(19)
(11)EP 3 150 858 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 16191671.3

(22)Date of filing:  30.09.2016
(51)International Patent Classification (IPC): 
F04D 17/04(2006.01)
F04D 29/30(2006.01)
F24F 1/00(2019.01)
F04D 29/28(2006.01)
F04D 29/66(2006.01)

(54)

CENTRIFUGAL FAN

ZENTRIFUGALGEBLÄSE

VENTILATEUR CENTRIFUGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.10.2015 KR 20150138798

(43)Date of publication of application:
05.04.2017 Bulletin 2017/14

(73)Proprietor: LG Electronics Inc.
Seoul 07336 (KR)

(72)Inventors:
  • SONG, Kiwook
    08592 Seoul (KR)
  • KIM, Jinsoo
    08592 Seoul (KR)
  • CHOI, Dongwook
    08592 Seoul (KR)

(74)Representative: Ter Meer Steinmeister & Partner 
Patentanwälte mbB Nymphenburger Straße 4
80335 München
80335 München (DE)


(56)References cited: : 
EP-A1- 2 131 041
DE-A1- 2 203 284
WO-A1-01/05652
US-A1- 2015 056 910
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates to a centrifugal fan.

    [0002] A centrifugal fan, which is a type of an air blower, is driven by a motor and blows air from an inside of an impeller in a circumferential direction through rotation of the impeller due to a centrifugal force. Generally, the centrifugal fan is used in a device that requires a flow rate and a pressure. As an example, the centrifugal fan is used in an air conditioner, a dryer, a hair dryer, or the like.

    [0003] The centrifugal fan includes a housing, an impeller accommodated in the housing, and a motor for rotating the impeller. Outside air is introduced into the housing in an axial direction of the impeller, is compressed, and is then discharged in a rotational direction of the impeller. Discharge flow rate performance of the centrifugal fan is affected by a shape of the impeller, performance of the motor, a shape of the housing, or the like.

    [0004] "CENTRIFUGAL FAN" is disclosed in Korean Patent Application Publication No. 10-2006-0089789.

    [0005] WO 01/05652 A1 describes a centrifugal impeller with high blade camber; blade camber being defined as the ratio of the perpendicular distance from the meanline to the blade chord, to the length of the blade chord itself. A maximum value of camber is positioned toward the leading edge at a point x positioned along the chord close enough to the leading edge to avoid stall, for example positioned at x about x/C=0.32 (where C is the entire chord). The desired relationship is x/C < about 0.4 or 0.5.

    [0006] US 2015/0056910 A1 describes a cross-flow fan having an impeller, in which the blade is arched so that the portion near the center of the blade is most distant from a straight line connecting the outer circumferential end and the inner circumferential end.

    [0007] DE 2203284 A1 relates to a radial fan.

    [0008] EP 2131041 A1 describes a sirocco fan. When a fan diameter is defined as D, a maximum warp height is defined as H, a blade chord length is defined as L, a radius of a front edge at an inner circumferential side of the blade is defined as R, a blade inlet angle is defined as β1, and a blade exit angle is defined as β2, the following formulas are satisfied, 0.18 ≤ H/L ≤ 0.26, R/L ≤ 0.11, 100° ≤ β1 ≤ 130°, and 26° ≤ β2 ≤ 32°.

    SUMMARY



    [0009] The invention is indicated in the independent claim. Further embodiments are indicated in the dependent claims.

    [0010] Embodiments provide a centrifugal fan which capable of satisfying a flow rate and pressure performance and reducing a flow noise by changing a shape of a blade provided in an impeller.

    [0011] In one embodiment, a centrifugal fan includes: a housing; an impeller which is mounted in the housing; a hub which is provided in the impeller and is rotated by a driving force of a motor; and a plurality of blades which radially extend at the hub, wherein each of the plurality of blades is formed to have a shape curved from a leading edge to a trailing edge in a rotational direction of the impeller in each of the plurality of blades, a farthest point from a plane connecting the leading edge and the trailing edge is defined as a peak portion, and the peak portion is placed closer to the leading edge than the trailing edge.

    [0012] A ratio of a distance from the leading edge to the peak portion to a distance from the leading edge to the trailing edge may be defined as a position of maximum camber (POMC) value, and
    the POMC value may be in a rage of about 0.01 to about 0.49.

    [0013] A ratio of a height of the peak portion to a distance from the leading edge to the trailing edge may be defined as a maximum camber (MC) value, and

    [0014] the MC value may be in a rage of about 0.05 to about 0.16.

    [0015] According to the claimed invention, an entrance angle of air at the leading edge is in a range of about 90.74° to about 104.35°.

    [0016] An exit angle of air at the trailing edge may be in a range of about 49.95° to about 63.85°

    [0017] According to the claimed invention, an angle formed by the leading edge and the trailing edge is in a range of about 5.5° to about 9.8° with respect to a rotational center of the impeller.

    [0018] The number of the plurality of blades mounted in the impeller may be in a range of 50 to 60.

    [0019] A diameter of a circle connecting the leading edges respectively provided in the plurality of blades may be in a range of about 116.4 mm to about 128.8 mm.

    [0020] The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims. The scope of the invention is solely defined by the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] 

    FIG. 1 is a perspective view illustrating a centrifugal fan according to an embodiment of the present disclosure.

    FIG. 2 is a cross-sectional view taken along line I-I' of FIG. 1.

    FIG. 3 is a view illustrating a blade of FIG. 2.

    FIG. 4 is a flow rate-static pressure graph of a centrifugal fan.

    FIG. 5 is a Cordier's diagram showing a relationship between a specific diameter and a specific speed.

    FIG. 6 is a graph showing a relationship between a position of maximum camber (POMC) and a noise of a centrifugal fan.

    FIG. 7 is a table showing a design requirement when an impeller satisfies a condition of FIG. 6.

    FIG. 8 is a graph showing a noise and pressure performance according to a design requirement of a blade in a centrifugal fan according to an embodiment of the present disclosure.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0022] Hereinafter, some embodiments of the present disclosure will be described in detail with reference to the exemplary drawings. In the following description, the same elements will be designated by the same reference numerals although they are shown in different drawings. Further, in the following description of embodiments of the present disclosure, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present disclosure rather unclear.

    [0023] Additionally, in describing the components of the present disclosure, there may be terms used like first, second, A, B, (a), and (b). These are solely for the purpose of differentiating one component from the other and not to imply or suggest the substances, order or sequence of the components. If a component is described as "connected", "coupled", or "linked" to another component, they may mean the components are not only directly "connected", "coupled", or "linked" but also are indirectly "connected", "coupled", or "linked" via a third component.

    [0024] FIG. 1 is a perspective view illustrating a centrifugal fan according to an embodiment of the present disclosure.

    [0025] Referring to FIG. 1, a centrifugal fan 1 according to an embodiment of the present disclosure includes a housing 10, an impeller 20, and a motor (not shown). The impeller 20 is rotatably mounted in the housing 10, and the motor is connected to the impeller 20 to provide a rotational force to the impeller 20.

    [0026] A suction port 11 through which outside air is suctioned and a discharge port 12 through which air is discharged are formed in the housing 10.

    [0027] Air introduced from the outside flows toward a rotational axis of the impeller 20 through the suction port 11. The discharge port 12 may be formed in a radial direction of the impeller 20. That is, the suction port 11 and the discharge port 12 are formed perpendicular to each other.

    [0028] Therefore, air introduced into the housing 10 through the suction port 11 can be discharged through the discharge port 12 in the radial direction.

    [0029] A cut-off portion 13 may be formed on one side of the discharge port 12.

    [0030] Air introduced through the suction port 11 flows toward the discharge port 12 along an air channel gradually expanded from the cut-off portion 13. Air discharged through the discharge port 12 is discharged to the outside of the discharge port 12 while a static pressure is recovered from a dynamic pressure around the discharge port 12.

    [0031] The impeller is provided with a hub (not shown) rotated by a driving force of the motor and a plurality of blades 201 radially extending at the hub. A flow rate and pressure performance of the centrifugal fan 1 can be affected by a shape, a placement, and the like of the plurality of blades 201.

    [0032] FIG. 2 is a cross-sectional view taken along line I-I' of FIG. 1, and FIG. 3 is a view illustrating a blade of FIG. 2.

    [0033] Referring to FIGS. 2 and 3, each of a plurality of blades 201 is formed to have a curved shape. An inner edge of each of the blades 201 is referred to as a leading edge (LE) 203, and an outer edge thereof is referred to as a trailing edge (TE) 205.

    [0034] Each of the blades 201 is formed to have a shape curved from the leading edge 203 to the trailing edge 205 in a rotational direction of the impeller 20.

    [0035] In the blades 201, the farthest point from a plane connecting the leading edge 203 and the trailing edge 205 can be defined as a peak portion 207.

    [0036] A distance c from the plane to the peak portion 207 can be referred to as a bending height.

    [0037] The peak portion 207 is placed closer to the leading edge 203 than the trailing edge 205. That is, the peak portion 207 is placed at a position biased toward a rotational axis O of the impeller 20 than a central portion of each of the blades 201.

    [0038] There is an effect on flow uniformity at the leading edge 203 and the trailing edge 205 of the blade 201 through such a shape. The aforementioned effect can be confirmed through a flow analysis.

    [0039] Hereinafter, factors for controlling the flow rate and the pressure performance of the centrifugal fan 1 will be described.

    [0040] D1 (mm) means an internal diameter of the blades 201. The internal diameter of the blades 201 means a diameter of a circle connecting leading edges 203 of the plurality of blades 201. At this time, the rotational axis O of the blades 201 becomes the center of the circle.

    [0041] D2 (mm) means an external diameter of the blades 201. The external diameter of the blades 201 means a diameter of a circle connecting trailing edges 205 of the plurality of blades 201. At this time, the rotational axis O of the plurality of blades 201 becomes the center of the circle.

    [0042] P (mm) is a pitch of the plurality of the blades 201 and means a distance between the plurality of blades 201.

    [0043] OA (degrees) is an acronym for occupation angle and means a tilted angle of each of the blades 201. Specifically, OA means angle between the leading edge 203 and the trailing edge 205 of each of the blades 201.

    [0044] CL (mm) is an acronym for chord length and means a string length of each of the blades 201. Specifically, the string length of each of the blades 201 is defined as a distance a from the leading edge 203 to the trailing edge 205.

    [0045] POMC is an acronym for position of maximum camber and is defined as a ratio of a distance b from the leading edge 203 of the blade 201 to the peak portion 207 thereof to the string length a thereof.

    [0046] MC is an acronym for maximum camber and is defined as a ratio of a height c of the peak portion 207 in the blade 201 to the string length a thereof.

    [0047] β1 (degrees) means an entrance angle of air introduced through the leading edge 203 of the blade 201. β2 (degrees) means an exit angle of air discharged through the trailing edge 205 of the blade 201.

    [0048] FIG. 4 is a flow rate-static pressure graph of a centrifugal fan.

    [0049] A graph showing a relationship between a flow rate and a static pressure of the centrifugal fan 1 according to the present disclosure is shown in FIG. 4.

    [0050] The flow rate shown in the graph of FIG. 4 is an expression of a flow rate of air, which is generated by the impeller 20 according to the present disclosure, in cubic meter per minute (CMM) unit.

    [0051] The static pressure shown in the graph of FIG. 4 is an expression of a pressure, which is perpendicularly applied to a fluid flowing in the blade 201 of the impeller 20 according to the present disclosure, in Pascal (Pa) unit.

    [0052] System resistance_min means a minimum value of a system resistance commonly applied, and System resistance_max is a maximum value of a system resistance commonly applied.

    [0053] Impeller_min means a minimum value of the impeller 20 according to the present disclosure, and Impeller_max means a maximum value of the impeller 20 according to the present disclosure.

    [0054] FIG. 5 is a Cordier's diagram showing a relationship between a specific diagram and a specific speed.

    [0055] Referring to FIG. 5, the impeller 20 according to the present disclosure has a specific diameter (Ds) value and a specific speed (Ns) value, which are dimensionless values. These are defined by Mathematical Equations as follows:



    where Φ means a flow coefficient, and ψ means a head coefficient. These are respectively represented by Mathematical Equations as follows:



    where ρ means a coefficient, Q means a flow rate, N means a speed (rpm), D means a diameter, and PT is a head of a pump.

    [0056] Sirroco_AC and Sirroco_DC of a sirrocco fan, i.e., specific diameter values and specific speed values are distributed at a lower end of the Cordier's diagram. Here, it can be confirmed that specific diameter values and specific speed values of the present disclosure deviate from the distribution of Sirroco_AC and Sirroco_DC of the sirrocco fan, i.e., the specific diameter values and the specific speed values.

    [0057] FIG. 6 is a graph showing a relationship between a POMC and a noise of a centrifugal fan.

    [0058] Referring to FIG. 6, it can be seen that when a POMC value of the blade 201 is about 0.5, a noise becomes minimum, and when the POMC value of the blade 201 exceeds about 0.5, a noise is rapidly increased.

    [0059] In addition, it can be seen that as the POMC value of the blade 201 becomes smaller than about 0.5, a noise is gradually increased.

    [0060] It is preferable that the POMC value of the blade 201 is in a range of about 0.01 to about 0.49.

    [0061] FIG. 7 is a table showing a design requirement when the impeller satisfies the condition of FIG. 6.

    [0062] Design factors shown in the table will be described below with reference to FIG. 7.

    [0063] D2/H is a diameter/height ratio and is defined as a value obtained by dividing an external diameter of the blade 201 by a height (H) of the impeller 20. N (rpm) means a rotational speed of the impeller 20. Z (ea.) means the number of the blades 201 provided in the impeller 20.

    [0064] Meanwhile, as a β2 value of the blade 201 is increased, efficiency of the impeller 20 is increased and a flow noise is reduced.

    [0065] FIG. 8 is a graph showing a noise and pressure performance according to a design requirement of a blade in a centrifugal fan according to an embodiment of the present disclosure.

    [0066] Referring to FIG. 8, it can be seen that an influence of r1 (or D1), Z, and OA is large with respect to the pressure performance, and an influence of r1 (or D1), Z, and β2 is small with respect to a noise factor.

    [0067] In addition, it can be seen that r1 (or D1) is inversely proportional to Z and is proportional to OA.

    [0068] As described above, when the impeller 20 of the centrifugal fan 1 is designed to satisfy the specific speed Ns value and the specific diameter Ds value proposed in the present disclosure, it is possible to satisfy a flow rate and pressure performance and also reduce a flow noise.


    Claims

    1. A centrifugal fan (1) comprising:

    a housing (10);

    an impeller (20) which is mounted in the housing (10);

    a hub which is provided in the impeller (20) and is rotated by a driving force of a motor; and

    a plurality of blades (201) which radially extend at the hub,

    wherein each of the plurality of blades (201) is formed to have a shape curved from a leading edge (203) to a trailing edge (205) in a rotational direction of the impeller (20) in each of the plurality of blades (201),

    a farthest point from a plane connecting the leading edge (203) and the trailing edge (205) is defined as a peak portion (207), and

    the peak portion (207) is placed closer to the leading edge (203) than the trailing edge (205)

    characterized in that

    an entrance angle (β1) of air at the leading edge (203) is in a range of 90.74° to 104.35°, and

    an angle (OA) formed between the leading edge (203) and the trailing edge (205) with respect to a rotational center (O) of the impeller (20) is in a range of 5.5° to 9.8°.


     
    2. The centrifugal fan of claim 1, wherein a ratio of a distance (b) from the leading edge (203) to the peak portion (207) to a distance (a) from the leading edge (203) to the trailing edge (205) is defined as a position of maximum camber (POMC) value, and the POMC value is in a range of 0.01 to 0.49.
     
    3. The centrifugal fan of claim 1 or 2, wherein a ratio of a height (c) of the peak portion (207) to a distance (a) from the leading edge (203) to the trailing edge (205) is defined as a maximum camber (MC) value, and
    the MC value is in a range of 0.05 to 0.16.
     
    4. The centrifugal fan of any one of the claims 1 to 3, wherein an exit angle (β2) of air at the trailing edge (205) is in a range of 49.95° to 63.85°
     
    5. The centrifugal fan of any one of the claims 1 to 4, wherein the number (Z) of the plurality of blades (201) mounted in the impeller (20) is in a range of 50 to 60.
     
    6. The centrifugal fan of any one of the claims 1 to 5, wherein a diameter (D1) of a circle connecting the leading edges (203) respectively provided in the plurality of blades (201) is in a range of 116.4 mm to 128.8 mm.
     


    Ansprüche

    1. Zentrifugalgebläse (1), das Folgendes umfasst:

    ein Gehäuse (10);

    ein Gebläserad (20), das im Gehäuse (10) angebracht ist;

    eine Nabe, die im Gebläserad (20) vorgesehen ist und durch eine Antriebskraft eines Motors gedreht wird; und

    mehrere Flügel (201), die sich an der Nabe radial erstrecken,

    wobei jeder der mehreren Flügel (201) derart ausgebildet ist, dass er eine Form aufweist, die bei jedem der mehreren Flügel (201) in einer Drehrichtung des Gebläserads (20) von einer Vorderkante (203) zu einer Hinterkante (205) gekrümmt ist,

    ein Punkt, der von einer Ebene, die die Vorderkante (203) und die Hinterkante (205) verbindet, am weitesten entfernt ist, als ein Scheitelabschnitt (207) definiert ist, und der Scheitelabschnitt (207) näher an der Vorderkante (203) als an der Hinterkante (205) angeordnet ist,

    dadurch gekennzeichnet, dass

    ein Eintrittswinkel (β1) der Luft an der Vorderkante (203) in einem Bereich von 90,74° bis 104,35° liegt, und

    ein Winkel (OA), der in Bezug auf ein Drehzentrum (O) des Gebläserads (20) zwischen der Vorderkante (203) und der Hinterkante (205) gebildet ist, in einem Bereich von 5,5° bis 9,8° liegt.


     
    2. Zentrifugalgebläse nach Anspruch 1, wobei ein Verhältnis eines Abstands (b) von der Vorderkante (203) zum Scheitelabschnitt (207) zu einem Abstand (a) von der Vorderkante (203) zur Hinterkante (205) als ein Wert der Position der maximalen Wölbung (POMC-Wert) definiert ist, und
    der POMC-Wert in einem Bereich von 0,01 bis 0,49 liegt.
     
    3. Zentrifugalgebläse nach Anspruch 1 oder 2, wobei ein Verhältnis einer Höhe (c) des Scheitelabschnitts (207) zu einem Abstand (a) von der Vorderkante (203) zur Hinterkante (205) als ein Wert der maximalen Wölbung (MC-Wert) definiert ist, und
    der MC-Wert in einem Bereich von 0,05 bis 0,16 liegt.
     
    4. Zentrifugalgebläse nach einem der Ansprüche 1 bis 3, wobei ein Austrittswinkel (β2) der Luft an der Hinterkante (205) in einem Bereich von 49,95° bis 63,85° liegt.
     
    5. Zentrifugalgebläse nach einem der Ansprüche 1 bis 4, wobei die Anzahl (Z) der mehreren Flügel (201), die im Gebläserad (20) angebracht sind, in einem Bereich von 50 bis 60 liegt.
     
    6. Zentrifugalgebläse nach einem der Ansprüche 1 bis 5, wobei ein Durchmesser (D1) eines Kreises, der die Vorderkanten (203), die jeweils in den mehreren Flügeln (201) vorgesehen sind, verbindet, in einem Bereich von 116,4 mm bis 128,8 mm liegt.
     


    Revendications

    1. Ventilateur centrifuge (1) comportant :

    un carter (10) ;

    une roue (20) qui est montée dans le carter (10) ;

    un moyeu qui est agencé dans la roue (20) et est mis en rotation par une force d'entraînement d'un moteur ; et

    une pluralité de pales (201) qui s'étendent radialement sur le moyeu,

    dans lequel chaque pale de la pluralité de pales (201) est formée pour avoir une forme incurvée depuis un bord d'attaque (203) jusqu'à un bord de fuite (205) dans un sens de rotation de la roue (20) dans chaque pale de la pluralité de pales (201),

    un point le plus éloigné d'un plan reliant le bord d'attaque (203) et le bord de fuite (205) est défini comme une partie de pointe (207), et

    la partie de pointe (207) est placée plus près du bord d'attaque (203) que du bord de fuite (205)

    caractérisé en ce que

    un angle d'entrée (β1) d'air au niveau du bord d'attaque (203) est dans une plage de 90,74° à 104,35°, et

    un angle (OA) formé entre le bord d'attaque (203) et le bord de fuite (205) par rapport un centre de rotation (O) de la roue (20) est dans une plage de 5,5° à 9,8°.


     
    2. Ventilateur centrifuge selon la revendication 1, dans lequel un rapport d'une distance (b) entre le bord d'attaque (203) et la partie de pointe (207) sur une distance (a) entre le bord d'attaque (203) et le bord de fuite (205) est défini comme une valeur de position de cambrure maximale (POMC), et
    la valeur POMC est dans une plage de 0,01 à 0,49.
     
    3. Ventilateur centrifuge selon la revendication 1 ou 2, dans lequel un rapport d'une hauteur (c) de la partie de pointe (207) sur une distance (a) entre le bord d'attaque (203) et le bord de fuite (205) est défini comme une valeur de cambrure maximale (MC), et
    la valeur MC est dans une plage de 0,05 à 0,16.
     
    4. Ventilateur centrifuge selon l'une quelconque des revendications 1 à 3, dans lequel un angle de sortie (β2) d'air au niveau du bord de fuite (205) est dans une plage de 49,95° à 63,85°.
     
    5. Ventilateur centrifuge selon l'une quelconque des revendications 1 à 4, dans lequel le nombre (Z) de la pluralité de pales (201) montées dans la roue (20) est dans une plage de 50 à 60.
     
    6. Ventilateur centrifuge selon l'une quelconque des revendications 1 à 5, dans lequel un diamètre (D1) d'un cercle reliant les bords d'attaque (203) respectivement agencés dans la pluralité de pales (201) est dans une plage de 116,4 mm à 128,8 mm.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description