß den revidierten N*M Empfangskalibrierungs-IQ-Digitalsignalen und der einen voreingestellten Empfangskalibrierungssequenz zu berechnen; und/oder
    die Basisbandeinheit (702) dazu ausgebildet ist, N*M voreingestellte Sendekalibrierungssequenzen in N*M Sendekalibrierungs-IQ-Digitalsignale zu konvertieren, die N*M Sendekalibrierungs-IQ-Digitalsignale unter Verwendung der voreingestellten Übertragungsparameter der N*M Kalibrierungshochfrequenzkanäle zu revidieren und die revidierten N*M Sendekalibrierungs-IQ-Digitalsignale zu der Digitalglasfaserschnittstelleneinheit (701) zu übertragen, und die Digitalglasfaserschnittstelleneinheit (701) dazu ausgebildet ist, die revidierten N*M Sendekalibrierungs-IQ-Digitalsignale in ein optisches Signal zu konvertieren und das optische Signal über die Glasfaser zu übertragen; und die Basisbandeinheit (702) dazu ausgebildet ist, ein durch die Digitalglasfaserschnittstelleneinheit (701) übertragenes Sendekalibrierungs-IQ-Digitalsignal zu empfangen und Sendekalibrierungsamplitudenrevisionsparameter und Sendekalibrierungsphasenrevisionsparameter der jeweiligen Hochfrequenzkanäle entsprechend den N*M Kalibrierungshochfrequenzsignalen gemäß dem empfangenen einen Sendekalibrierungs-IQ-Digitalsignal und der N*M voreingestellten Sendekalibrierungssequenzen zu berechnen;
    wobei die empfangenen N*M Empfangskalibrierungs-IQ-Digitalsignale Signale sind, die erhalten werden, nachdem das eine Empfangskalibrierungs-IQ-Digitalsignal zuerst über einen Kalibrierungshochfrequenzkanal der aktiven Antenneneinrichtung (51) und dann über N*M Hochfrequenzkanäle der aktiven Antenneneinrichtung (51) übertragen und dann über die Glasfaser empfangen und durch die Digitalglasfaserschnittstelleneinheit (701) verarbeitet worden ist;
    wobei das empfangene eine Sendekalibrierungs-IQ-Digitalsignal ein Signal ist, das erhalten wird, nachdem die revidierten N*M Sendekalibrierungs-IQ-Digitalsignale zuerst über die N*M Hochfrequenzkanäle der aktiven Antenneneinrichtung (51) und dann über den Kalibrierungshochfrequenzkanal der aktiven Antenneneinrichtung (51) übertragen und dann über die Glasfaser empfangen und durch die Digitalglasfaserschnittstelleneinheit (701) verarbeitet worden ist; und
    die voreingestellten Übertragungsparameter der N*M Kalibrierungshochfrequenzkanäle über die Glasfaser empfangen und dann durch die Digitalglasfaserschnittstelleneinheit (701) zu der Basisbandeinheit (702) übertragen werden.
     
    9. Kommunikationssystem nach Anspruch 8, wobei
    die Basisbandeinheit (702) weiter ausgebildet ist zum:

    Erhalten von Uplink-Daten, Revidieren der Amplitude der Uplink-Daten unter Verwendung der Empfangskalibrierungsamplitudenrevisionsparameter und Revidieren der Phase der Uplink-Daten unter Verwendung der Empfangskalibrierungsphasenrevisionsparameter; und

    die Uplink-Daten als Ergebnis dessen erhalten werden, dass ein Uplink-Signal über die Glasfaser empfangen und durch die Digitalglasfaserschnittstelleneinheit (701) zu der Basisbandeinheit (702) übertragen wird; oder

    die Basisbandeinheit (702) weiter ausgebildet ist zum:
    Durchführen einer Strahlformung an zu übertragenden Daten, Revidieren der Amplitude der strahlgeformten Daten unter Verwendung der Sendekalibrierungsamplitudenrevisionsparameter, Revidieren der strahlgeformten Daten unter Verwendung der Sendekalibrierungsphasenrevisionsparameter und dann Übertragen der Daten zu der Digitalglasfaserschnittstelleneinheit (701), so dass die Digitalglasfaserschnittstelleneinheit (701) die Daten in ein optisches Signal konvertiert und dann das optische Signal über die Glasfaser überträgt.


     


    Revendications

    1. Dispositif antenne active (31), caractérisé en ce que le dispositif antenne active (31) comprend :

    N réseaux d'antennes actives (21), une unité principale formant circuit d'étalonnage et de couplage (302), une unité d'étalonnage d'émission et de réception (303), une unité de stockage de paramètres d'étalonnage (304) et une unité de conversion photoélectrique radio sur fibre (ROF) (301), N étant supérieur à 1 ;

    chacun des réseaux d'antennes actives (21) comprenant au moins une unité formant circuit d'étalonnage et de couplage d'antenne (205) et M antennes dipôles (204) connectées à l'unité formant circuit d'étalonnage et de couplage d'antenne (205), M étant supérieur à 1 ;

    les unités formant circuit d'étalonnage et de couplage d'antenne (205) des réseaux d'antennes actives (21) étant connectées à l'unité principale formant circuit d'étalonnage et de couplage (302) sur un canal radioélectrique d'étalonnage, l'unité principale formant circuit d'étalonnage et de couplage (302) étant connectée à l'unité d'étalonnage d'émission et de réception (303), et l'unité d'étalonnage d'émission et de réception (303) et l'unité de stockage de paramètres d'étalonnage (304) étant connectées respectivement à l'unité de conversion photoélectrique ROF (301) ;

    l'unité de stockage de paramètres d'étalonnage (304) étant configurée pour stocker des paramètres d'émission des canaux radioélectriques d'étalonnage des N réseaux d'antennes actives (21) et pour émettre les paramètres d'émission vers l'unité de conversion photoélectrique ROF (301) ; l'unité de conversion photoélectrique ROF (301) étant configurée pour convertir les paramètres d'émission en un signal optique et pour émettre le signal optique sur une fibre optique ; et

    l'unité formant circuit d'étalonnage et de couplage d'antenne (205) de chaque réseau d'antennes actives étant configurée pour coupler M signaux radioélectriques d'étalonnage reçus en un signal radioélectrique d'étalonnage d'émission et pour émettre ledit signal radioélectrique d'étalonnage d'émission vers l'unité principale formant circuit d'étalonnage et de couplage (302) sur le canal radioélectrique d'étalonnage ; l'unité principale formant circuit d'étalonnage et de couplage (302) étant configurée pour fusionner les N signaux radioélectriques d'étalonnage d'émission émis par les N réseaux de d'antennes actives en un signal radioélectrique d'étalonnage d'émission ; l'unité d'étalonnage d'émission et de réception (303) étant configurée pour amplifier la puissance dudit signal radioélectrique d'étalonnage d'émission émis par l'unité principale formant circuit d'étalonnage et de couplage (302), puis pour démoduler ledit signal radioélectrique d'étalonnage d'émission en un signal analogique en phase et en quadrature de phase (IQ) d'étalonnage d'émission et pour produire le signal analogique IQ d'étalonnage d'émission vers l'unité de conversion photoélectrique ROF (301) ; et l'unité de conversion photoélectrique ROF (301) étant configurée pour convertir le signal analogique IQ d'étalonnage d'émission en un signal optique et pour émettre le signal optique sur la fibre optique ; et/ou

    l'unité d'étalonnage d'émission et de réception (303) étant configurée pour moduler un signal analogique IQ d'étalonnage de réception émis par l'unité de conversion photoélectrique ROF (301) en un signal radioélectrique d'étalonnage de réception, pour amplifier la puissance du signal radioélectrique d'étalonnage de réception, puis pour émettre le signal radioélectrique d'étalonnage de réception amplifié en puissance vers l'unité principale formant circuit d'étalonnage et de couplage (302) ; l'unité principale formant circuit d'étalonnage et de couplage (302) étant configurée pour séparer le signal radioélectrique d'étalonnage de réception amplifié en puissance en N signaux radioélectriques d'étalonnage de réception dupliqués et pour émettre respectivement les N signaux radioélectriques d'étalonnage de réception dupliqués vers les unités formant circuit d'étalonnage et de couplage d'antenne (205) correspondantes sur le canal radioélectrique d'étalonnage correspondant aux N réseaux d'antennes actives (21) ; et chaque unité formant circuit d'étalonnage et de couplage d'antenne (205) étant configurée pour séparer ledit signal radioélectrique d'étalonnage de réception reçu en M signaux radioélectriques d'étalonnage de réception.


     
    2. Dispositif antenne active (31) selon la revendication 1, dans lequel chaque réseau d'antennes actives (21) comprend en outre :

    un réseau de filtres (201), un réseau d'amplificateurs de puissance (PA) et d'amplificateurs à faible bruit (LNA) (202) et un réseau d'émetteurs-récepteurs (203), le réseau de filtres (201), le réseau de PA et de LNA (202) et le réseau d'émetteurs-récepteurs (203) étant connectés en séquence, le réseau de filtres (201) étant connecté à l'unité formant circuit d'étalonnage et de couplage d'antenne (205) et le réseau d'émetteurs-récepteurs (203) étant connecté à l'unité de conversion photoélectrique ROF (301) ;

    le réseau de filtres (201) étant configuré pour filtrer les M signaux radioélectriques d'étalonnage d'émission ou les M signaux radioélectriques d'étalonnage de réception ;

    le réseau de PA et de LNA (202) étant configuré pour amplifier la puissance des M signaux radioélectriques d'étalonnage d'émission ou des M signaux radioélectriques d'étalonnage de réception ; et

    le réseau d'émetteurs-récepteurs (203) étant configuré pour convertir les M signaux radioélectriques d'étalonnage d'émission ou les M signaux radioélectriques d'étalonnage de réception en M signaux analogiques IQ et pour émettre les M signaux analogiques IQ ; ou pour convertir M signaux analogiques IQ reçus en les M signaux radioélectriques d'étalonnage d'émission ou en les M signaux radioélectriques d'étalonnage de réception.


     
    3. Dispositif antenne active (31) selon la revendication 1, dans lequel l'unité principale formant circuit d'étalonnage et de couplage (302) comprend :

    plusieurs fusionneurs-séparateurs ; ou

    plusieurs fusionneurs-séparateurs ou plusieurs coupleurs ; ou

    plusieurs matrices de commutateurs.


     
    4. Dispositif antenne active (31) selon la revendication 2, dans lequel l'unité d'étalonnage d'émission et de réception (303) comprend une unité d'amplification de signal radioélectrique (401) et une unité émettrice-réceptrice (402), l'unité d'amplification de signal radioélectrique (401) et l'unité émettrice-réceptrice (402) étant connectées l'une à l'autre ;
    l'unité d'amplification de signal radioélectrique (401) étant connectée à l'unité principale formant circuit d'étalonnage et de couplage (302) et l'unité émettrice-réceptrice (402) étant connectée à l'unité de conversion photoélectrique ROF (301) ; ou
    chaque réseau de filtres (201) comprenant M filtres indépendants les uns des autres ; ou
    chaque réseau de PA et de LNA (202) comprenant M amplificateurs de puissance indépendants les uns des autres et M amplificateurs à faible bruit indépendants les uns des autres ; ou
    chaque réseau d'émetteurs-récepteurs (203) comprenant M unités émettrices-réceptrices (402).
     
    5. Dispositif antenne active (51), caractérisé en ce que le dispositif antenne active (51) comprend :

    N réseaux d'antennes actives (21), une unité principale formant circuit d'étalonnage et de couplage (503), une unité d'étalonnage d'émission et de réception (504), une unité de stockage de paramètres d'étalonnage (505) une unité de traitement numérique (501) et une unité formant interface numérique à fibre optique (502), N étant supérieur à 1 ;

    chacun des réseaux d'antennes actives (21) comprenant au moins une unité formant circuit d'étalonnage et de couplage d'antenne (205) et M antennes dipôles (204) connectées à l'unité formant circuit d'étalonnage et de couplage d'antenne (205), M étant supérieur à 1 ;

    les unités formant circuit d'étalonnage et de couplage d'antenne (205) des réseaux d'antennes actives (21) étant connectées à l'unité principale formant circuit d'étalonnage et de couplage (503) sur un canal radioélectrique d'étalonnage, l'unité principale formant circuit d'étalonnage et de couplage (503) étant connectée à l'unité d'étalonnage d'émission et de réception (504), et l'unité d'étalonnage d'émission et de réception (504) et l'unité de stockage de paramètres d'étalonnage (505) étant connectées respectivement à l'unité de traitement numérique (501) ;

    l'unité de stockage de paramètres d'étalonnage (505) étant configurée pour stocker des paramètres d'émission du canal radioélectrique d'étalonnage des N réseaux d'antennes actives (21) et pour émettre les paramètres d'émission vers l'unité de traitement numérique (501) ; et

    l'unité formant circuit d'étalonnage et de couplage d'antenne (205) de chaque réseau d'antennes actives étant configurée pour coupler M signaux radioélectriques d'étalonnage reçus en un signal radioélectrique d'étalonnage d'émission et pour émettre ledit signal radioélectrique d'étalonnage d'émission vers l'unité principale formant circuit d'étalonnage et de couplage (503) sur le canal radioélectrique d'étalonnage ; l'unité principale formant circuit d'étalonnage et de couplage (503) étant configurée pour fusionner les N signaux radioélectriques d'étalonnage d'émission émis par les N réseaux de d'antennes actives en un signal radioélectrique d'étalonnage d'émission ; l'unité d'étalonnage d'émission et de réception (504) étant configurée pour amplifier la puissance dudit signal radioélectrique d'étalonnage d'émission émis par l'unité principale formant circuit d'étalonnage et de couplage (503), puis pour démoduler ledit signal radioélectrique d'étalonnage d'émission en un signal analogique en phase et en quadrature de phase (IQ) d'étalonnage d'émission et pour produire le signal analogique IQ d'étalonnage d'émission vers l'unité de traitement numérique (501) ; et l'unité de traitement numérique (501) étant configurée pour convertir le signal analogique IQ d'étalonnage d'émission en un signal numérique IQ d'étalonnage d'émission et pour émettre le signal numérique IQ d'étalonnage d'émission par l'intermédiaire de l'unité formant interface numérique à fibre optique (502) ; et/ou

    l'unité de traitement numérique (501) étant configurée pour convertir un signal numérique IQ d'étalonnage de réception reçu par l'unité formant interface numérique à fibre optique (502) en un signal analogique IQ d'étalonnage de réception ; l'unité d'étalonnage d'émission et de réception (504) étant configurée pour moduler le signal analogique IQ d'étalonnage de réception émis par l'unité de traitement numérique (501) en un signal radioélectrique d'étalonnage de réception, pour amplifier la puissance du signal radioélectrique d'étalonnage de réception, puis pour émettre le signal radioélectrique d'étalonnage de réception amplifié en puissance vers l'unité principale formant circuit d'étalonnage et de couplage (503) ; l'unité principale formant circuit d'étalonnage et de couplage (503) étant configurée pour séparer le signal radioélectrique d'étalonnage de réception amplifié en puissance en N signaux radioélectriques d'étalonnage de réception dupliqués et pour émettre respectivement les N signaux radioélectriques d'étalonnage de réception dupliqués vers les unités formant circuit d'étalonnage et de couplage d'antenne (205) correspondantes sur le canal radioélectrique d'étalonnage correspondant aux N réseaux d'antennes actives (21) ; et chaque unité formant circuit d'étalonnage et de couplage d'antenne (205) étant configurée pour séparer ledit signal radioélectrique d'étalonnage de réception reçu en M signaux radioélectriques d'étalonnage de réception.


     
    6. Dispositif antenne active (51) selon la revendication 5, dans lequel chaque réseau d'antennes actives (21) comprend en outre :

    un réseau de filtres (201), un réseau d'amplificateurs de puissance (PA) et d'amplificateurs à faible bruit (LNA) (202) et un réseau d'émetteurs-récepteurs (203), le réseau de filtres (201), le réseau de PA et de LNA et le réseau d'émetteurs-récepteurs étant connectés en séquence, le réseau de filtres (201) étant connecté à l'unité formant circuit d'étalonnage et de couplage d'antenne (205) et le réseau d'émetteurs-récepteurs (203) étant connecté à l'unité de traitement numérique (501) ;

    le réseau de filtres (201) étant configuré pour filtrer les M signaux radioélectriques d'étalonnage d'émission ou les M signaux radioélectriques d'étalonnage de réception ;

    le réseau de PA et de LNA (202) étant configuré pour amplifier la puissance des M signaux radioélectriques d'étalonnage d'émission ou des M signaux radioélectriques d'étalonnage de réception ; et

    le réseau d'émetteurs-récepteurs (203) étant configuré pour convertir les M signaux radioélectriques d'étalonnage d'émission ou les M signaux radioélectriques d'étalonnage de réception en M signaux analogiques IQ et pour émettre les M signaux analogiques IQ ; ou pour convertir M signaux analogiques IQ reçus en les M signaux radioélectriques d'étalonnage d'émission ou en les M signaux radioélectriques d'étalonnage de réception ; ou

    l'unité principale formant circuit d'étalonnage et de couplage (503) comprenant :

    plusieurs fusionneurs-séparateurs ; ou

    plusieurs fusionneurs-séparateurs ou plusieurs coupleurs ; ou

    plusieurs matrices de commutateurs.


     
    7. Dispositif antenne active (51) selon la revendication 6, dans lequel l'unité d'étalonnage d'émission et de réception (504) comprend une unité d'amplification de signal radioélectrique et une unité émettrice-réceptrice, l'unité d'amplification de signal radioélectrique et l'unité émettrice-réceptrice étant connectées l'une à l'autre, et dans lequel :
    l'unité d'amplification de signal radioélectrique est connectée à l'unité principale formant circuit d'étalonnage et de couplage (503) et l'unité émettrice-réceptrice est connectée à l'unité de traitement numérique (501).
     
    8. Système de communication, le système de communication étant caractérisé en ce qu'il comprend le dispositif antenne active (51) selon l'une quelconque des revendications 5 à 7 et un dispositif de génération de bande de base (71), le dispositif antenne active (51) et le dispositif de génération de bande de base (71) étant connectés sur une fibre optique et le dispositif de génération de bande de base (71) comprenant une unité formant interface numérique à fibre optique (701) et une unité en bande de base (702), l'unité formant interface numérique à fibre optique (701) et l'unité en bande de base (702) étant connectées l'une à l'autre ;
    l'unité en bande de base (702) étant configurée pour convertir une séquence prédéfinie d'étalonnage de réception en un signal numérique IQ d'étalonnage de réception et pour émettre ledit signal numérique IQ d'étalonnage de réception vers l'unité formant interface numérique à fibre optique (701), et l'unité formant interface numérique à fibre optique (701) étant configurée pour émettre ledit signal numérique IQ d'étalonnage de réception sur la fibre optique ; et l'unité en bande de base (702) étant configurée pour recevoir N*M signaux numériques IQ d'étalonnage de réception émis par l'unité formant interface numérique à fibre optique (701), pour réviser les N*M signaux numériques IQ d'étalonnage de réception au moyen de paramètres d'émission prédéfinis de N*M canaux radioélectriques d'étalonnage, et pour calculer des paramètres de révision d'amplitude d'étalonnage de réception et des paramètres de révision de phase d'étalonnage de réception correspondant à des canaux radioélectriques respectifs correspondant aux N*M canaux radioélectriques d'étalonnage selon les N*M signaux numériques IQ d'étalonnage de réception révisés et ladite séquence prédéfinie d'étalonnage de réception ; et/ou
    l'unité en bande de base (702) étant configurée pour convertir N*M séquences prédéfinies d'étalonnage d'émission en N*M signaux numériques IQ d'étalonnage d'émission, pour réviser les N*M signaux numériques IQ d'étalonnage d'émission au moyen des paramètres d'émission prédéfinis des N*M canaux radioélectriques d'émission, et pour émettre les N*M signaux numériques IQ d'étalonnage d'émission révisés vers l'unité formant interface numérique à fibre optique (701), et l'unité formant interface numérique à fibre optique (701) étant configurée pour convertir les N*M signaux numériques IQ d'étalonnage d'émission révisés en un signal optique et pour émettre le signal optique sur la fibre optique ; et l'unité en bande de base (702) étant configurée pour recevoir un signal numérique IQ d'étalonnage d'émission émis par l'unité formant interface numérique à fibre optique (701) et pour calculer des paramètres de révision d'amplitude d'étalonnage d'émission et des paramètres de révision de phase d'étalonnage d'émission des canaux radioélectriques respectifs correspondant aux N*M canaux radioélectriques d'étalonnage selon ledit signal numérique IQ d'étalonnage d'émission reçu et les N*M séquences prédéfinies d'étalonnage d'émission ;
    les N*M signaux numériques IQ d'étalonnage de réception reçus étant des signaux obtenus après que ledit signal numérique IQ d'étalonnage de réception a été émis d'abord sur un canal radioélectrique d'étalonnage du dispositif antenne active (51) puis sur N*M canaux radioélectriques du dispositif antenne active (51), puis reçu sur la fibre optique et traité par l'unité formant interface numérique à fibre optique (701) ;
    ledit signal numérique IQ d'étalonnage d'émission reçu étant un signal obtenu après que les N*M signaux numériques IQ d'étalonnage d'émission révisés ont été émis d'abord sur les N*M canaux radioélectriques du dispositif antenne active (51) puis sur le canal radioélectrique d'étalonnage du dispositif antenne active (51), puis reçus sur la fibre optique et traités par l'unité formant interface numérique à fibre optique (701) ; et
    les paramètres d'émission prédéfinis des N*M canaux radioélectriques d'étalonnage étant reçus sur la fibre optique, puis émis par l'unité formant interface numérique à fibre optique (701) vers l'unité en bande de base (702).
     
    9. Système de communication selon la revendication 8, dans lequel :

    l'unité en bande de base (702) est en outre configurée pour :
    obtenir des données en liaison montante, réviser l'amplitude des données en liaison montante au moyen des paramètres de révision d'amplitude d'étalonnage de réception, et réviser la phase des données en liaison montante au moyen des paramètres de révision de phase d'étalonnage de réception ; et

    les données en liaison montante étant obtenues à la suite de la réception d'un signal en liaison montante sur la fibre optique et de son émission par l'unité formant interface numérique à fibre optique (701) vers l'unité en bande de base (702) ; ou

    l'unité en bande de base (702) est en outre configurée pour :
    réaliser une formation de faisceau sur des données à émettre, réviser l'amplitude des données à faisceau conformé au moyen des paramètres de révision d'amplitude d'étalonnage d'émission, réviser la phase des données à faisceau conformé au moyen des paramètres de révision de phase d'étalonnage d'émission, puis émettre les données vers l'unité formant interface numérique à fibre optique (701), de sorte que l'unité formant interface numérique à fibre optique (701) convertisse les données en un signal optique, puis émette le signal optique sur la fibre optique.


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description