(19)
(11)EP 3 149 019 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 15731260.4

(22)Date of filing:  28.05.2015
(51)International Patent Classification (IPC): 
C07J 9/00(2006.01)
A61P 1/16(2006.01)
C07J 41/00(2006.01)
A61K 31/575(2006.01)
C07J 31/00(2006.01)
(86)International application number:
PCT/EP2015/061802
(87)International publication number:
WO 2015/181275 (03.12.2015 Gazette  2015/48)

(54)

CHOLANE DERIVATIVES FOR USE IN THE TREATMENT AND/OR PREVENTION OF FXR AND TGR5/GPBAR1 MEDIATED DISEASES

CHOLANDERIVATE ZUR VERWENDUNG BEI DER BEHANDLUNG UND/ODER PRÄVENTION VON FXR- UND TGR5/GPBAR1-VERMITTELTEN KRANKHEITEN

DÉRIVÉS DE CHOLANE À UTILISER DANS LE TRAITEMENT ET/OU LA PRÉVENTION DE MALADIES MÉDIÉES PAR FXR ET TGR5/GPBAR1


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA

(30)Priority: 29.05.2014 IT FI20140130

(43)Date of publication of application:
05.04.2017 Bulletin 2017/14

(60)Divisional application:
19204247.1

(73)Proprietor: Bar Pharmaceuticals S.r.l.
42124 Reggio Nell'Emilia (IT)

(72)Inventors:
  • ZAMPELLA, Angela
    80127 Napoli (IT)
  • FIORUCCI, Stefano
    06100 Perugia (IT)

(74)Representative: Casciano, Lidia Giulia Rita et al
Studio Torta S.p.A. Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
US-A1- 2008 119 443
  
  • CLAUDIO D'AMORE ET AL: "Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile Acid Receptors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 57, no. 3, 13 February 2014 (2014-02-13), pages 937-954, XP055165457, ISSN: 0022-2623, DOI: 10.1021/jm401873d
  • PELLICCIARI R ET AL: "6alpha-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 45, no. 17, 1 January 2002 (2002-01-01), pages 3569-3572, XP002287455, ISSN: 0022-2623, DOI: 10.1021/JM025529G
  • SATO HIROYUKI ET AL: "Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 51, no. 6, 27 March 2008 (2008-03-27) , pages 1831-1841, XP002520339, ISSN: 0022-2623, DOI: 10.1021/JM7015864 [retrieved on 2008-02-29]
  • CARMEN FESTA ET AL: "Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor (FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands", JOURNAL OF MEDICINAL CHEMISTRY, vol. 57, no. 20, 23 October 2014 (2014-10-23), pages 8477-8495, XP55165458, ISSN: 0022-2623, DOI: 10.1021/jm501273r
  • T. FUJINO ET AL: "Structure-activity relationship of bile acids and bile acid analogs in regard to FXR activation", JOURNAL OF LIPID RESEARCH, vol. 45, no. 1, 1 January 2004 (2004-01-01), pages 132-138, XP55220806, US ISSN: 0022-2275, DOI: 10.1194/jlr.M300215-JLR200
  • Y. IGUCHI ET AL: "Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor", THE JOURNAL OF LIPID RESEARCH, vol. 51, no. 6, 18 December 2009 (2009-12-18), pages 1432-1441, XP55165536, ISSN: 0022-2275, DOI: 10.1194/jlr.M004051
  • FUKUCHI J ET AL: "5beta-Cholane activators of the farnesol X receptor", JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, ELSEVIER SCIENCE LTD., OXFORD, GB, vol. 94, no. 4, 1 March 2005 (2005-03-01), pages 311-318, XP027785865, ISSN: 0960-0760 [retrieved on 2005-03-01]
  • HSIEH H-P ET AL: "SYNTHESIS AND DNA BINDING PROPERTIES OF C3-, C12-, AND C24- SUBSTITUTED AMINO-STEROIDS DERIVED FROM BILE ACIDS", BIOORGANIC & MEDICINAL CHEMISTRY, PERGAMON, GB, vol. 3, no. 6, 1 June 1995 (1995-06-01), pages 823-838, XP000980487, ISSN: 0968-0896, DOI: 10.1016/0968-0896(95)00060-T
  • VALENTINA SEPE ET AL: "Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives As Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1)", JOURNAL OF MEDICINAL CHEMISTRY, vol. 57, no. 18, 25 September 2014 (2014-09-25), pages 7687-7701, XP55165539, ISSN: 0022-2623, DOI: 10.1021/jm500889f
  • Gideon M. Hirschfield ET AL: "Efficacy of Obeticholic Acid in Patients With Primary Biliary Cirrhosis and Inadequate Response to Ursodeoxycholic Acid", GASTROENTEROLOGY, vol. 148, no. 4, 1 April 2015 (2015-04-01) , pages 751-761.e8, XP055468420, US ISSN: 0016-5085, DOI: 10.1053/j.gastro.2014.12.005
  • SABRINA CIPRIANI ET AL: "Impaired Itching Perception in Murine Models of Cholestasis Is Supported by Dysregulation of GPBAR1 Signaling", PLOS ONE, vol. 10, no. 7, 15 July 2015 (2015-07-15), page e0129866, XP055468425, DOI: 10.1371/journal.pone.0129866
  • RHISHIKESH THAKARE ET AL: "Species differences in bile acids II. Bile acid metabolism", JOURNAL OF APPLIED TOXICOLOGY., vol. 38, no. 10, 29 May 2018 (2018-05-29), pages 1336-1352, XP55586910, GB ISSN: 0260-437X, DOI: 10.1002/jat.3645
  • A. RODA ET AL: "Semisynthetic Bile Acid FXR and TGR5 Agonists: Physicochemical Properties, Pharmacokinetics, and Metabolism in the Rat", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, vol. 350, no. 1, 1 May 2014 (2014-05-01), pages 56-68, XP055518063, DOI: 10.1124/jpet.114.214650
  • G. Rizzo ET AL: "Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist", MOLECULAR PHARMACOLOGY, vol. 78, no. 4, 14 July 2010 (2010-07-14), pages 617-630, XP055240952, US ISSN: 0026-895X, DOI: 10.1124/mol.110.064501
 
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention relates to compounds having cholane scaffolds, said compounds for use in the treatment and/or prevention of FXR and TGR5/GPBAR1 mediated diseases.

STATE OF THE ART



[0002] Bile acids (BAs) are signaling molecules interacting with two type of dedicated cellular receptors, intracellular nuclear receptors and cell-surface receptors. Nuclear receptors include farnesoid X receptor (FXR), identified as the endogenous bile acid sensor (Makishima et al Science 1999, 284, 1362; Parks et al. Science 1999, 284, 1365).

[0003] Highly expressed in entero-hepatic tissues (liver and intestine), FXR regulates bile acid homeostasis, metabolic pathways also including lipid and glucose homeostasis (Zhang et al. Proc. Natl. Acad. Sci. USA 2006, 103, 1006). Additionally FXR agonists provides anti-inflammatory and anti-fibrotic and anticancer effects (Renga et al. FASEB J. 2012, 26, 3021-3031).

[0004] Bile acid cell-surface receptor (GPBAR1, M-BAR1, GP-BAR1, TGR5) belongs to the rhodopsin-like superfamily of G protein coupled receptors (Takeda et al. FEBS Lett. 2002, 520, 97; Kawamata et al. J. Biol. Chem. 2003, 278, 9435).

[0005] Ligand binding to TGR5/GPBAR1 results in elevation of intracellular cAMP levels with consequently activation of a signaling cascade. GPBAR1 is highly expressed in the liver and in the intestine but also muscles, brain, adipose tissue, macrophages and endothelial cells. In muscle and brown adipose tissue, TGR5/GPBAR1 increases energy expenditure and oxygen consumption (Watanabe et al. Nature 2006, 439, 484) in entero-endocrine L cells, TGR5/GPBAR1 activation stimulates the secretion of glucagon-like peptide (GLP)-1, an incretin that improves pancreas insulin release, thus regulating glucose blood levels, gastrointestinal motility and appetite (Thomas, et al. Cell. Metab. 2009, 10, 167).



[0006] Chemically BAs are truncated cholesterol side chain derivatives. Their molecular repertoire is generated firstly in the liver with the production of primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Microbio-transformation in the intestine generates secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), In human body bile acids are conjugated to glycine and taurine. The activity towards the two BA receptors is structure dependent with CDCA the most potent endogenous FXR activator, and LCA and TLCA the strongest natural agonists of TGR5/GPBAR1.

[0007] Cholestatic pruritus has been noted as a severe side-effect associated with the use of FXR agonists in PBC and a recent study indicated TGR5/GPBAR1 as the molecular target involved in the development of this side effect (Alemi et al. J. Clin. Invest. 2013, 123, 1513-1530).

[0008] WO2013192097 describes 6-alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic effect. WO2008002573 describes bile acid derivatives as FXR ligands for the prevention or treatment of FXR-mediated diseases or conditions.

[0009] WO2010014836 and Sato H. (J Med Chem. 2008, 51, 4849) describes TGR5 modulators.

[0010] D'Amore C. et al. (J. Med. Chem. 2014, 57, 937) describes Design, synthesis, and biological evaluation of GP-BAR1/FXR dual agonists. D'Amore et al. describes compounds BAR502 and BAR504 as synthesis intermediates.

[0011] Iguchi Y. et al. (J Lipid Res. 2010, 51, 1432) describes bile alcohols function as the ligands of TGR5.

[0012] Compounds BAR107 is disclosed as synthesis intermediate by Kihira K. et al. (Steroids 1992, 57(4), 193-198).

[0013] Swaan P. W.et al. (J. Comp.-Aid. Mol. Des. 1997, 11, 581-588) in a molecular modeling of the intestinal bile acid carrier tested ursocholate (therein compound 15, herein BARn406) among a set of bile acid-conjugates. BARn406 resulted to have an undetectable ability to inhibit taurocholic acid transport in CaCo-2 cells.

[0014] Burns et al. (Steroids 2011, 76(3), 291-300) describes synthesis and olfactory activity of unnatural, sulfated 5-bile acid derivatives in the sea lamprey (Petromyzon marinus). Therein disclosed compound 9e (herein compound BAR407) did not to elicit an olfactory response.

[0015] Festa et al. (J. Med. Chem. 2014, 57, 8477) describes the synthesis of selective FXR or GPBAR1 modulators.

[0016] Aim of the present invention is the identification of novel compounds containing the cholane chemical scaffold and that modulate FXR and/or TGR5/GPBAR1.

SUMMARY OF THE INVENTION



[0017] Subject-matter of the present invention is a compound of formula



[0018] Compounds as above described have been found to be FXR or/and TGR5/GPBAR1 modulators and are therefore useful for the treatment of FXR and TGR5/GPBAR1 mediated diseases.

[0019] Therefore for an aspect the present invention relates to a compound for use as medicament, said compound of formula



[0020] For a further aspect the present invention relates to a compounds of formula

for use in the prevention and/or treatment of gastrointestinal disorders, liver diseases, cardiovascular diseases, atherosclerosis, metabolic diseases, infectious diseases, cancer, renal disorders, inflammatory disorders, and neurological disorders (such as stroke).

[0021] The present invention also relates to a process for preparing a compound as above described.

DETAILED DESCRIPTION OF THE INVENTION



[0022] The compounds according to the invention have been found to be highly selective FXR or TGR5/GPBAR1 modulators or dual FXR and TGR5/GPBAR1 modulators and are therefore useful as medicaments in particular for use in the prevention and/or treatment of gastrointestinal disorders, liver diseases, cardiovascular diseases, atherosclerosis, metabolic diseases, metabolic disorders, infectious diseases, cancer, renal disorders, inflammatory disorders, and neurological disorders such as stroke.

[0023] In certain embodiments the liver disease is selected in the group consisting of chronic liver diseases including primary biliary cirrhosis (PBC), cerebrotendinous xanthomatosis (CTX), primary sclerosing cholangitis (PSC), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis, bacterial overgrowth and sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant, liver regeneration, congenital hepatic fibrosis, granulomatous liver disease, intra- or extrahepatic malignancy, Wilson's disease, hemochromatosis, and alpha 1-antitrypsin deficiency.

[0024] In certain embodiments the gastrointestinal disease is selected in the group consisting of inflammatory bowel disease (IBD) (including Crohn's disease, ulcerative colitis and undetermined colitis), irritable bowel syndrome (IBS), bacterial overgrowth, acute and chronic pancreatitis, malabsorption, post-radiation colitis, and microscopic colitis.

[0025] In certain embodiments the renal disease is selected in the group consisting of diabetic nephropathy, hypertensive nephropathy, chronic glomerular disease, including chronic glomerulonephritis and chronic transplant glomerulopathy, chronic tubulointerstitial diseases and vascular disorders of the kidney.

[0026] In certain embodiments the cardiovascular disease is selected in the group consisting of atherosclerosis, dyslipidemia, hypercholesterolemia, hypertriglyceridemia, hypertension also known as arterial hypertension, inflammatory heart disease including myocarditis and endocarditis, ischemic heart disease stable angina, unstable angina, myocardial infarction, cerebrovascular disease including ischemic stroke, pulmonary heart disease including pulmonary hypertension, peripheral artery disease (PAD), also known as peripheral vascular disease (PVD) peripheral artery occlusive disease, and peripheral obliterative arteriopathy.

[0027] In certain embodiments the metabolic disease is selected in the group consisting of insulin resistance, metabolic syndrome, Type I and Type II diabetes, hypoglycemia, disorders of adrenal cortex including adrenal cortex insufficiency.

[0028] In certain embodiments metabolic disorder is selected in the group consisting of obesity and conditions associated to bariatric surgery.

[0029] In certain embodiments cancer is selected in the group of liver cancer, bile duct cancers, pancreatic cancer, gastric cancer, colon-rectal cancer, breast cancer, ovary cancer and condition associated with chemotherapy resistance.

[0030] In certain embodiments infectious disorder is selected in the group of human immunodeficiency associated disease (AIDS) and related disorders, virus B and Virus C infection.

[0031] In certain embodiments inflammatory disorder is selected in the group of rheumatoid arthritis, fibromyalgia, Syogren's syndrome, scleroderma, Behcet's syndrome, vasculitis and systemic lupus erythematosus.

[0032] The data on the activity of certain compounds of the invention on FXR and TGR5/GPBAR1 are described in the following table. In this table, activities for compounds of the invention on FXR and GPBAR1 was compared to those of reference compounds: i.e. CDCA for FXR and TLCA for TGR5/GPBAR1. Each compound was tested at the concentration of 10 microM and transactivation activity of CDCA on FXR and TLCA on CRE (i.e. TGR5/GPBAR1) was considered equal to 100%.
Table 1
Compounds of formula (I)FXRGPBAR1
 (% of activity in comparison to 10 µM CDCA)(% of activity in comparison to 10 µM TLCA)
BAR501 9.9 ± 0.1 64.5 ± 0.5
BAR502 263.0 ± 32.0 74.5 ± 6.4
BAR503 68.8 ± 26.6 59.8 ± 0.1
BAR504 488.5 ± 17.5 103.0 ± 12.1
BAR504-6b 32.4 ± 14.1 75.3 ± 3.4


[0033] For one aspect, the present invention relates to the above-mentioned compounds wherein the compounds are FXR and TGR5/GPBAR1 dual agonists. A selected example in this group is BAR502. Surprisingly, BAR502 does not induce itching when administered to animals rendered cholestatic by administration of ANIT or Estrogen. In cholestatic syndromes, body accumulation of bile acids is thought to cause itching. Recently, TGR5/GPBAR1 shown to mediate itching caused by intradermal administration of DCA and LCA (Alemi et al. J. Clin. Invest. 2013, 123, 1513-1530). In clinical trials, administration of patients suffering from primary biliary cirrhosis (PBC) with obeticholic acid has resulted in severe itching in approximately 80% of patients. One specific and surprising advantage of BAR502 is that this agent do not induce itching when administered to animals rendered cholestatic by administration of α-naphthyl-isothiocyanate (ANIT) or 17α-ethynylestradiol (two validated model of cholestasis). In these experimental setting BAR502 administration increases survival, attenuates serum alkaline phosphatase levels and robustly modulates the liver expression of canonical FXR target genes including OSTa, BSEP, SHP and MDR1, without inducing pruritus. In the 17α-ethynylestradiol model, BAR502 attenuates cholestasis and reshapes bile acid pool without inducing itching, demonstrating that in models of non-obstructive cholestasis, BAR502 attenuates liver injury without causing itching.

[0034] In one aspect, the present invention relates to compounds that are high selective FXR agonists without effects on GPBAR1 when administered alone but effective in inhibiting GPBAR1 activation caused by TLCA (10 µM), thus behaving as GPBAR1 antagonists. In one aspect, the present invention relates to compounds of formula (I) wherein the compounds are high selective GPBAR1 agonists without effects on FXR. In one aspect, the present invention relates to compounds of formula (I) wherein the compounds are high selective GPBAR1 antagonists without effects on FXR.

[0035] The present invention relates also to processes for preparing a compound as above described.

[0036] For an aspect the present disclosure relates to a process for preparing a compound of formula (I) as above described wherein n=0, said process comprising contacting a compound of formula (XII)

with HCOOH and HClO4 and subsequently contacting the resulting compound with TFA, trifluoroacetic anhydride and NaNO2 for obtaining a compound of formula (VII)



[0037] Simple and well known chemical transformations can then bring from a compound of formula (VII) to a compound of formula (I) as above described, so that the -CN group can be hydrolyzed to COOH, as well as the OCHO group can be hydrolyzed to hydroxyl group or =O group can be reduced to hydroxyl group.

[0038] For an aspect the present invention relates to a process for preparing a compoundas above described, said process comprising subjecting a compound of formula (VIII) to an aldol condensation thus contacting a compound of formula (VIII)

wherein n = 0,1, P is an alcoholic protecting function, preferably OAc, with alkyl lithium, such as nBuLi, and subsequently with acetaldehyde, preferably in presence also of BF3(OEt)2, for obtaining a compound of formula (IX)

wherein n and P are as above described.

[0039] An aldol condensation is an aldol addition reaction, that might involve the nucleophilic addition of a ketone enolate to an aldehyde, wherein once formed, the aldol product loses a molecule of water to form an α,β-unsaturated carbonyl compound.

[0040] Subjecting a compound of formula (IX) to a catalytic hydrogenation, preferably with H2 in presence of Pd(OH)2/C, it can be obtained a compound of formula (X)



[0041] For an aspect the present invention relates to a process for preparing a compound of formula

said process comprising contacting a compound of formula (XIV)

wherein n is 0, R8 is OAc;
with MeONa/MeOH for obtaining epimerization of the C6 stereocenter thus obtaining a compound of formula (XI)

wherein n is 0, R8 is as above described. In case R8 is OAc the treatment with MeONa/MeOH afford simultaneously the C3 acetoxy group hydrolysis, thus obtaining a compound of formula (XI) wherein R8 is OH.

[0042] Reduction of carbonyl at C7 can be obtained contacting a compound of formula (X) with NaBH4 or Ca(BH4)2 for obtaining a mixture of beta-OH (up to 70% in case of compound BAR501) and alpha-OH at C7. Subsequent treatment with LiBH4 reduces, if present, the methyl ester function in side chain to -CH2OH and the OAc protecting group at C3 to OH.

[0043] Reduction of carbonyl at C7 can be obtained contacting a compound of formula (XI) or corresponding compound having COOH at the side chain, with LiBH4 obtaining almost exclusively alpha-OH at C7. Simultaneously the treatment with LiBH4 reduces, if present, the methyl ester function in side chain to -CH2OH and the OAc protecting group at C3 to OH. Subjecting a compound of formula (IX) to a NaBH4 reduction followed by treatment with LiBH4, produced the reduction at C7 and at side chain with simultaneous deprotection, in particular deacetylation, at C3, for obtaining a compound wherein R1 is alpha-OH, R2 is =CH-CH3, R3 is beta-OH, n=0,1 and R is CH2OH.

[0044] Subjecting the above compound wherein R1 is alpha-OH, R2 is =CH-CH3, R3 is beta-OH, n=0,1 and R is CH2OH to a catalytic hydrogenation, preferably with H2 and Pd(OH)2/C, it can be obtained a compound of formula (I) wherein R1 is alpha-OH, R2 is alpha-Et, R3 is beta-OH, n=0,1 and R is CH2OH.

[0045] The present invention could be better understood in light of the examples and experimental section below.

EXPERIMENTAL SECTION


Chemistry


EXAMPLE 1. Preparation of compounds of formula (I) wherein R2=H (not part of the invention)


EXAMPLE 1A. Synthesis of bis-homoursodeoxycholane derivatives



[0046] A four-steps reaction sequence on 1, including protection of alcoholic functions at C3 and C7, reduction of the side chain methyl ester, and subsequent one pot Swern oxidation/Wittig C2 homologation gave the protected methyl ester of Δ24,25-bis-homoUDCA. Side chain double bond hydrogenation and alcoholic function deprotection gave bis-homoUDCA methyl ester 4, that was used as starting material in the preparation of BAR305 and it corresponding alcohol, BAR304, through treatment with LiOH and LiBH4, respectively.


Step a,b) Preparation of 3α, 7β-di(tert-butyldimethylsilyloxy)-5β-cholan-24-ol (2)



[0047] Compound 1 (1.2 g, 3 mmol) was protected at the two alcoholic function following the same synthetic procedure described in J. Med. Chem. 2014, 57, 937 to obtain 1.9 g of methyl 3α, 7β-di(tert-butyldimethylsilyloxy)-5□-cholan-24-oate (quantitative yield) in the form of colorless needles, that was subjected to next step without any purification.

[0048] Methanol (850 µL, 21 mmol) and LiBH4 (10.5 mL, 2M in THF, 21 mmol) were added to a solution of methyl ester (1.9 g, 3 mmol) in dry THF (30 mL) at 0 °C following the same synthetic procedure described in J. Med. Chem. 2014, 57, 937. Purification by silica gel (hexane/ethyl acetate 99:1 and 0.5% TEA) gave 2 as a white solid (1.8 g, quantitative yield).

Step c) One pot preparation of methyl 3α, 7β-di(tert-butyldimethylsilyloxy)-25, 26-bishomo-5β-chol-24-en-26-oate (3).



[0049] DMSO (2.1 mL, 30 mmol) was added dropwise for 15 min to a solution of oxalyl chloride (7.5 mL, 15 mmol) in dry dichloromethane (30 mL) at -78 °C under argon atmosphere. After 30 min a solution of 2 (1.8 g, 3 mmol) in dry CH2Cl2 was added via cannula and the mixture was stirred at -78 °C for 30 min. Et3N (2.5 mL, 18 mmol) was added dropwise. After 1 h methyl(triphenylphosphoranylidene)acetate (2.0 g, 6 mmol) was added and the mixture was allowed to warm to room temperature. NaCl saturated solution was added and the aqueous phase was extracted with diethyl ether (3x100 mL). The combined organic phases were washed with water, dried (Na2SO4) and concentrated. Purification by silica gel (hexane-ethyl acetate 95:5 and 0.5% TEA) gave compound 3 as a colorless oil (1.5 g, 76%).

[0050] Step d) Preparation of methyl 3α, 7β-di(tert-butyldimethylsilyloxy)-25, 26-bishomo -5β-cholan-26-oate. A solution of compound 3 (1.5 g, 2.3 mmol) in THF dry/MeOH dry (25 mL/25 mL, v/v) was hydrogenated in presence of Pd(OH)2 5% wt on activated carbon Degussa type (20 mg) following the same synthetic procedure described in J. Med. Chem. 2014, 57, 937 affording methyl 3α, 7β-di(tert-butyldimethylsilyloxy)-25, 26-bishomo -5β-cholan-26-oate (1.5 g, quantitative yield) that was subjected to step e) without purification.

Step e) Preparation of methyl 3α, 7β-dihydroxy-25, 26-bishomo-5β-cholan-26-oate (4)



[0051] Methyl 3α, 7β-di(tert-butyldimethylsilyloxy)-25, 26-bishomo-5β-cholan-26-oate (1.5 g) was dissolved in methanol (70 mL). At the solution HCl (2 mL, 37% v/v) was added following the same synthetic procedure described in J. Med. Chem. 2014, 57, 937 affording 4 as colorless amorphous solid (1.0 g, quantitative yield).

[0052] Step f) Preparation of 3α, 7β-dihydroxy-25, 26-bishomo-5β-cholan-26-oic acid (BAR305). A portion of compound 4 (430 mg, 1 mmol) was hydrolyzed with NaOH (400 mg, 10 mmol) in a solution of MeOH: H2O 1:1 v/v (20 mL) for 4 h at reflux. An analytic sample was purified by HPLC on a Nucleodur 100-5 C18 (5 µm ; 4.6 mm i.d. x 250 mm) with MeOH/H2O (95:5) as eluent (flow rate 1 mL/min) (tR=5 min).
BAR305: C26H44O4
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.47 (2H, m, H-3 and H-7), 2.27 (2H, t, J = 7.2 Hz, H2-25), 0.96 (3H, s, H3-19), 0.94 (3H, d, J = 6.5 Hz, H3-21), 0.70 (3H, s, H3-18).

[0053] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 178.2, 72.1, 71.9, 57.6, 56.7, 44.8, 44.5, 44.0, 41.6, 40.7, 38.6, 38.0, 36.9, 36.8, 36.1, 35.3, 35.2, 30.9, 29.8, 27.9, 26.7, 26.6, 23.9, 22.4, 19.3, 12.7.

[0054] Step g) 25, 26-bishomo-5β-cholan-3α, 7β, 26-triol (BAR304). Compound 4 (500 mg, 1.2 mmol) was reduced in the same operative condition described in step b). Purification by silica gel (CH2Cl2/methanol 9:1) gave BAR304 as a colorless oil (375 mg, 77%). An analytic sample was purified by HPLC on a Nucleodur 100-5 C18 (5 µm; 4.6 mm i.d. x 250 mm) with MeOH/H2O (85:15) as eluent (flow rate 1 mL/min) (tR=9 min).
BAR 304: C26H46O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.53 (2H, t, J = 6.5 Hz, H2-26), 3.48 (2H, m, H-3 and H-7), 0.95 (3H, s, H3-19), 0.93 (3H, d, J = 6.5 Hz, H3-21), 0.70 (3H, s, H3-18).

[0055] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 72.1, 71.9, 63.0, 57.5, 56.7, 44.7, 44.4, 44.0, 41.6, 40.7, 38.5, 37.9, 37.2, 37.0, 36.1, 35.2, 33.7, 30.9, 29.8, 27.9, 27.4, 27.1, 23.9, 22.4, 19.4, 12.7.

EXAMPLE 1B. Synthesis of 3α,7β-dihydroxy-24-nor-5β-cholan-23-yl-23-sodium sulfate (BAR106) and 3α,7β-dihydroxy-24-nor-5β-cholan-23-ol (BAR107)



[0056] BAR106 was prepared starting from UDCA by a reaction sequence comprising performylation at the hydroxyl groups, Beckmann one carbon degradation at C24 and transformation of the C23 carboxyl group into the corresponding methyl ester intermediate. Protection at the hydroxyl groups at C-3 and C-7 as silyl ethers, reduction at C23 methyl ester, sulfation at C23 primary alcoholic function and finally deprotection furnished crude BAR106 as ammonium salt. Purification on Amberlite and then by HPLC gave title BAR106 as sodium salt.


Steps a,d) Preparation of methyl 3α,7β-dihydroxy-24-nor-5β-cholan-23-oate (6).



[0057] Ursodeoxycholic acid (2.0 g, 5.1 mmol) was transformed in methyl 3α,7β-dihydroxy-24-nor-5β-cholan-23-oate (6, 1.6 g, 87%) following the same synthetic procedure described in J. Med. Chem. 2014, 57, 937.

Step e) Preparation of methyl 3α, 7β-di(tert-butyldimethylsilyloxy)-5β-cholan-24-oate



[0058] Compound 6 (1.2 g, 3.0 mmol) was protected at the hydroxyl groups in the same operative condition described in example 1A step a). Purification by flash chromatography on silica gel using hexane/ethyl acetate 9:1 and 0.5% of triethylamine as eluent, gave protected methyl ester (1.6 g, 88%).

Step f) Preparation of 3α, 7β-di(tert-butyldimethylsilyloxy)-5β-cholan-24-ol (7)



[0059] Side chain methyl ester (818 mg, 1.3 mmol) was reduced in the same operative condition described in example 1A step b). Purification by flash chromatography on silica gel using hexane/ethyl acetate 98:2 and 0.5% of triethylamine as eluent, gave 7 (770 mg, quantitative yield).

Steps g, h) Preparation of 3α,7β-dihydroxy-24-nor-5β-cholan-23-yl-23-sodium sulfate (BAR106)



[0060] The triethylamine-sulfur trioxide complex (2.0 g, 11 mmol) was added to a solution of 7 (660 mg, 1.1 mmol) in DMF dry (25 mL) following the same synthetic procedure described in J. Med. Chem. 2014, 57, 937. HPLC on a Nucleodur 100-5 C18 (5 µm; 10 mm i.d. x 250 mm) with MeOH/H2O (65:35) as eluent (flow rate 3 mL/min), gave 442 mg (86% over two steps) of BAR106 (tR=8.4 min).
BAR 106: C23H39NaO6S
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 4.04 (2H, m, H2-23), 3.48 (2H, m, H-3 and H-7), 1.00 (3H, d, J= 6.5 Hz, H3-21), 0.97 (3H, s, H3-19), 0.72 (3H, s, H3-18).

Step i) Preparation of 3α, 7β-dihydroxy-24-nor-5β-cholan-23-ol (BAR107)



[0061] Compound 6 was transformed in BAR107 in the same operative condition described in step f.
BAR107: C23H40O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.60 (1H, m, H-7), 3.51 (1H, m, H-3), 3.50 (2H, m, H2-23), 0.97 (3H, d, ovl, H3-21), 0.96 (3H, s, H3-19), 0.72 (3H, s, H3-18).

[0062] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 72.1, 71.9, 60.8, 57.5, 57.1, 44.8, 44.5, 44.0, 41.6, 40.7, 39.9, 38.6, 38.0, 36.1, 35.2, 34.1, 31.0, 29.8, 27.9, 23.9, 22.4, 19.5, 12.6;

Example 1C. Synthesis of 7α-hydroxy-5β-cholan-24-yl-24-sodium sulfate (BAR402)



[0063] Tosylation and elimination at C-3 hydroxyl group on methyl ester 8 followed by double bond reduction, subsequent LiBH4 treatment and regioselective sulfation at C-24 primary hydroxyl group gave BAR402.


Steps a-c) Preparation of methyl 7-keto-5β-cholan-24-oate (9)



[0064] To a solution of 8 (965 mg, 2.5 mmol) in dry pyridine (100 mL), tosyl chloride (4.7 g, 25.0 mmol) was added, and the mixture was stirred at room temperature for 4 h. It was poured into cold water (150 mL) and extracted with CH2Cl2 (3 × 150 mL). The combined organic layer was washed with saturated NaHCO3 solution (150 mL), and water (150 mL), and then dried over anhydrous MgSO4 and evaporated in vacuo to give 1.4 g of methyl 3α-tosyloxy-7-keto-5 β-cholan-24-oate (quantitative yield). Lithium bromide (434 mg, 5.0 mmol) and lithium carbonate (370 mg, 5.0 mmol) were added to a solution of 3α-tosyloxy-7-keto-5β-cholan-24-oate (1.4 g, 2.5 mmol) in dry DMF (30 mL), and the mixture was refluxed for 2 h. After cooling to room temperature, the mixture was slowly poured into 10% HCl solution (20 mL) and extracted with CH2Cl2 (3 × 50 mL). The combined organic layer was washed successively with water, saturated NaHCO3 solution and water, and then dried over anhydrous MgSO4 and evaporated to dryness to give 965 mg of oleos residue (quantitative yield), that was subjected to next step without any purification. Hydrogenation on Pd(OH)2 in the same operative condition described in example 1A, step d furnished 975 mg of 9 (quantitative yield), that was subjected to next step without any purification.

Step d) Preparation of 5β-cholan-7α,24-diol



[0065] LiBH4 treatment on compound 9 in the same operative condition described in example 1A step b and purification by silica gel (ethyl acetate-hexane, 85:15) gave 5β-cholan-7α,24-diol as a white solid (714 mg, 79%).

[0066] Step e) Preparation of 7α-hydroxy-5β-cholan-24-yl-24-sodium sulfate (BAR402). Sulfation on C24 was performed in the same operative conditions described in example 1B step g) to give crude BAR402 as ammonium salt. RP18/HPLC on a Nucleodur 100-5 C18 (5 µm; 10 mm i.d. x 250 mm) with MeOH/H2O (90:10) as eluent (flow rate 3 mL/min) afforded BAR402 (tR= 6.6 min) as sodium salt.

BAR402: C24H41NaO5S



[0067] The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.96 (2H, t, J = 6.6 Hz, H2-24), 3.78 (1H, br s, H-7), 0.96 (3H, d, J = 6.5 Hz, H3-21), 0.92 (3H, s, H3-19), 0.69 (3H, s, H3-18);

[0068] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 69.7, 69.4, 57.7, 51.6, 45.0, 43.8, 41.2, 41.0, 39.0, 37.1, 37.0 36.3, 34.2, 33.3, 31.7, 29.5, 29.0, 27.3, 24.8, 24.3, 22.7, 21.9, 19.2, 12.3.

EXAMPLE 2. Preparation of compounds of formula (I) wherein R2=Et or =CH-CH3


EXAMPLE 2A. Synthesis of 6β-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol (BAR501)



[0069] Methyl ester formation and acetylation at C-3 hydroxyl group on 7-KLCA furnished intermediate 10 in 84% yield over two steps. Aldolic addition to a silyl enol ether intermediate generated 11 that was hydrogenated at the exocyclic double bond (H2 on Pd(OH)2) affording 12 in 80% yield over three steps. NaBH4 treatment in methanol followed by LiBH4 reduction on the crude reaction product afforded a mixture whose HPLC purification (88% MeOH:H2O) gave pure BAR501 in a 79% yield respect to its C7 epimer, BAR504-6b.


Steps a-d). Preparation of methyl 3α-acetoxy-6-ethylidene-7-keto-5β-cholan-24-oate (11)



[0070] To a solution of 7-ketolithocholic acid (5 g, 12.8 mmol), dissolved in 100 mL of dry methanol was added p-toluenesulfonic acid (11 g, 64.1 mmol). The solution was left to stand at room temperature for 2 h. The mixture was quenched by addition of NaHCO3 saturated solution. After the evaporation of the methanol, the residue was extracted with EtOAc (3x150 mL). The combined extract was washed with brine, dried with Na2SO4, and evaporated to give the methyl ester as amorphous solid (5.13 g, quantitative yield).

[0071] At the solution of the methyl ester (5.13 g, 12.7 mmol) in dry pyridine (100 mL), an excess of acetic anhydride (8.4 mL, 89 mmol) was added. When the reaction was complete, the pyridine was concentrated under vacuum. The residue was poured into cold water (100 mL) and extracted with AcOEt (3×150 mL). The combined organic phases were dried (Na2SO4) and concentrated to give a residue that was further purified by flash chromatography on silica gel using hexane/ethyl acetate 8:2 and 0.5% of triethylamine as eluent (4.8 g of 10 as a white solid, 84% yield over two steps).

[0072] To a solution of diisopropylamine (23 mL, 0.16 mol) in dry THF (50 mL) was added dropwise a solution of n-butyllithium (60 mL, 2.5 M in hexane, 0.15 mol) at -78 °C. After 30 min, trimethylchlorosilane (27.1 mL, 0.21 mol) was added. After additional 30 min, a solution of compound 10 (4.8 g, 10.7 mmol) in dry THF (70 mL) was added. The reaction was stirred at -78 °C for an additional 45 min and then triethylamine (54 mL, 0.38 mol) was added. After 1 h, the reaction mixture was allowed to warm to -20 °C, treated with aqueous saturated solution of NaHCO3 (100 mL) and brought up to room temperature in 2 h. The aqueous phase was extracted with ethyl acetate (3x50 mL). The combined organic phases were washed then with saturated solution of NaHCO3 water and brine. After drying over anhydrous Na2SO4, the residue was evaporated under vacuum to give 6 g of yellow residue, that was diluted in dry CH2Cl2 (50 mL) and cooled at -78 °C. At this stirred solution acetaldehyde (3 mL, 53 mmol) and BF3·OEt2 (13.5 mL, 0.107 mol) were added dropwise. The reaction mixture was stirred for 2 h at -60 °C and allowed to warm to room temperature. The mixture was quenched with saturated aqueous solution of NaHCO3 and extracted with CH2Cl2. The combined organic phases were washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum.

[0073] Purification by silica gel (hexane-ethyl acetate 9:1 and 0.5% TEA) gave compound 11 (4.1 g, 80%). NMR analysis demonstrated a diasteromeric ratio E/Z >95%. The E configuration at the exociclic double bond was established by dipolar coupling H3-26 (δ 1.67)/H-5 (δ 2.62) in Noesy spectrum (400 MHz, mixing time 400 ms).

(E)-3α-acetoxy-6-ethylidene-7-keto-5β-cholan-24-oate (11): C29H44O5



[0074] The 1H NMR was recorded on Varian Inova 400 MHz, using CDCl3 as solvent: δ 6.16 (1H, q, J = 7.0 Hz, H-25), 4.74 (1H, m, H-3), 3.64 (3H, s, COOCH3), 2.62 (1H, dd, J = 13.0, 3.6 Hz, H-5), 1.98 (3H, s, COCH3), 1.67 (3H, d, J = 7.0 Hz, H3-26), 1.00 (3H, s, H3-19), 0.92 (3H, d, J = 6.0 Hz, H3-21), 0.67 (3H, s, H3-18).

[0075] The 13C NMR was recorded on Varian Inova 100 MHz, using CDCl3 as solvent: δ 204.5, 174.6, 170.7, 143.1, 130.2, 72.5, 54.5, 51.4, 50.7, 48.6, 45.2, 43.5, 39.1, 38.9, 35.1, 34.9, 34.1, 33.4, 31.0, 30.9, 28.4, 25.9 (2C), 22.8, 21.4, 21.2, 18.4, 12.7, 12.2.

Steps e) Preparation of methyl 3α-acetoxy-6β-ethyl-7-keto-5β-cholan-24-oate (12).



[0076] A solution of 11 (4.0 g, 8.5 mmol) in THF dry/MeOH dry (100 mL, 1:1 v/v) was hydrogenated in presence of Pd(OH)2 20% wt on activated carbon (100 mg) degussa type. The mixture was transferred to a standard PARR apparatus and flushed with nitrogen and then with hydrogen several times. The apparatus was shacked under 344,738 Pa (50 psi) of H2. The reaction was stirred at room temperature for 8 h.

[0077] The catalyst was filtered through Celite, and the recovered filtrate was concentrated under vacuum to give 12 (4.0 g, quantitative yield).

Methyl 3α-acetoxy-6β-ethyl-7-keto-5β-cholan-24-oate (12): C29H46O5



[0078] The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 4.65 (1H, m, H-3), 3.66 (3H, s, COOCH3), 2.56 (1H, t, J = 11.5 Hz, H-8), 2.35 (1H, m, H-23a), 2.22 (1H, m, H-23b), 1.99 (3H, s, COCH3), 1.22 (3H, s, H3-19), 0.92 (3H, d, J = 6.3 Hz, H3-21), 0.83 (3H, t, J = 7.2 Hz, H3-26), 0.67 (3H, s, H3-18).

[0079] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 214.7, 174.3, 170.2, 72.6, 61.7, 54.8, 51.3, 49.0, 48.5, 45.3, 42.7, 42.3 (2C), 38.6, 35.4, 35.1, 35.0, 31.0, 30.8, 28.0 (2C), 26.4, 25.7, 24.7, 21.3, 21.1, 18.2, 12.9, 11.9. The β configuration of ethyl group at C-6 was determined by dipolar couplings H3-26 (δ 0.83)/ H3-19 (δ 1.22) and H-8 (δ 2.56)/H-25 (δ 1.83) in Noesy spectrum (400 MHz, mixing time 400 ms).

Steps f,g) Preparation of 6β-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol (BAR501).



[0080] To a methanol solution of compound 12 (1.18 g, 2.5 mmol), a large excess of NaBH4 was added at 0 °C. The mixture was left at room temperature for 2 h and then water and MeOH were added dropwise during a period of 15 min at 0 °C with effervescence being observed. After evaporation of the solvents, the residue was diluted with water and extracted with AcOEt (3x50 mL). The combined extract was washed with brine, dried with Na2SO4, and evaporated to give 1.3 g of a crude residue that was subjected to the next step without further purification. The crude residue was treated with LiBH4 (2 M in THF) in the same operative condition described in example 1A step b). HPLC purification on a Nucleodur 100-5 C18 (5 µm; 10 mm i.d. x 250 mm) with MeOH/H2O (88:12) as eluent (flow rate 3 mL/min), gave 802 mg of BAR501 (79%, tR= 11 min).

[0081] Alternatively step f was performed with Ca(BH4)2, produced in situ.

[0082] To a solution of compound 12 (500 mg, 1.05 mmol) and absolute ethanol (4 mL), at 0 °C, CaCl2 (466 mg, 4.2 mmol) was added. At the same solution was added a solution of NaBH4 (159 mg, 4.2 mmol) in absolute ethanol (4 mL). After 4 h at -5 °C, MeOH was added dropwise. Then after evaporation of the solvents, the residue was diluted with water and extracted with AcOEt (3x50 mL). The combined extract was washed with brine, dried with Na2SO4, and evaporated to give 500 mg of a crude residue that was subjected to the step g without further purification.
BAR501: C26H46O3
The 1H NMR was recorded on Varian Inova 700 MHz, using CD3OD as solvent: δ 3.74 (1H, dd, J= 10.3, 6.0 Hz, H-7), 3.51 (1H, ovl, H-3), 3.49 (2H, ovl, H2-24), 1.00 (3H, s, H3-19), 0.97 (3H, d, J = 6.5 Hz, H3-21), 0.96 (3H, t, J = 7.6 Hz, H3-26), 0.72 (3H, s, H3-18).

[0083] The 13C NMR was recorded on Varian Inova 175 MHz, using CD3OD as solvent: δ 75.3 71.9, 63.6, 57.5, 56.5, 51.6, 45.7, 44.9, 42.1, 41.5, 40.4, 40.3, 37.1, 35.8, 32.4, 30.7, 30.3, 29.7, 29.6, 28.3, 26.2, 23.4, 22.1, 19.4, 14.8, 12.7.

Example 2B. Preparation of 6β-ethyl-3α,7α-dihydroxy-5β-cholan-24-ol (BAR504-6b)



[0084] BAR504-6b was prepared as described in the Example 2A (tR= 20.4 min).
BAR504-6b: C26H46O3
The 1H NMR was recorded on Varian Inova 700 MHz, using CD3OD as solvent: δ 3.60 (1H, s, H-7), 3.51 (2H, m, H2-24), 3.35 (1H, ovl, H-3), 2.30 (1H, q, J = 13.5 Hz, H-4a), 0.97 (3H, d, J = 6.8 Hz, H3-21), 0.95 (3H, t, J = 7.3 Hz, H3-26), 0.94 (3H, s, H3-19), 0.70 (3H, s, H3-18).

[0085] The 13C NMR was recorded on Varian Inova 175 MHz, using CD3OD as solvent: δ 71.9, 71.8, 62.7, 56.8, 51.7, 50.5, 46.7, 42.5, 41.4, 40.1, 36.6, 36.4, 36.2, 36.0, 33.2, 32.4, 30.1, 29.5, 28.8, 28.5, 25.3, 23.9, 20.7, 18.4, 13.7, 11.4.

EXAMPLE 2C. Synthesis of 6α-ethyl-3α, 7α-dihydroxy-24-nor-5β-cholan-23-ol (BAR502), 6β-ethyl-3α, 7β-dihydroxy-24-nor-5β-cholan-23-ol (BARn501- not part of the invention) and 6p-ethyl-3a, 7α-dihydroxy-24-nor-5β-cholan-23-ol (BARn504-6b)



[0086] 7-KLCA (1g, 2.56 mmol) was subjected to Beckmann degradation at C24 and methylation at C-23 furnishing 13 in 66% yield. Acetylation at C-3 and alkylation furnished 14 that was hydrogenated affording 15. MeONa/MeOH treatment gave concomitant hydrolysis at C-3 and epimerization at C-6. Simultaneous reduction at C-23 methyl ester function and at C-7 carbonyl group furnished BAR502 in 89% yield. Intermediate 15 (250 mg, 0.54 mmol) was also used as starting material in the preparation of BARn501 and BARn504-6b.


Steps a-d) Preparation of methyl 7-keto-24-nor-LCA (13)



[0087] Compound 13 (660 mg, 1.69 mmol, 66% over four steps) was prepared from 7-KLCA in the same operative condition described in example 1B, steps a-d).

[0088] Steps e-h) Preparation of methyl 3α-acetoxy-6β-ethyl-7-keto-24-nor-5β-cholan-23-oate (15). Compound 13 (660 mg, 1.69 mmol) was subjected to the same operative condition described in example 2A, steps b-d to obtain 603 mg of 14 (78% over three steps). NMR analysis demonstrated a diasteromeric ratio E/Z >95%. The E configuration at the exociclic double bond was established by dipolar coupling H3-25 (δ 1.67)/H-5 (δ 2.61) in Noesy spectrum (400 MHz, mixing time 400 ms).

[0089] (E)-3α-acetoxy-6-ethylidene-7-keto-24-nor-5β-cholan-23-oate (14): C28H42O5 The 1H NMR was recorded on Varian Inova 400 MHz, using CDCl3 as solvent: δ 6.17 (1H, q, J = 7.2 Hz, H-24), 4.75 (1H, m, H-3), 3.64 (3H, s, COOCH3), 2.61 (1H, dd, J = 13.1, 4.0 Hz, H-5), 1.98 (3H, s, COCH3), 1.67 (3H, d, J = 7.2 Hz, H3-25), 1.00 (3H, s, H3-19), 0.97 (3H, d, J = 6.8 Hz, H3-21), 0.67 (3H, s, H3-18).

[0090] The 13C NMR was recorded on Varian Inova 100 MHz, using CDCl3 as solvent: δ 204.5, 174.2, 170.5, 143.0, 130.6, 72.5, 54.7, 51.4, 50.7, 48.6, 45.3, 43.7, 41.5, 39.1, 38.8, 34.6, 34.2, 33.6, 33.4, 28.5, 25.9 (2C), 22.8, 21.3 (2C), 19.7, 12.7, 12.1. Hydrogenation on Pd(OH)2 in the same operative condition described in example 2A, step e, furnished 600 mg of 15 (quantitative yield).

[0091] The β configuration of ethyl group at C-6 was determined by dipolar couplings H3-25 (δ 0.83)/ H3-19 (δ 1.22) in Noesy spectrum (400 MHz, mixing time 400 ms).

3α-acetoxy-6β-ethyl-7-keto-24-nor-5β-cholan-23-oate (15): C28H44O5



[0092] The 1H NMR was recorded on Varian Inova 400 MHz, using CDCl3 as solvent: δ 4.65 (1H, m, H-3), 3.67 (3H, s, COOCH3), 2.60 (1H, t, J = 11.2 Hz, H-8), 2.43 (1H, dd, J = 14.2, 2.6 Hz, H-22a), 1.98 (3H, s, COCH3), 1.88 (1H, m ovl, H-6), 1.22 (3H, s, H3-19), 0.98 (3H, d, J = 6.4 Hz, H3-21), 0.83 (3H, t, J = 7.0 Hz, H3-25), 0.70 (3H, s, H3-18).

[0093] The 13C NMR was recorded on Varian Inova 100 MHz, using CDCl3 as solvent: δ 215.3, 174.0, 170.5, 72.8, 61.9, 55.0, 51.4, 49.2, 48.7, 45.5, 42.9, 42.6, 41.4, 38.7 (2C), 35.6, 35.3, 34.9, 28.3 (2C), 26.5, 25.9, 24.8, 21.4, 21.3, 19.6, 13.0, 12.1.

Steps i,j) Preparation of 6α-ethyl-3α, 7α-dihydroxy-24-nor-5β-cholan-23-ol (BAR502)



[0094] To a solution of compound 15 (450 mg, 1.0 mmol) and dry methanol (4 mL), MeONa (20 mL, 0.5 M in MeOH, 10 mmol) was added. After 24 h, H2O was added dropwise. Then after evaporation of the solvents, the residue was diluted with water and extracted with AcOEt (3x50 mL). The combined extract was washed with water, dried with Na2SO4, and evaporated to give 16 that was subjected to the step g without further purification.

Methyl 6α-ethyl-3α-hydroxy-7-keto-24-nor-5β-cholan-23-oate (16): C26H42O4



[0095] The 1H NMR was recorded on Varian Inova 400 MHz, using CDCl3 as solvent: δ 3.64 (3H, s, COOCH3), 3.45 (1H, m, H-3), 2.83 (1H, q, J = 7.3 Hz, H-6), 2.51 (1H, t, J = 11.2 Hz, H-8), 2.45 (1H, dd, J = 14.5, 3.2 Hz, H-22a), 1.26 (3H, s, H3-19), 0.98 (3H, d, J = 6.6 Hz, H3-21), 0.81 (3H, t, J = 7.0 Hz, H3-25), 0.73 (3H, s, H3-18).

[0096] The 13C NMR was recorded on Varian Inova 100 MHz, using CDCl3 as solvent: δ 214.9, 175.4, 71.6, 56.2, 53.2, 52.0, 51.9, 51.0, 50.5, 45.2, 43.8, 42.2, 40.2, 36.7, 35.3, 34.8, 32.5, 30.5, 29.4, 25.6, 24.0, 22.9, 20.1, 20.0, 12.6, 12.4.

[0097] Compound 16 was subjected to LiBH4 reduction in the same operative condition described in example 1A, step g. Silica gel chromatography eluting with hexane/EtOAc 6:4 afforded BAR502 (274 mg, 70% over two steps). An analytic sample was obtained by HPLC on a Nucleodur 100-5 C18 (5 µm; 4.6 mm i.d. x 250 mm) with MeOH/H2O (88:12) as eluent (flow rate 1 mL/min, tR=10.8 min).
BAR502: C25H44O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.65 (1H, s, H-7), 3.61 (1H, m, H-23a), 3.53 (1H, m, H-23b) 3.31 (1H, m, H-3), 0.97 (3H, d, J = 6.6 Hz, H3-21), 0.92 (3H, s, H3-19), 0.91 (3H, t, J = 7.0 Hz, H3-25), 0.71 (3H, s, H3-18).

[0098] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 73.2, 71.1, 60.7, 57.7, 51.4, 46.9, 43.8, 42.9, 41.3, 40.9, 39.8, 36.7, 36.5, 34.6, 34.5, 34.2, 31.2, 29.4, 24.5, 23.7, 23.4, 21.8, 19.3, 12.1, 11.9.

[0099] Steps k,l). Preparation of 6β-ethyl-3α, 7β-dihydroxy-24-nor-5β-cholan-23-ol (BARn501) and 6β-ethyl-3α, 7α-dihydroxy-24-nor-5β-cholan-23-ol (BARn504-6b). Compound 15 (100 mg, 0.22 mmol) was subjected to the same operative condition described in example 2A, steps f-g. HPLC purification on a Nucleodur 100-5 C18 (5 µm; 10 mm i.d. x 250 mm) with MeOH/H2O (86:14) as eluent (flow rate 3 mL/min), gave 47 mg of BARn501 (54%, tR= 11 min) and 20 mg of BARn504-6b (23%, tR= 15 min).
BARn501: C25H44O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.73 (1H, dd, J = 10.5, 5.5 Hz, H-7), 3.61 (1H, m, H-23a), 3.51 (1H, m, ovl, H-23b), 3.51 (1H, m, ovl, H-3), 0.98 (3H, d, ovl, H3-21), 0.97 (3H, s, H3-19), 0.96 (3H, t, ovl, H3-25), 0.70 (3H, s, H3-18).

[0100] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 75.2, 71.8, 60.8, 57.5, 56.6, 51.5, 45.5, 44.8, 42.0, 41.4, 40.7, 40.3, 39.9, 36.9, 36.0, 34.2, 30.5, 29.6, 28.3, 26.2, 23.4, 22.0, 19.4, 14.7, 12.9.
BARn504-6b: C25H44O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.63 (1H, m, H-23a), 3.60 (1H, m, H-7), 3.55 (1H, m, H-23b), 3.37 (1H, m, H-3), 2.30 (1H, q, J = 12.5 Hz, H-4a), 0.97 (3H, d, J = 6.6 Hz, H3-21), 0.95 (3H, s, H3-19), 0.95 (3H, t, J = 7.0 Hz, H3-25), 0.72 (3H, s, H3-18).

[0101] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 72.8, 72.7, 60.8, 57.9, 52.7, 51.4, 47.5, 43.7, 42.3, 41.0, 39.9, 37.5, 37.3, 36.7, 34.2, 33.3, 31.0, 29.6, 29.4, 26.2, 24.8, 21.6, 19.3, 14.5, 12.1.

EXAMPLE 2D. Synthesis of 6-ethylidene-3α,7β-dihydroxy-5β-cholan-24-ol (BAR503), 6α-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol (BAR501-6a - not part of the invention), 6-ethylidene-3α,7β-dihydroxy-24-nor-5β-cholan-23-ol (BARn503 - not part of the invention) and 6α-ethyl-3α,7β-dihydroxy-24-nor-5β-cholan-23-ol (BARn501-6a - not part of the invention)



[0102] Intermediate 11 was subjected to NaBH4 reduction followed by treatment with LiBH4. Alternatively LiAlH4 treatment proceeded in a straightforward manner affording the concomitant reduction at C-24 and C-7. BAR503 was also used as starting material for BAR501-6a by hydrogenation on Pd(OH)2 catalyst. The same synthetic protocol was performed on intermediate 14 producing the corresponding 23-derivatives, BARn503 and BARn501-6a.


Steps a,b). Preparation of 6-ethylidene-3α, 7β-dihydroxy-5β-cholan-24-ol (BAR503) and 6-ethylidene-3α,7β-dihydroxy-24-nor-5β-cholan-23-ol (BARn503).



[0103] Compound 11 (1 g, 2.11 mmol) was subjected to the same operative condition described in example 2A, steps f, g. HPLC purification on a Nucleodur 100-5 C18 (5 µm; 10 mm i.d. x 250 mm) with MeOH/H2O (88:12) as eluent (flow rate 3 mL/min), gave 727 mg of BAR503 (85% over two steps, tR= 9.2 min). Alternatively LiAIH4 treatment on 11 furnished BAR503.
BAR503: C26H44O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 5.66 (1H, q, J = 6.9 Hz, H-25), 3.90 (1H, d, J = 9.8 Hz, H-7), 3.55 (1H, m, H-3), 3.50 (2H, m, H2-24), 2.50 (1H, dd, J = 4.0, 13.1 Hz, H-5), 1.62 (3H, d, J = 6.9 Hz, H3-26), 0.97 (3H, d, J = 6.8 Hz, H3-21), 0.81 (3H, s, H3-19), 0.70 (3H, s, H3-18).

[0104] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 142.7, 114.5, 73.4, 71.1, 63.6, 57.1, 56.1, 45.2, 44.9, 44.2, 40.7, 40.2, 36.3, 36.2, 35.9, 34.7, 32.4, 30.2, 29.5, 28.8, 27.4, 22.6, 21.5, 18.5, 11.8, 11.7.

[0105] The same synthetic protocol was performed on intermediate 14. HPLC purification on a Nucleodur 100-5 C18 (5 µm; 10 mm i.d. x 250 mm) with MeOH/H2O (86:14) as eluent (flow rate 3 mL/min), gave BARn503 (tR= 8 min).
BARn503: C25H42O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 5.66 (1H, q, J = 6.8 Hz, H-24), 3.92 (1H, d, J = 9.9 Hz, H-7), 3.60 (1H, m, H-23a), 3.56 (1H, m, H-3), 3.55 (1H, m, H-23b), 2.52 (1H, dd, J = 3.7, 13.2 Hz, H-5), 1.63 (3H, d, J = 6.8 Hz, H3-25), 0.98 (3H, d, J = 6.5 Hz, H3-21), 0.95 (3H, s, H3-19), 0.71 (3H, s, H3-18).

[0106] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 143.7, 115.4, 74.1, 71.8, 60.8, 58.0, 57.1, 46.1, 45.9, 45.1, 41.6, 41.1, 39.9, 37.0, 36.4, 35.8, 34.1, 30.9, 29.8, 28.1, 23.5, 22.5, 19.5, 12.7, 12.6.

[0107] Step c). Preparation of 6α-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol (BAR501-6a) and and 6α-ethyl-3α,7β-dihydroxy-24-nor-5β-cholan-23-ol (BARn501-6a) BAR503 (350 mg, 0.86 mmol) was subjected to the same operative condition described in example 2A step e, obtaining BAR501-6a in quantitative yield.
BAR501-6a: C26H46O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.50 (2H, t, J = 6.8 Hz, H3-24), 3.44 (1H, m, H-3), 3.07 (1H, t, J = 9.8 Hz, H-7), 0.96 (3H, d, J = 6.8 Hz, H3-21), 0.95 (3H, s, H3-19), 0.86 (3H, t, J = 7.4 Hz, H3-26), 0.71 (3H, s, H3-18).

[0108] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 76.5, 72.3, 63.6, 57.9, 57.3, 46.3, 45.0, 44.8, 41.8, 41.0, 39.9, 37.0, 36.4, 35.5, 33.3, 31.3, 31.0, 30.3, 29.8, 27.8, 24.3, 22.5, 22.0, 19.3, 12.8, 11.8.

[0109] BARn503 was subjected to the same operative condition described in example 2A step e, obtaining BARn501-6a in quantitative yield.
BARn501-6a: C25H44O3
The 1H NMR was recorded on Varian Inova 400 MHz, using CD3OD as solvent: δ 3.62 (1H, m, H-23a), 3.54 (1H, m, H-23b), 3.45 (1H, m, H-3), 3.08 (1H, t, J = 9.8 Hz, H-7), 0.97 (3H, d, J = 6.5 Hz, H3-21), 0.95 (3H, s, H3-19), 0.86 (3H, t, J = 7.4 Hz, H3-25), 0.73 (3H, s, H3-18).

[0110] The 13C NMR was recorded on Varian Inova 100 MHz, using CD3OD as solvent: δ 76.4, 72.5, 60.8, 57.9, 57.2, 46.2, 45.1, 44.7, 41.8, 41.2, 40.0, 39.8, 36.5, 35.6, 34.2, 31.2, 30.9, 29.9, 27.9, 24.1, 22.7, 22.0, 19.5, 12.7, 11.7.

EXAMPLE 2E Synthesis of 6α-ethyl-3α,7a-dihydroxy-24-nor-5β-cholan-23-nitrile (BAR506 - not part of the invention)



[0111] 7-KLCA was transformed in nitrile 17 following the same synthetic procedure described in Example 1B steps a-b. Alkylation followed by double bond reduction and epimerization at C-6 in the same operative condition described in example 2A steps c-d and example 2C step i, respectively furnished 18. LiBH4 treatment as in example 2C step j afforded the desired 7α hydroxyl group in BAR506.

BAR506: C25H41NO2
The 1H NMR was recorded on Varian Inova 700 MHz, using CD3OD as solvent: δ 3.66 (1H, br s, H-7), 3.31 (1H, ovl, H-3), 2.46 (1H, dd, J = 3.8, 16.9 Hz, H-22a), 2.34 (1H, dd, J = 7.4, 16.9 Hz, H-22b), 1.16 (3H, d, J = 6.5 Hz, H3-21), 0.91 (3H, t, J = 7.5 Hz, H3-25), 0.92 (3H, s, H3-19), 0.73 (3H, s, H3-18).

[0112] The 13C NMR was recorded on Varian Inova 175 MHz, using CD3OD as solvent: δ 120.3, 72.9, 70.9, 56.1, 51.5, 46.7, 43.4, 42.9, 41.4, 40.2, 36.5, 36.2, 34.3 (2C), 34.2, 30.7, 29.2, 24.9, 24.4, 23.4, 23.3, 21.9, 18.5, 12.1, 11.6.

[0113] Biological Activities. Activity of selected compounds was tested in vitro using a whole cell model transfected with a reporter genes to establish selectivity of compounds shown in table 1 toward FXR and TGR5/GPBAR1 in comparison with chenodeoxycholic acid (CDCA) and TLCA. CDCA is a primary bile acid that functions as an endogenous ligand for FXR, while TLCA is a physiological ligand for TGR5/GPBAR1. In this assay, HepG2 cells (a liver-derived cell line) were cultured at 37 °C in minimum essential medium with Earl's salts containing 10% fetal bovine serum (FBS), 1% L-glutamine, and 1% penicillin/streptomycin. HEK-293T cells were cultured at 37 °C in D-MEM containing 10% fetal bovine serum (FBS), 1% L-glutamine, and 1% penicillin/streptomycin. The transfection experiments were performed using Fugene HD according to manufactured specifications. Cells were plated in a 24-well plate at 5 × 104 cells/well. For FXR mediated transactivation, HepG2 cells were transfected with 100 ng of pSG5-FXR, 100 ng of pSG5-RXR, 100 ng of pGL4.70 a vector encoding the human Renilla gene and 250 ng of the reporter vector p(hsp27)-TK-LUC containing the FXR response element IR1 cloned from the promoter of heat shock protein 27 (hsp27).

[0114] For GPBAR1 mediated transactivation, HEK-293T cells were transfected with 200 ng of pGL4.29, a reporter vector containing a cAMP response element (CRE) that drives the transcription of the luciferase reporter gene luc2P, with 100 ng of pCMVSPORT6-human GPBAR1, and with 100 ng of pGL4.70 a vector encoding the human Renilla gene. In control experiments HEK-293T cells were transfected only with vectors pGL4.29 and pGL4.70 to exclude any possibility that compounds could activate the CRE in a GPBAR1 independent manner. At 24 h post-transfection, cells were stimulated for 18 h with 10 µM TLCA as a control agent or putative GPBAR1 agonists as the same concentration. After treatments, cells were lysed in 100 µL of lysis buffer (25 mM Tris-phosphate, pH 7.8; 2 mM DTT; 10% glycerol; 1% Triton X-100), and 20 µL of cellular lysate was assayed for luciferase activity using the luciferase assay system. Luminescence was measured using Glomax 20/20 luminometer. Luciferase activities were normalized against Renilla activities. Antagonism against FXR of GPBAR1/TGR5 was measured as percent of activity in transactivation assay suing activity of TLCA as example of agonism.

[0115] Animals and protocols. GPBAR1 null mice (GPBAR1-B6=GPBAR12/2 mice, generated directly into C57BL/6NCrl background), and congenic littermates on C57BL/6NCrl were housed under controlled temperatures (22 °C) and photoperiods (12:12-hour light/dark cycle), allowed unrestricted access to standard mouse chow and tap water and allowed to acclimate to these conditions for at least 5 days before inclusion in an experiment.

[0116] Scratching test. Male GPBAR1-/- mice and their congenic littermates (8-12 weeks of age) were used for this studies. The fur at the base of the neck was shaved, and mice were placed in individual cylinders on a glass shelf. A circumference of approx. 0.5 cm of diameter was drawn in the neck and test agents injected in this area. Mice were acclimatized to the experimental room, restraint apparatus and investigators for 2 h periods on 2 successive days before experiments. Scratching behavior was quantified by 2 observers unaware of tested agents or genotypes. A scratch was defined as lifting the hind limb to the injection site and then a placing of the paw on the floor, regardless of the number of strokes. If counts differed by greater than 5 scratches over a 30-minute period, both observers reevaluated the records. Results were expressed as the number of scratching events during 30 or 60 min of observation. Tested agents were: DCA (25 µg), TLCA (25 µg), UDCA (25 µg), and BAR502 (25 µg), or with betulinic acid (50 µg), oleanolic acid (50 µg). LCA and DCA were dissolved in DMSO and the other agents in 0.9% NaCl (10 µL). In another experimental setting GPBAR1-/- mice and their congenic littermates were administered alpha-naphthylisothiocyanate (ANIT) (25 mg/kg, per os) dissolved in olive oil or olive oil alone (control mice) or with the combination of ANIT plus BAR502 (15 mg/Kg once a day, per os) for 10 days. At day 5 spontaneous scratching was evaluated for 60 min and after subcutaneous injection of 25 µg DCA. Serum levels of total bilirubin, aspartate aminotransferase (AST) and alkaline phosphatase were measured by routine clinical chemistry testing performed on a Hitachi 717 automatic analyzer. For the estrogen model, wild type C57BL6 mice were administered 10 mg/Kg i.p. with 17α-Ethynylestradiol (17αE2) dissolved in PEG or PEG alone (control mice) or the combination of 17αE2 and BAR502 (15 mg/Kg daily, per os) for 8 days. At the end of the study the spontaneous scratching and scratching induced by s.c. injection of 25 µg DCA was recorded. Gallbladder weight and serum levels of bilirubin and alkaline phosphatase were also measured. Throughout the studies animals were visually assessed at least twice a day from Monday to Friday and once a day over the week end by investigators and by highly trained animal facility personnel's including animal facility's veterinarian. Animals were weighted daily and sacrificed at indicated time points or when their clinical conditions become critical as assessed by a reduction of body weight higher than 25% of basal body weight in 7 days. In addition, animals were sacrificed when at the daily evaluation they demonstrate inability to rise or ambulate. Mice were euthanized by an overdose of sodium pentobarbital (>100 mg/kg i.p.).


Claims

1. A compound selected from the group consisting of:


 
2. The compound according to claim 1, said compound being 6β-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol.
 
3. A compound for use as a medicament, said compound being selected from the group consisting of


 
4. A compound for use as a medicament, according to claim 3, said compound being selected in the group consisting of 6β-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol and 6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-ol.
 
5. A compound for use, as FXR and/or TGR5/GPBAR1 modulator, in the prevention and/or treatment of gastrointestinal disorders, liver diseases, cardiovascular diseases, atherosclerosis, metabolic diseases, infectious diseases, cancer, renal disorders, inflammatory disorders, and neurological disorders, said compound being selected from the group consisting of


 
6. A pharmaceutical composition comprising a compound selected from the group consisting of BAR501, BAR503 and BAR504-6b as defined in claim 1 and at least another pharmaceutical ingredient.
 
7. A process for preparing a compound selected from the group consisting of

said process comprising subjecting a compound of formula (VIII) to an aldol condensation thus contacting a compound of formula (VIII)

wherein n is 0 or 1, P is an hydroxyl protecting group, with alkyl lithium, such as nBuLi, and subsequently with acetaldehyde, preferably in presence also of BF3(OEt)2, for obtaining a compound of formula (IX)

wherein n and P are as above described and then subjecting the compound of formula (IX) to a catalytic hydrogenation, for obtaining a compound of formula (X)


 
8. The process according to claim 7 for preparing a compound selected from the group consisting of

wherein the compound of formula (X) is subjected to reduction of carbonyl at C7 by contacting the compound of formula (X) with NaBH4 or Ca(BH4)2 for obtaining a mixture of alpha-OH and beta-OH at C7; and subsequently subjected to a treatment with LiBH4 which completely reduces the methyl ester function on side chain to -CH2OH.
 
9. A process for preparing a compound of formula

said process comprising contacting with MeONa/MeOH a compound of formula (XIV)

wherein n is 0, R8 is OAc for obtaining epimerization of the C6 stereocenter thus obtaining a compound of formula (XI)

wherein the treatment with MeONa/MeOH affords simultaneously the C3 acetoxy group hydrolysis.
 
10. The process according to claim 9 wherein a reduction of carbonyl at C7 is obtained contacting a compound of formula (XI) or corresponding compound having COOH at the side chain, with LiBH4 obtaining almost exclusively alpha-OH at C7; wherein the treatment with LiBH4 simultaneously reduces, if present, the methyl ester function on side chain to - CH2OH and de-protects OAc if present at C3.
 


Ansprüche

1. Eine Verbindung, ausgewählt aus der Gruppe, bestehend aus:


 
2. Die Verbindung nach Anspruch 1, wobei die Verbindung 6β-Ethyl-3α,7β-dihydroxy-5β-cholan-24-ol ist.
 
3. Eine Verbindung zur Verwendung als Medikament, wobei die besagte Verbindung ausgewählt ist aus der Gruppe, bestehend aus


 
4. Eine Verbindung zur Verwendung als Medikament nach Anspruch 3, wobei die besagte Verbindung ausgewählt ist aus der Gruppe, bestehend aus 6β-Ethyl-3α,7β-dihydroxy-5β-cholan-24-ol und 6α-Ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-ol.
 
5. Eine Verbindung zur Verwendung als FXR- und/oder TGR5/GPBAR1-Modulator bei der Prävention und/oder Behandlung von Magen-DarmErkrankungen, Lebererkrankungen, Herz-Kreislauf-Erkrankungen, Atherosklerose, Stoffwechselerkrankungen, Infektionserkrankungen, Krebs, Nierenerkrankungen, Entzündungserkrankungen und neurologischen Erkrankungen, wobei die besagte Verbindung ausgewählt ist aus der Gruppe, bestehend aus


 
6. Eine pharmazeutische Zusammensetzung umfassend eine Verbindung, ausgewählt aus der Gruppe, bestehend aus BAR501, BAR503 und BAR504-6b nach Anspruch 1 und mindestens einen weiteren pharmazeutischen Bestandteil.
 
7. Ein Verfahren zur Herstellung einer Verbindung, ausgewählt aus der Gruppe, bestehend aus

wobei das besagte Verfahren ein Unterwerfen einer Verbindung der Formel (VIII) einer Aldolkondensation umfasst, wodurch eine Verbindung der Formel (VIII)

wobei n 0 oder 1 und P eine Hydroxyl-Schutzgruppe ist, mit Alkyl-Lithium, wie nBuLi, und anschließend mit Acetaldehyd kontaktiert wird, vorzugsweise auch in Gegenwart von BF3(OEt)2, zum Erhalten einer Verbindung der Formel (IX)

wobei n und P wie vorstehend beschrieben sind, und dann ein Unterwerfen der Verbindung der Formel (IX) einer katalytischen Hydrierung, zum Erhalten einer Verbindung der Formel (X)


 
8. Das Verfahren nach Anspruch 7 zur Herstellung einer Verbindung, ausgewählt aus der Gruppe, bestehend aus

wobei die Verbindung der Formel (X) einer Reduktion von Carbonyl an C7 unterworfen wird, indem die Verbindung der Formel (X) mit NaBH4 oder Ca(BH4)2 in Kontakt gebracht wird, um eine Mischung aus alpha-OH und beta-OH an C7 zu erhalten; und anschließend einer Behandlung mit LiBH4 unterworfen wird, welche die Methylesterfunktion an der Seitenkette vollständig zu -CH2OH reduziert.
 
9. Ein Verfahren zur Herstellung einer Verbindung der Formel

wobei das besagte Verfahren das Kontaktieren einer Verbindung der Formel (XIV) mit MeONa/MeOH umfasst

wobei n 0 und R8 OAc ist zum Erhalten einer Epimerisierung des C6 Stereocenters, wodurch eine Verbindung der Formel (XI) erhalten wird

wobei die Behandlung mit MeONa/MeOH gleichzeitig die Hydrolyse der C3-Acetoxygruppe ermöglicht.
 
10. Das Verfahren nach Anspruch 9, wobei eine Reduktion von Carbonyl an C7 erhalten wird, indem eine Verbindung der Formel (XI) oder eine korrespondierende Verbindung mit COOH an der Seitenkette mit LiBH4 kontaktiert wird, wobei fast ausschließlich alpha-OH an C7 erhalten wird; wobei die Behandlung mit LiBH4 gleichzeitig, falls vorhanden, die Methylesterfunktion an der Seitenkette zu -CH2OH reduziert und OAc, falls an C3 vorhanden, entschützt.
 


Revendications

1. Composé choisi dans le groupe constitué par :


 
2. Composé selon la revendication 1, ledit composé étant le 6β-éthyl-3α,7β-dihydroxy-5β-cholan-24-ol.
 
3. Composé pour utilisation comme médicament, ledit composé étant choisi dans le groupe constitué par


 
4. Composé pour utilisation comme médicament, selon la revendication 3, ledit composé étant choisi dans le groupe constitué par le 6β-éthyl-3α,7β-dihydroxy-5β-cholan-24-ol et le 6α-éthyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-ol.
 
5. Composé pour utilisation, comme modulateur de FXR et/ou de TGR5/GPBAR1, dans la prévention et/ou le traitement de troubles gastrointestinaux, des maladies du foie, des maladies cardiovasculaires, de l'athérosclérose, des maladies métaboliques, des maladies infectieuses, du cancer, des troubles rénaux, des troubles inflammatoires et des troubles neurologiques, ledit composé étant choisi dans le groupe constitué par


 
6. Composition pharmaceutique comprenant un composé choisi dans le groupe constitué par BAR501, BAR503 et BAR504-6b tels que définis dans la revendication 1 et au moins un autre ingrédient pharmaceutique.
 
7. Procédé pour préparer un composé choisi dans le groupe constitué par

ledit procédé comprenant le fait de soumettre un composé de formule (VIII) à une condensation d'aldol, mettant ainsi en contact un composé de formule (VIII)

dans laquelle n est 0 ou 1, P est un groupe protecteur d'hydroxyle, avec un alkyl lithium, tel que nBuLi, et ensuite avec de l'acétaldéhyde, de préférence en présence aussi de BF3(OEt)2, pour obtenir un composé de formule (IX)

dans laquelle n et P sont tels que décrits ci-dessus, et puis le fait de soumettre le composé de formule (IX) à une hydrogénation catalytique, pour obtenir un composé de formule (X)


 
8. Procédé selon la revendication 7, pour préparer un composé choisi dans le groupe constitué par

dans lequel le composé de formule (X) est soumis à une réduction du carbonyle en C7 en mettant le composé de formule (X) en contact avec NaBH4 ou Ca (BH4)2 pour obtenir un mélange d'alpha-OH et de bêta-OH en C7 ; et ensuite soumis à un traitement avec LiBH4 qui réduit complètement la fonction ester de méthyle sur la chaîne latérale en -CH2OH.
 
9. Procédé pour préparer un composé de formule

ledit procédé comprenant la mise en contact avec MeONa/MeOH d'un composé de formule (XIV)

dans laquelle n est 0, R8 est OAc, pour obtenir l'épimérisation du stéréocentre en C6, en obtenant ainsi un composé de formule (XI)

dans lequel le traitement avec MeONa/MeOH permet simultanément l'hydrolyse du groupe acétoxy en C3.
 
10. Procédé selon la revendication 9, dans lequel une réduction du carbonyle en C7 est obtenue en mettant en contact un composé de formule (XI) ou un composé correspondant ayant un COOH dans la chaîne latérale, avec LiBH4, en obtenant presque exclusivement alpha-OH en C7 ; dans lequel le traitement avec LiBH4 réduit simultanément, si elle est présente, la fonction ester de méthyle sur la chaîne latérale en -CH2OH et déprotège OAc s'il est présent en C3.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description