(19)
(11)EP 3 146 799 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15726471.4

(22)Date of filing:  18.05.2015
(51)International Patent Classification (IPC): 
H05B 45/10(2020.01)
H05B 45/37(2020.01)
(86)International application number:
PCT/US2015/031346
(87)International publication number:
WO 2015/179277 (26.11.2015 Gazette  2015/47)

(54)

METHOD AND SYSTEM FOR IMPROVING LED LIFETIME AND COLOR QUALITY IN DIMMING APPARATUS

VERFAHREN UND SYSTEM ZUR VERBESSERUNG DER LED-LEBENSDAUER UND DER FARBQUALITÄT UND DIMMUNGSVORRICHTUNG

PROCÉDÉ ET SYSTÈME D'AMÉLIORATION DE DURÉE DE VIE DE DIODE ÉLECTROLUMINESCENT (DEL) ET LA QUALITÉ DE COULEUR DANS UN APPAREIL DE GRADATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.05.2014 US 201462000139 P

(43)Date of publication of application:
29.03.2017 Bulletin 2017/13

(73)Proprietor: Microchip Technology Incorporated
Chandler, Arizona 85224-6199 (US)

(72)Inventors:
  • REITER, Andreas
    83620 Feldkirchen-Westerham (DE)
  • STEEDMAN, Sean Stacy
    Phoenix, AZ 85048 (US)
  • DI JASIO, Lucio
    81545 Munich (DE)
  • JULICHER, Joseph
    Maricopa, AZ 85138 (US)
  • YUENYONGSGOOL, Yong
    Gilbert, AZ 85297 (US)

(74)Representative: sgb europe 
Lechnerstraße 25a
82067 Ebenhausen
82067 Ebenhausen (DE)


(56)References cited: : 
US-A1- 2013 082 624
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present disclosure relates to light emitting diodes (LED), and, in particular, to a method and system for dimming apparatus that improves LED lifetime and color temperature consistency thereof.

    [0002] LEDs used for area lighting, automotive exterior lighting, medical lighting and television backlighting require a way to dim the LEDs to obtain a desired lighting level and/or average lumen output. LED dimming may be provided with analog linear dimming or pulse width modulation (PWM) dimming. Linear dimming of LEDs is used to reduce/adjust brightness thereof by changing current through the LEDs. Change in current through the LEDs results in a shift of the chromaticity coordinates (change of color temperature). Many applications like retrofit light bulb replacement, automotive lighting, medical lighting or professional illumination systems highly rely on specific color temperatures to meet application specific light requirements or legal regulations. PWM dimming turns on and off (allows current to flow and not flow through the LEDs) at a nominal current necessary to meet specific chromaticity coordinates during the on-time of the LEDs. The on and off frequency for dimming the LEDs has to be high enough to create a seemingly static (constant) light to the human eye.

    [0003] PWM dimming of constant current sources causes three issues with LEDs: The first issue is high current overshoot as the LED is switched into the circuit (when the current source is turned back on after the dimming off-time). This overshoot shortens the service life of the LED. This effect can particularly be observed in lighting systems where switched-mode DC/DC converters are used as the current source. Control stages of analog switched-mode power converters utilize operational amplifiers as an inverting error amplifier. During the dimming off-time, the feedback signal drops to zero. The analog error amplifier thereupon increases its output voltage (reference voltage to peak current comparators or comparators in PWM generators) to compensate for the instantaneous error. The feedback loop of these amplifiers is closed by a circuit of resistors and capacitors (the compensation filter RC network). This RC network is either connected between the amplifier input and its output (circuit for general purpose operational amplifiers) or between the amplifier output and the circuit ground (circuit for trans-conductance operational amplifiers). When the amplifier output voltage increases to compensate for the instantaneous error during the PWM dimming off-time, the RC network is charged. When the feedback drops to zero, the error is maximal and so the output voltage of the error amplifier will increase up to the saturation point of the circuit. When the PWM dimming signal is turned back on, the error amplifier of the control circuit will force the switched-mode power converter to apply the maximum duty ratio of the switching frequency resulting in a short maximum power output, which will last until the feedback signal has tuned into normal levels of operation and the compensation network has de-saturated. To compensate for this issue, analog circuits are usually added to the error amplifier circuit to apply a fast soft-start ramp. These fast soft-start ramps, however, add a reduced average forward current component to the total LED forward current, causing a shift of chromaticity coordinates (shift in color temperature).

    [0004] The second issue is a slow forward voltage decay after the current source is switched off that is caused by the discharging output capacitors of the disabled current source. This decay affects the color temperature, which becomes more and more dominant with shorter duty ratios.

    [0005] The third issue is the physical limitation of minimum dimming PWM duty ratios when systems suffer from slow current slew rates of leading and/or falling edges. The time required to increase the LED forward current up to the nominal level and/or back down to zero limits the minimum on-time required to achieve a certain lumen output. When stable color temperatures are explicit, a minimum period of nominal forward current is required, further increasing the minimum on-time. This becomes an issue in applications when very low on-times and stable color temperatures are mandatory, like automotive exterior lighting, display backlights, medical or restoration lighting applications, and the like.

    [0006] US Patent Application Publication US 2013/0082624 discloses an LED driver system and methods.

    [0007] Therefore a need exists for PWM dimming of LED lighting without varying a desired color temperature or shortening the service life time of the LEDs due to high current surges therethrough. This and other objects can be achieved by a circuit arrangement and method as defined in the independent claims. Further enhancements are characterized in the dependent claims.

    [0008] According to an embodiment, a circuit arrangement for controlling a light emitting diode (LED) device comprises: a modulator operable to receive a pulse width modulation signal and a high frequency signal, and to generate a modulated high frequency signal; and a feedback circuit that may comprise an error amplifier and a compensation network, wherein the feedback circuit is synchronously switched from a first configuration to a second configuration during off times of the the pulse width modulation signal, wherein the feedback circuit receives a feedback signal from the LED device and outputs an output signal fed to the modulator; an output capacitor (Cout) storing a voltage generated through the modulated high frequency signal; and a load switch (A, B, C, D) coupled with the LED device and configured to disconnect or bypass the LED device from the output capacitor (Cout) during the off times of the pulse width modulation signal from receiving the voltage stored in the output capacitor (Cout).

    [0009] According to a further embodiment, the load switch may be coupled to a cathode of the LED device. According to a further embodiment, a load switch may be coupled in parallel with the LED device that may be closed during the off times of the modulated high frequency signal. According to a further embodiment, the load switch may be coupled in series with an output capacitor, wherein the external load switch may disconnect the output capacitor from the LED device during the off times of the pulse width modulation signal.

    [0010] According to a further embodiment, the high frequency signal may be from about 100 kilohertz to several megahertz. According to a further embodiment, the pulse width modulation signal may be from about 100 hertz to about four (4) kilohertz.

    [0011] According to a further embodiment, the first configuration may comprise the error amplifier and compensation network coupled together, and the second configuration may comprise an output of the error amplifier shorted to a common. According to a further embodiment, wherein the first configuration may comprise the error amplifier and compensation network coupled together, and the second configuration may comprise an inverting input and output of the error amplifier shorted together. According to a further embodiment, the first configuration may comprise the error amplifier and compensation network coupled together, and the second configuration may comprise the compensation network decoupled from an output of the error amplifier, and inputs of the error amplifier decoupled from the compensation network and a voltage reference.

    [0012] According to a further embodiment, the first configuration may comprise the error amplifier and compensation network coupled together, and the second configuration may comprise inverting and non-inverting inputs of the error amplifier shorted together. According to a further embodiment, the first configuration may comprise the error amplifier and compensation network coupled together, and the second configuration may comprise the compensation network decoupled from an output of the error amplifier.

    [0013] According to another embodiment, a method of controlling a light emitting diode (LED) device may comprise the steps of: modulating a continuous high frequency signal with a lower frequency dimming signal having an on-off duty ratio to generate a control signal used in providing a desired lumen output from an LED device; and synchronously switching a feedback circuit, that may comprise an error amplifier and a compensation network, from a first configuration to a second configuration during off times of the lower frequency dimming signal, wherein the feedback circuit receives a feedback signal from the LED device and outputs an output signal further controlling said step of modulating; and decoupling the LED device from an output capacitor storing a voltage generated by the modulated high frequency signal by a load switch during the off times of the pulse width modulation signal such that the voltage stored in the output capacitor is not fed to the LED device.

    [0014] According to a further embodiment of the method, the step of shorting the LED device may be done with a parallel connected load switch during the off times of the lower frequency dimming signal.

    [0015] The circuit arrangement may additionally include an integrated circuit (IC) light emitting diode (LED) controller having light dimming capabilities configurable to perform the above mentioned method, the IC LED controller comprising: a first generator for providing the high frequency signal; a second generator for providing the pulse width modulation signal; the modulator; the error amplifier; an LED driver for coupling the modulated high frequency signal to the LED device; and an output port receiving the pulse width modulation signal and being configured to be coupled with the load switch. modulated high frequency signal; a feedback circuit comprising an error amplifier and a compensation network, wherein the feedback circuit may be synchronously switched from a first configuration to a second configuration during off times of the pulse width modulation signal, wherein the feedback circuit receives a feedback signal from the LED device and outputs an output signal fed to the modulator; a LED driver for coupling the modulated high frequency signal to an LED device, and an output port receiving the pulse width modulation signal and being configured to be coupled with the load switch. According to a further embodiment, the IC LED controller may comprise a microcontroller.

    [0016] A more complete understanding of the present disclosure may be acquired by referring to the following description taken in conjunction with the accompanying drawings wherein:

    Figure 1 illustrates a timing diagram of a typical enhanced LED PWM dimming waveform showing the combination of a pulse width modulation signal with a high frequency switching signal resulting in a modulated high frequency dimming signal;

    Figure 2 illustrates a schematic graph of currents through the LEDs resulting from PWM dimming using the dimming current waveform shown in Figure 1 with an inverting error amplifier having a continuous compensation network filter circuit in its feedback loop and a slowly discharging output capacitor;

    Figures 3A, 3B, 3C, 3D and 3E illustrate schematic diagrams of error amplifier "compensation network freeze" circuits, according to specific example embodiments of this disclosure;

    Figure 4 illustrates a schematic block diagram of various load switch configurations for disconnecting the LEDs from the power source and/or shorting the output capacitor during the PWM dimming off-time, according to specific example embodiments of this disclosure;

    Figure 5 illustrates schematic waveform and circuit diagrams of enhanced dimming circuits, according to specific example embodiments of this disclosure;

    Figure 6 illustrates schematic waveform and circuit diagrams of enhanced dimming circuits when no load switch is available, according to specific example embodiments of this disclosure;

    Figure 7 illustrates a schematic block diagram of an external type II compensation network and a peak current mode control with internal slope compensation, according to an example embodiment of this disclosure;

    Figure 8 illustrates a schematic block diagram of a dimming engine in combination with a programmable envelope PWM generator, according to the teachings of this disclosure; and

    Figure 9 illustrates a schematic diagram of an automotive LED driver circuit, according to a specific example embodiment of this disclosure.



    [0017] While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims.

    [0018] According to various embodiments, general purpose op-amp based compensation networks with increased features may be used to address all topologies, power levels and load-switch configurations currently used in the market with respect to LED PWM dimming.

    [0019] According to various embodiments of this disclosure, methods may be provided to eliminate overshoot and slowly discharging currents during the dimming on and off times in order to increase the LED's life time and chromaticity coordinate (color temperature) while lowering overall power dissipation. Optimizing the rise and fall times of current waveforms also optimize the dimming ratios for newly emerging applications, e.g., automotive exterior front-lighting, display back-lighting, etc., where high dimming resolutions up to and above 3000:1 and/or short dimming ratios of 1% or less are required.

    [0020] According to various embodiments of this disclosure, by synchronously manipulating the error amplifier and external load switch during off-time, overshoot and slowly discharging currents may be eliminated and the average forward current control precision may be optimized.

    [0021] Most PWM dimmed LED driver modules currently available on the market are purely analog. Implementing and configuring desired dimming features in them require a certain level of integrated intelligence e.g., microcontroller unit (MCU). Although most LED driver modules also have a MCU on board, that may supply the dimming signal, there are no analog controllers available that allow advanced levels of error amplifier manipulation, according to the teachings of this disclosure, or the dimming controllers available only support a limited range of power supply topologies and power levels. Preventing the error amplifier from saturating while maintaining fast response is now possible according to various embodiments of this disclosure. A single integrated circuit LED dimming controller using PWM may be provided for use with all switched-mode power supply (SMPS) topologies and LED dimming requirements.

    [0022] Referring now to the drawings, the details of specific example embodiments are schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower case letter suffix.

    [0023] Referring to Figure 1, depicted is a timing diagram of a typical enhanced LED PWM dimming waveform showing the combination of a pulse width modulation signal with a high frequency switching signal resulting in a modulated high frequency dimming signal. A voltage waveform that is switched on and off at a switching frequency (fSW) is rectified and filtered to a DC voltage that is supplied to at least one LED, e.g., a series connected string of LEDs (see Figure 2). The switching frequency (fSW) waveform is further modulated by a duty ratio waveform (fDIMM) (pulse width modulation signal) that controls the brightness (averaged lumen output) of the LEDs with the resulting combination providing a dimming control voltage waveform (fCTRL). This method of dimming LEDs is very effective and maintains the chromaticity coordinates (color temperature) of light from the LEDs. However there are several problems inherit with generating the dimming control voltage waveform (fCTRL), as more fully described herein and shown in Figure 2. The switching frequency (fSW) may be from about 100 kilohertz to frequencies in the megahertz range, depending on the power converter type and topology used as current source. The duty ratio waveform frequency (fDIMM) is typically between about 100 hertz to about four (4) kilohertz.

    [0024] Referring to Figure 2, depicted is a schematic graph of currents through the LEDs resulting from PWM dimming using the dimming current waveform shown in Figure 1 with an inverting error amplifier having a continuous compensation filter circuit in its feedback loop and a slowly discharging output capacitor. The continuously running compensation network saturates during dimming off-time and causes serious current overshoots when a voltage thereto is first applied. This current overshoot results in a shortened service life time of the LEDs. At the end of each modulated pulse train, the slowly discharging output capacitor causes shifts in color temperature and higher heat dissipation of the LEDs.

    [0025] During off-time of the dimming control voltage waveform (fCTRL), the feedback becomes zero and the inverting error amplifier (EA) increases its output to the maximum, adversely overcharging the compensation network in its feedback loop. When the PWM dimming control voltage waveform (fCTRL) turns back, it takes the EA (e.g., compensation network) several switching cycles to recover while a large current peak is driven through the LEDs, that in the long term limits the service life time of the LEDs.

    [0026] Referring to Figures 3A, 3B, 3C, 3D and 3E, depicted are schematic diagrams of error amplifier "compensation network freeze" circuits, according to specific example embodiments of this disclosure. In an error amplifier (EA), during off-time the feedback becomes zero and the EA increases its output to the maximum thereby overcharging the compensation network. When the PWM voltage waveform is turned back on, it takes the LED dimming compensation network several switching cycles to recover while a large current peak is driven through the LEDs as shown in Figure 2. General purpose operational amplifiers have the compensation network permanently connected to the feedback signal and EA output. Trans-conductance amplifiers have the compensation network connected to the EA output and ground (not shown). Possible solutions to current overshoot through the LEDs, according to the teachings of this disclosure may be as follows:
    Shown in Figure 3A, a switch 302a is coupled between the EA output and ground and resets the output thereof to substantially zero volts during the dimming PWM waveform off-time. This compensation network reset configuration results in the control loop starting up with a ramp voltage, and may be effectively used when no external load switch is available or parallel load switches are used. When slow current slew rates are uncritical this configuration may be effectively used for electromagnetic interference (EMI) optimizations.

    [0027] Shown in Figure 3B, a switch 302b is coupled between the EA output and the inverting input of the EA. During the PWM waveform off time the output and the inverting input of the EA together are shorted together, effectively shorting the compensation network preventing saturation. When the feedback signal is substantially zero volts, the effects on the circuit might be similar to control scheme shown in Figure 3A, however, might provide faster recovery when the PWM waveform is turned back on. During the off-time the EA has a unity gain of one (1). This unity gain configuration may be effectively used with external high-side or low-side load switches.

    [0028] Shown in Figure 3C, switch 302c is coupled between the EA output and the compensation network, switch 304 is coupled between the inverting input and the compensation network, and switch 306 is coupled between the non-inverting input and the voltage reference (REF). When the switches 302c, 304 and 306 are open, the feedback and output voltages of the EA are floating while the EA remains enabled. This configuration may be effectively used with external high-side or low-side load switches. It further represents the most effective conservation of the charge-level of the compensation network and fastest recovery period of the total error amplifier circuit.

    [0029] Shown in Figure 3D, switch 302d is coupled between inverting and non-inverting inputs of the EA. Shorting the inverting and non-inverting inputs of the EA with the switch 302d sets the EA to a "non-error" mode that causes the compensation network to be balanced and the output of the EA will be driven to an "ideal" voltage level given by the reference voltage. As a result, the converter will step in at the beginning of the on-time with a minimum error (when properly synchronized with the external load switch). This configuration may be ideal to be used with external low-side load switches in particular. In this system level configuration, when the low-side load switch is open during the dimming off-time, the feedback signal will be pulled to ground by the low-side shunt resistor. The integrator resistor of the compensation network (connected in series with the shunt resistor) will further pull down the inverting input of the EA. As these resistors are usually in the kilohm range, the internal reference voltage will remain stable when connected to the inverting input line by switch 302d.

    [0030] Shown in Figure 3E, switch 302e is coupled between the EA output and the compensation network. Disconnecting the output of the EA from the compensation network with the switch 302b e.g., tri-state output, during the PWM waveform off time and then coupling back the compensation network to the EA output allows the compensation network to be pre-charged and thereby ramps up faster, e.g., resumes operation faster to the operating point of the power supply rather than the slower way of starting at ground potential. Although the EA will still increase its output voltage during the dimming off-time to its maximum, the disconnected compensation filter circuit will not saturate. As the bandwidth of the amplifier is at least one magnitude higher than the bandwidth of the compensation filter circuit, the transient injected while reconnecting will result in a "pre-charge during recovery" effect. When timed properly, the operational amplifier will regulate into nominal operation range before affecting the PWM generating circuit connected to the output of the amplifier. This configuration may be effectively used with external high-side or low-side load switches.

    [0031] Referring to Figure 4, depicted is a schematic block diagram of various load switch configurations for disconnecting the LEDs from the power source and/or shorting the output capacitor during the PWM dimming off-time, according to specific example embodiments of this disclosure.

    [0032] A serial high side switch located at "A" may be used in conjunction with high-side LED current monitoring. The load switch "A" (Serial High Side) is closed synchronously with PWM-restart and EA-release. EA-Modes that may be used are: "EA RESET" (Figure 3A), "UNITY GAIN" (Figure 3B), "EA DISCONNECT" (Figure 3C) or "PRE-CHARGE RECOVERY" (Figure 3E).

    [0033] A serial low side switch located at "B" may be used in conjunction with low-side LED current monitoring. The load switch "B" (Serial Low Side) is closed prior to or synchronously with PWM-restart and prior to EA-release. EA-Modes that may be used are: "EA RESET" (Figure 3A), "UNITY GAIN" (Figure 3B), "EA DISCONNECT" (Figure 3C), "EA INPUT SHORT" (Figure 3D) or "PRE-CHARGE RECOVERY" (Figure 3E).

    [0034] A switch located at "C" (Parallel Short) connected in parallel with the LEDs may be used to short out the LEDs for no current flow therethrough. There should be a system total reset during the PWM waveform off-time. The load switch at "C" is opened prior to a synchronous PWM-restart and EA-release. EA-Modes that may be used are: "COMPENSATOR RESET" (Figure 3A) or "PRE-CHARGE RECOVERY" (Figure 3E).

    [0035] A switch located at "D" (Output Voltage Freeze) in series with the output capacitor (COUT), coupled to either node of the output capacitor, may be used to interrupt voltage from the output capacitor to the LEDs, thereby preventing current flow therefrom. This configuration may be application for specific switch mode power supply (SMPS) topologies, e.g., SEPIC or fly-back. The load switch at "D" is closed prior to a synchronous PWM-restart and EA-release. EA-Modes that may be used are: "EA RESET" (Figure 3A), "UNITY GAIN" (Figure 3B), "EA DISCONNECT" (Figure 3C) or "PRE-CHARGE RECOVERY" (Figure 3E).

    [0036] Referring to Figure 5, depicted are schematic waveform and circuit diagrams of enhanced dimming circuits, according to specific example embodiments of this disclosure. As shown in Figure 5, the current overshoot through the LEDs and residual tail currents are substantially eliminated by utilizing EA-Mode "PRE-CHARGE RECOVERY" (Figure 3E) in conjunction with a load switch "A" (Figure 4), according to the teachings of this disclosure.

    [0037] Referring to Figure 6, depicted are schematic waveform and circuit diagrams of enhanced dimming circuits when no load switch is available by utilizing EA-Mode "EA RESET" (Figure 3A), according to specific example embodiments of this disclosure. As shown in Figure 6, the current overshoot through the LEDs is eliminated by applying a start-up ramp, according to the teachings of this disclosure.

    [0038] Referring to Figure 7, depicted is a schematic block diagram of an external type II compensation network and a peak current mode control with internal slope compensation, according to an example embodiment of this disclosure. Switches may be provided with the EA and compensation network as shown in Figures 3A-3E, and general purpose input-output (GPIO) switches may be provided to control a power field effect transistor(s) (FET) to turn on and off current through the LEDs as shown in Figure 4, according to the teachings of this disclosure. In this controller architecture the conventional analog PWM generator, consisting of a saw-tooth generator, clock, analog comparator and SR latch, have been replaced by a digital PWM generator to enhance its controllability and synchronization capabilities. The integrated slope compensation further allows adjustments of the compensation ramp during runtime for enhanced operation and stabilized frequency domain characteristics of peak current mode controlled switched-mode power converters in applications with wide input voltage ranges, operating with fixed switching frequencies in continuous conduction mode at duty ratios greater than 40-50%.

    [0039] It is contemplated and within the scope of this disclosure that some or all of the aforementioned circuit elements may be provided with a microcontroller, application specific integrated circuit (ASIC), programmable logic array (PLA) and the like.

    [0040] Referring to Figure 8, depicted is a schematic block diagram of a dimming engine in combination with a programmable envelope PWM generator, according to the teachings of this disclosure. Multiplexer A may be used to control the switch(es) that may disconnect/short the compensation network from the EA. Multiplexer B may be used to override the PWM output to the power switches of the SMPS topology while the power converter switching frequency PWM generator continues operation internally to the LED dimming controller. Multiplexer C may be used to control output drive to the LEDs, turn on and off external load-switches (Figure 4), and disconnect or short the LEDs during off-time. The delay blocks may be adapted to adjust switch-sequencing timing requirements, according to the teachings of this disclosure. The inverting/non-inverting logic blocks may be used to adapt the control signals to application specific components, circuits, topologies and/or configurations.

    [0041] Referring to Figure 9, depicted is a schematic diagram of an automotive LED driver circuit, according to a specific example embodiment of this disclosure. This example shows a circuit for disconnecting the current source output capacitor from ground (configuration "D" in Figure 4) in order to maintain its charge during the dimming off-time. To prevent further issues with the operation of the current source (e.g., single-ended primary-inductor converter SEPIC) external triggers might be used to synchronize the dimming engine to external processes (e.g., zero-cross detection of the current at the coupling point of the two inductors of the SEPIC topology) (not shown). The module 900 shown in Figure 9 may be a LED dimming engine provided by an integrated circuit microcontroller, ASIC, PLA and the like.

    [0042] While embodiments of this disclosure have been depicted, described, and are defined by reference to example embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only.


    Claims

    1. A circuit arrangement for controlling a light-emitting diode device - hereafter abbreviated 'LED device' comprising:

    a modulator (IOCTRL; MCU) operable to receive a pulse width modulation signal (fDIMM) and a high frequency signal (fSW), and to generate a modulated high frequency signal (fCTRL); and

    a feedback circuit comprising an error amplifier (EA) and a compensation network (C2, R2, C3), wherein the feedback circuit is synchronously switched (302, 304, 306) from a first configuration to a second configuration during off times of the pulse width modulation signal (fDIMM), wherein the feedback circuit receives a feedback signal from the LED device and outputs an output signal fed to the modulator;

    an output capacitor (Cout) storing a voltage generated through the modulated high frequency signal to be supplied to the LED device

    characterized by

    a load switch (A, B, C, D) coupled with the LED device and configured to disconnect or bypass the LED device from the output capacitor (Cout) during the off times of the pulse width modulation signal thereby preventing the LED device from receiving the voltage stored in the output capacitor (Cout).


     
    2. The circuit arrangement according to claim 1, wherein the load switch (A) is coupled between an anode of the LED device and the output capacitor (Cout).
     
    3. The circuit arrangement according to claim 1, wherein the load switch (B) is coupled between a cathode of the LED device and the output capacitor (Cout).
     
    4. The circuit arrangement according to claim 1, wherein the load switch (C) is coupled in parallel with the LED device and closed during the off times of the pulse width modulation signal.
     
    5. The circuit arrangement according to claim 1, wherein the load switch (D) is coupled in series with the output capacitor, wherein the load switch is open during the off times of the pulse width modulation signal.
     
    6. The circuit arrangement according to one of the preceding claims, wherein the high frequency signal (fSW) is selected from 100 kilohertz to several megahertz and wherein the pulse width modulation signal (fDIMM) is from 100 hertz to about four (4) kilohertz.
     
    7. The circuit arrangement according to one of the preceding claims, wherein the first configuration comprises the error amplifier (EA) and compensation network (C2, R2, C3) coupled together, and the second configuration comprises an output of the error amplifier (EA) shorted to ground.
     
    8. The circuit arrangement according to one of the preceding claims 1-6, wherein the first configuration comprises the error amplifier (EA) and compensation network (C2, R2, C3) coupled together, and the second configuration comprises an inverting input and output of the error amplifier (EA) shorted together.
     
    9. The circuit arrangement according to one of the preceding claims 1-6, wherein the first configuration comprises the error amplifier (EA) and compensation network (C2, R2, C3) coupled together, and the second configuration comprises the compensation network (C2, R2, C3) decoupled from an output of the error amplifier (EA), and inputs of the error amplifier (EA) decoupled from the compensation network (C2, R2, C3) and a voltage reference.
     
    10. The circuit arrangement according one of the preceding claims 1-6, wherein the first configuration comprises the error amplifier (EA) and compensation network (C2, R2, C3) coupled together, and the second configuration comprises inverting and non-inverting inputs of the error amplifier (EA) shorted together.
     
    11. The circuit arrangement according to one of the preceding claims 1-6, wherein the first configuration comprises the error amplifier (EA) and compensation network (C2, R2, C3) coupled together, and the second configuration comprises the compensation network (C2, R2, C3) decoupled from an output of the error amplifier (EA).
     
    12. A method of controlling a light-emitting diode device - hereafter abbreviated 'LED device' - said method comprising the steps of:

    modulating a continuous high frequency signal (fSW) with a pulse width modulation signal (fDIMM) having an on-off duty ratio to generate a control signal used in providing a desired lumen output from the LED device; and

    synchronously switching (302, 304, 306) a feedback circuit comprising an error amplifier (EA) and a compensation network (C2, R2, C3) from a first configuration to a second configuration during off times of the pulse width modulation signal (fDIMM), wherein the feedback circuit receives a feedback signal from the LED device and outputs an output signal further controlling said step of modulating;

    characterized by

    decoupling the LED device from an output capacitor (Cout) storing a voltage generated by the modulated high frequency signal (fCTRL) by a load switch (A, B, C, D) during the off times of the pulse width modulation signal (fDIMM) such that the voltage stored in the output capacitor (Cout) is not fed to the LED device.


     
    13. The method according to claim 12, wherein the load switch (C) is connected in parallel with the LED device and further comprising the step of shorting the LED device with the parallel connected load switch (C) during the off times of the pulse width modulation signal (fDIMM).
     
    14. The circuit arrangement according to claim 1, comprising an integrated circuit LED controller having light dimming capabilities configurable to perform the method according to one of the preceding claims 12 or 13, the integrated circuit LED controller comprising:

    a first generator for providing the high frequency signal (fSW);

    a second generator for providing the pulse width modulation signal (fDIMM); the modulator (IOCTRL; MCU);

    the error amplifier (EA);

    an LED driver for coupling the modulated high frequency signal (fCTRL) to the LED device; and

    an output port receiving the pulse width modulation signal (fDIMM) and being configured to be coupled with the load switch (A, B, C, D).


     
    15. The circuit arrangement according to claim 14, wherein the integrated circuit LED controller comprises a microcontroller.
     


    Ansprüche

    1. Schaltungsanordnung zum Steuern einer lichtemittierenden Diodenvorrichtung - nachstehend als "LED-Vorrichtung" abgekürzt - die aufweist:

    einen Modulator (IOCTRL; MCU), der zum Empfangen eines Pulsweitenmodulationssignals (fDIMM) und eines Hochfrequenzsignals (fSW) und zum Erzeugen eines modulierten Hochfrequenzsignals (fCTRL) betreibbar ist; und

    eine Rückkopplungsschaltung, die einen Fehlerverstärker (EA) und ein Kompensationsnetzwerk (C2, R2, C3) aufweist, wobei die Rückkopplungsschaltung während der Ausschaltzeiten des Pulsweitenmodulationssignals (fDIMM) synchron von einer ersten Konfiguration zu einer zweiten Konfiguration geschaltet wird (302, 304, 306), wobei die Rückkopplungsschaltung ein Rückkopplungssignal von der LED-Vorrichtung empfängt und ein Ausgangssignal ausgibt, das dem Modulator zugeführt wird;

    einen Ausgangskondensator (Cout), der eine Spannung speichert, die durch das modulierte Hochfrequenzsignal erzeugt wird, das der LED-Vorrichtung zugeführt werden soll

    gekennzeichnet durch

    einen Lastschalter (A, B, C, D), der mit der LED-Vorrichtung gekoppelt und ausgebildet ist, die LED-Vorrichtung während der Ausschaltzeiten des Pulsweitenmodulationssignals vom Ausgangskondensator (Cout) zu trennen oder zu umgehen, wodurch verhindert wird, dass die LED-Vorrichtung die im Ausgangskondensator (Cout) gespeicherte Spannung empfängt.


     
    2. Schaltungsanordnung gemäß Anspruch 1, wobei der Lastschalter (A) zwischen einer Anode der LED-Vorrichtung und dem Ausgangskondensator (Cout) gekoppelt ist.
     
    3. Schaltungsanordnung gemäß Anspruch 1, wobei der Lastschalter (B) zwischen einer Kathode der LED-Vorrichtung und dem Ausgangskondensator (Cout) gekoppelt ist.
     
    4. Schaltungsanordnung gemäß Anspruch 1, wobei der Lastschalter (C) parallel zur LED-Vorrichtung gekoppelt und während der Ausschaltzeiten des Pulsweitenmodulationssignals geschlossen ist.
     
    5. Schaltungsanordnung gemäß Anspruch 1, wobei der Lastschalter (D) in Reihe mit dem Ausgangskondensator geschaltet ist, wobei der Lastschalter während der Ausschaltzeiten des Pulsweitenmodulationssignals geöffnet ist.
     
    6. Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche, wobei das Hochfrequenzsignal (fSW) von 100 Kilohertz bis zu mehreren Megahertz ausgewählt ist und wobei das Pulsweitenmodulationssignal (fDIMM) von 100 Hertz bis etwa vier (4) Kilohertz beträgt.
     
    7. Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche, wobei die erste Konfiguration den Fehlerverstärker (EA) und das Kompensationsnetzwerk (C2, R2, C3) miteinander gekoppelt aufweist, und die zweite Konfiguration einen gegen Masse kurzgeschlossenen Ausgang des Fehlerverstärkers (EA) aufweist.
     
    8. Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche 1 bis 6, wobei die erste Konfiguration den Fehlerverstärker (EA) und das Kompensationsnetzwerk (C2, R2, C3) miteinander gekoppelt aufweist, und die zweite Konfiguration einen invertierenden Eingang und einen Ausgang des Fehlerverstärkers (EA) miteinander kurzgeschlossen aufweist.
     
    9. Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche 1 bis 6, wobei die erste Konfiguration den Fehlerverstärker (EA) und das Kompensationsnetzwerk (C2, R2, C3) miteinander gekoppelt aufweist, und die zweite Konfiguration das Kompensationsnetzwerk (C2, R2, C3) entkoppelt von einem Ausgang des Fehlerverstärkers (EA) und Eingänge des Fehlerverstärkers (EA) entkoppelt vom Kompensationsnetzwerk (C2, R2, C3) und einer Spannungsreferenz aufweist.
     
    10. Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche 1 bis 6, wobei die erste Konfiguration den Fehlerverstärker (EA) und das Kompensationsnetzwerk (C2, R2, C3) miteinander gekoppelt aufweist, und die zweite Konfiguration invertierende und nicht invertierende Eingänge des Fehlerverstärkers (EA) miteinander kurzgeschlossen aufweist.
     
    11. Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche 1 bis 6, wobei die erste Konfiguration den Fehlerverstärker (EA) und das Kompensationsnetzwerk (C2, R2, C3) miteinander gekoppelt aufweist, und die zweite Konfiguration das Kompensationsnetzwerk (C2, R2, C3) von einem Ausgang des Fehlerverstärkers (EA) entkoppelt aufweist.
     
    12. Verfahren zum Steuern einer lichtemittierenden Diodenvorrichtung - nachstehend als "LED-Vorrichtung" abgekürzt - wobei das Verfahren die Schritte aufweist:

    Modulieren eines kontinuierlichen Hochfrequenzsignals (fSW) mit einem Pulsweitenmodulationssignal (fDIMM), das ein Ein-Aus-Tastverhältnis aufweist, um ein Steuersignal zu erzeugen, das zum Bereitstellen eines erwünschten Lumen-Ausstoßes der LED-Vorrichtung verwendet wird; und

    synchrones Schalten (302, 304, 306) einer Rückkopplungsschaltung, die einen Fehlerverstärker (EA) und ein Kompensationsnetzwerk (C2, R2, C3) aufweist, von einer ersten Konfiguration zu einer zweiten Konfiguration während Ausschaltzeiten des Pulsweitenmodulationssignals (fDIMM), wobei die Rückkopplungsschaltung ein Rückkopplungssignal von der LED-Vorrichtung empfängt und ein Ausgangssignal ausgibt, das weiterhin den Modulationsschritt steuert;

    gekennzeichnet durch

    Entkoppeln der LED-Vorrichtung von einem Ausgangskondensator (Cout), der eine Spannung speichert, die durch das modulierte Hochfrequenzsignal (fCTRL) erzeugt wird, durch einen Lastschalter (A, B, C, D) während der Ausschaltzeiten des Pulsweitenmodulationssignals (fDIMM) derart, dass die im Ausgangskondensator (Cout) gespeicherte Spannung der LED-Vorrichtung nicht zugeführt wird.


     
    13. Verfahren gemäß Anspruch 12, wobei der Lastschalter (C) parallel zu der LED-Vorrichtung verbunden ist und weiterhin den Schritt des Kurzschlusses der LED-Vorrichtung mit dem parallel geschalteten Lastschalter (C) während der Ausschaltzeiten des Pulsweitenmodulationssignals (fDIMM) aufweist.
     
    14. Schaltungsanordnung gemäß Anspruch 1, die eine integrierte LED-Steuerungsschaltung aufweist, die Lichtdimmeigenschaften aufweist, die konfigurierbar sind, um das Verfahren gemäß einem der vorhergehenden Ansprüche 12 oder 13 durchzuführen, wobei die integrierte LED-Steuerungsschaltung aufweist:

    einen ersten Generator zum Bereitstellen des Hochfrequenzsignals (fSW);

    einen zweiten Generator zum Bereitstellen des Pulsweitenmodulationssignals (fDIMM);

    den Modulator (IOCTRL; MCU)

    den Fehlerverstärker (EA);

    einen LED-Treiber zum Koppeln des modulierten Hochfrequenzsignals (fCTRL) mit der LED-Vorrichtung; und

    einen Ausgangsport, der das Pulsweitenmodulationssignal (fDIMM) empfängt und so ausgebildet ist, dass er mit dem Lastschalter (A, B, C, D) gekoppelt werden kann.


     
    15. Schaltungsanordnung gemäß Anspruch 14, wobei die integrierte LED-Steuerungsschaltung einen Mikrocontroller aufweist.
     


    Revendications

    1. Agencement de circuit pour commander un dispositif à diodes électroluminescentes, ci-après abrégé « dispositif à diodes LED », comprenant :

    un modulateur (IOCTRL ; MCU) exploitable de manière à recevoir un signal de modulation d'impulsions en durée (fDIMM) et un signal haute fréquence (fSW), et à générer un signal haute fréquence modulé (fCTRL) ; et

    un circuit de rétroaction comprenant un amplificateur d'erreur (EA) et un réseau de compensation (C2, R2, C3), dans lequel le circuit de rétroaction est commuté de manière synchrone (302, 304, 306) d'une première configuration à une seconde configuration pendant des temps morts du signal de modulation d'impulsions en durée (fDIMM), dans lequel le circuit de rétroaction reçoit un signal de rétroaction en provenance du dispositif à diodes LED et fournit en sortie un signal de sortie alimentant le modulateur ;

    un condensateur de sortie (Cout) stockant une tension générée à travers le signal haute fréquence modulé à fournir au dispositif à diodes LED ;

    caractérisé par

    un commutateur de charge (A, B, C, D) couplé au dispositif à diodes LED et configuré de manière à déconnecter ou à contourner le dispositif à diodes LED à partir du condensateur de sortie (Cout) pendant les temps morts du signal de modulation d'impulsions en durée, ce qui permet d'empêcher par conséquent que le dispositif à diodes LED reçoive la tension stockée dans le condensateur de sortie (Cout).


     
    2. Agencement de circuit selon la revendication 1, dans lequel le commutateur de charge (A) est couplé entre une anode du dispositif à diodes LED et le condensateur de sortie (Cout).
     
    3. Agencement de circuit selon la revendication 1, dans lequel le commutateur de charge (B) est couplé entre une cathode du dispositif à diodes LED et le condensateur de sortie (Cout).
     
    4. Agencement de circuit selon la revendication 1, dans lequel le commutateur de charge (C) est couplé en parallèle au dispositif à diodes LED et fermé pendant les temps morts du signal de modulation d'impulsions en durée.
     
    5. Agencement de circuit selon la revendication 1, dans lequel le commutateur de charge (D) est couplé en série au condensateur de sortie, dans lequel le commutateur de charge est ouvert pendant les temps morts du signal de modulation d'impulsions en durée.
     
    6. Agencement de circuit selon l'une quelconque des revendications précédentes, dans lequel le signal haute fréquence (fSW) est sélectionné de 100 kilohertz à plusieurs mégahertz, et dans lequel le signal de modulation d'impulsions en durée (fDIMM) est compris entre 100 hertz et environ quatre (4) kilohertz.
     
    7. Agencement de circuit selon l'une quelconque des revendications précédentes, dans lequel la première configuration comprend l'amplificateur d'erreur (EA) et le réseau de compensation (C2, R2, C3) couplés ensemble, et la seconde configuration comprend une sortie de l'amplificateur d'erreur (EA) court-circuitée à la masse.
     
    8. Agencement de circuit selon l'une quelconque des revendications précédentes 1 à 6, dans lequel la première configuration comprend l'amplificateur d'erreur (EA) et le réseau de compensation (C2, R2, C3) couplés ensemble, et la seconde configuration comprend une entrée et une sortie inverseuse de l'amplificateur d'erreur (EA) court-circuitées ensemble.
     
    9. Agencement de circuit selon l'une quelconque des revendications précédentes 1 à 6, dans lequel la première configuration comprend l'amplificateur d'erreur (EA) et le réseau de compensation (C2, R2, C3) couplés ensemble, et la seconde configuration comprend le réseau de compensation (C2, R2, C3) découplé d'une sortie de l'amplificateur d'erreur (EA), et des entrées de l'amplificateur d'erreur (EA) découplées du réseau de compensation (C2, R2, C3) et une référence de tension.
     
    10. Agencement de circuit selon l'une quelconque des revendications précédentes 1 à 6, dans lequel la première configuration comprend l'amplificateur d'erreur (EA) et le réseau de compensation (C2, R2, C3) couplés ensemble, et la seconde configuration comprend des entrées inverseuses et non inverseuses de l'amplificateur d'erreur (EA) court-circuitées ensemble.
     
    11. Agencement de circuit selon l'une quelconque des revendications précédentes 1 à 6, dans lequel la première configuration comprend l'amplificateur d'erreur (EA) et le réseau de compensation (C2, R2, C3) couplés ensemble, et la seconde configuration comprend le réseau de compensation (C2, R2, C3) découplé d'une sortie de l'amplificateur d'erreur (EA).
     
    12. Procédé de commande d'un dispositif à diodes électroluminescentes, ci-après abrégé « dispositif à diodes LED », ledit procédé comprenant les étapes ci-dessous consistant à :

    moduler un signal haute fréquence continu (fSW) avec un signal de modulation d'impulsions en durée (fDIMM) présentant un rapport cyclique de marche-arrêt pour générer un signal de commande utilisé dans le cadre de la fourniture d'un lumen souhaité fourni en sortie à partir du dispositif à diodes LED ; et

    commuter de manière synchrone (302, 304, 306) un circuit de rétroaction comprenant un amplificateur d'erreur (EA) et un réseau de compensation (C2, R2, C3), d'une première configuration à une seconde configuration pendant des temps morts du signal de modulation d'impulsions en durée (fDIMM), dans lequel le circuit de rétroaction reçoit un signal de rétroaction en provenance du dispositif à diodes LED et fournit en sortie un signal de sortie commandant en outre ladite étape de modulation ;

    caractérisé par l'étape ci-dessous consistant à :
    découpler le dispositif à diodes LED d'un condensateur de sortie (Cout) stockant une tension générée par le signal haute fréquence modulé (fCTRL), par le biais d'un commutateur de charge (A, B, C, D), pendant des temps morts du signal de modulation d'impulsions en durée (fDIMM), de sorte que la tension stockée dans le condensateur de sortie (Cout) n'alimente pas le dispositif à diodes LED.


     
    13. Procédé selon la revendication 12, dans lequel le commutateur de charge (C) est connecté en parallèle au dispositif à diodes LED, et comprenant en outre l'étape consistant à court-circuiter le dispositif à diodes LED avec le commutateur de charge (C) connecté en parallèle, pendant les temps morts du signal de modulation d'impulsions en durée (fDIMM).
     
    14. Agencement de circuit selon la revendication 1, comprenant un contrôleur de diodes LED à circuit intégré présentant des capacités de gradation de lumière configurables pour mettre en Ĺ“uvre le procédé selon l'une quelconque des revendications précédentes 12 et 13, le contrôleur de diodes LED à circuit intégré comprenant :

    un premier générateur pour fournir le signal haute fréquence (fsw) ;

    un second générateur pour fournir le signal de modulation d'impulsions en durée (fDIMM) ;

    le modulateur (IOCTRL ; MCU) ;

    l'amplificateur d'erreur (EA) ;

    un pilote de diodes LED destiné à coupler le signal haute fréquence modulé (fCTRL) au dispositif à diodes LED ; et

    un port de sortie recevant le signal de modulation d'impulsions en durée (fDIMM) et configuré de manière à être couplé au commutateur de charge (A, B, C, D).


     
    15. Agencement de circuit selon la revendication 14, dans lequel le contrôleur de diodes LED à circuit intégré comprend un microcontrôleur.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description