(19)
(11)EP 3 150 939 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 16176629.0

(22)Date of filing:  28.06.2016
(51)International Patent Classification (IPC): 
F25B 13/00(2006.01)
F25B 41/04(2006.01)
F25B 41/00(2006.01)
F25B 43/00(2006.01)

(54)

AIR CONDITIONER SYSTEM

KLIMAANLAGENSYSTEM

SYSTÈME DE CLIMATISATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.09.2015 KR 20150137602

(43)Date of publication of application:
05.04.2017 Bulletin 2017/14

(73)Proprietor: LG ELECTRONICS INC.
Yeongdeungpo-gu Seoul 07336 (KR)

(72)Inventors:
  • KIM, Donghwi
    08592 Seoul (KR)
  • PARK, Junseong
    08592 Seoul (KR)
  • SHIN, Ilyoong
    08592 Seoul (KR)

(74)Representative: Ter Meer Steinmeister & Partner 
Patentanwälte mbB Nymphenburger Straße 4
80335 München
80335 München (DE)


(56)References cited: : 
EP-A1- 2 489 774
JP-A- 2008 138 921
WO-A2-2011/023192
US-A1- 2015 020 535
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The air conditioner system may function to maintain an air in a given space in an appropriate manner based on applications of the space. Generally, the air conditioner system may include a compressor, condenser, expander and evaporator for compression, condensation, expansion, and evaporation of the refrigerant, which may be referred to as a refrigerant cycle.

    [0002] The given space may vary depending on applications of the air conditioner system. In one example, when the air conditioner system is installed in an office or home, the space may be an indoor space. When the air conditioner system is installed at a car, the space may be a boarding space.

    [0003] When the air conditioner system is in a cooling operation mode, an outdoor heat exchanger in an outdoor subsystem may act as the condenser, while an indoor heat exchanger in an indoor subsystem may act as the evaporator.

    [0004] To the contrary, when the air conditioner system is in a warming operation mode, an outdoor heat exchanger in an outdoor subsystem may act as the evaporator, while an indoor heat exchanger in an indoor subsystem may act as the condenser.

    [0005] The conventional air conditioner system may include a compressor, four-way valve, indoor heat exchanger, outdoor heat exchanger, expander, gas-liquid separator and multiple refrigerant pipes.

    [0006] When the conventional air conditioner system is in a cooling operation mode, the refrigerant may be compressed by the compressor to have the high-temperature and high-pressure state. Then, the compressed vapor-phase refrigerant may reach the four-way valve and flow to the outdoor heat exchanger. Then, the outdoor heat exchange may condense the refrigerant, and, then, the condensed refrigerant may flow into the indoor subsystem.

    [0007] The refrigerant may flow from the indoor subsystem via the expander to the indoor heat exchanger, where the indoor heat exchanger may evaporate the refrigerant to have a low-temperature and low-pressure state. Then, the refrigerant may flow to the outdoor subsystem.

    [0008] From the outdoor subsystem, the refrigerant may again flow to the four-way valve and then the gas-liquid separator. Then, the gas-liquid separator may extract only vapor-phase refrigerant which in turn may be suctioned to the compressor.

    [0009] In accordance with the conventional air conditioner system, in a cooling mode of the air conditioner system, the refrigerant after the indoor heat exchanger may flow along a long distance between the indoor subsystem and outdoor subsystem. This long distance flow may cause great pressure loss of the refrigerant.

    [0010] In this way, refrigerant temperature and pressure may drop. In order to compensate for the drop, the compressor may spend increased power consumption (AW). The prior art document related to the present disclosure may be as follows: South Korean Patent Application Laid-open No. 2006-0133020A filed on December 22, 2006, titled as "AIR CONDITIONING SYSTEM".

    [0011] US 2015/020535 A1 discloses an air-conditioning according to the preamble of claim 1. An outdoor unit includes a compressor, a refrigerant flow switching device, a heat source side heat exchanger, an accumulator for storing a surplus refrigerant, a refrigerant heat exchanger, and a first expansion device. The outdoor unit has a bypass pipe for bypassing the discharge side of the compressor and the suction side of the compressor via the heat source side heat exchanger during a heating operation.

    SUMMARY



    [0012] From considerations of the above situations, the present disclosure provides an air conditioner system with reduced power consumption of a compressor.

    [0013] Further, the present disclosure provides an air conditioner system to heat evaporated refrigerant without a separate heat source.

    [0014] Furthermore, the present disclosure provides an air conditioner system to further heat the evaporated refrigerant, to prevent the suctioned evaporated refrigerant from damaging the compressor.

    [0015] The objects of the present invention are solved by the features of the independent claim. In an aspect of the present disclosure, there is provided an air conditioner system preferably comprising: a compressor configured to compress refrigerant; a condenser configured to condense the compressed refrigerant; an expander configured to expand the condensed refrigerant; an evaporator configured to evaporate the expanded refrigerant; and a bypass pipeline configured to guide the evaporated refrigerant from the evaporator to the condenser, wherein the bypass pipeline comprises: a fist bypass pipe configured to guide at least partially the evaporated refrigerant from the evaporator to the condenser; a second bypass pipe coupled to the first bypass pipe to be configured to allow heat exchange between refrigerant in the condenser and refrigerant therein; and a third bypass pipe coupled to the second bypass pipe to be configured to guide the refrigerant from the second bypass pipe out of the condenser.

    [0016] The system further comprises a flow switching unit configured to control a refrigerant flow based on a current operation mode of the system, wherein the mode comprises a cooling or warming operation mode; and a gas-liquid separator configured to receive the evaporated refrigerant from the flow switching unit.

    [0017] The system further comprises a gas-liquid separation input pipe extending from the flow switching unit to the gas-liquid separator, the gas-liquid separation input pipe being configured to guide the evaporated refrigerant to the gas-liquid separator; and a divider disposed at the gas-liquid separation input pipe, the divider being coupled to the first bypass pipe.

    [0018] In one embodiment, the condenser may be an outdoor heat exchanger for exchanging heat between the refrigerant and outdoor air, wherein the evaporator may be an indoor heat exchanger for exchanging heat between the refrigerant and indoor air.

    [0019] In one embodiment, the outdoor heat exchanger may comprise: multiple refrigerant pipes configured to guide the refrigerant; and at least one header coupled to the refrigerant pipes, the header having a refrigerant-flow inner space defined therein.

    [0020] In one embodiment, the first bypass pipe may be coupled to the header.

    [0021] In one embodiment, the second bypass pipe may be disposed in the inner space of the header.

    [0022] In one embodiment, the third bypass pipe may extend out of the header.

    [0023] In one embodiment, the outdoor heat exchanger may include first heat exchanger and second heat exchanger units, wherein the system further comprises a variable pipe extending from an output of the first heat exchanger unit to an input of the second heat exchanger unit, the variable pipe being configured to guide the refrigerant.

    [0024] In one embodiment, the at least one header may comprise: a first header coupled to the first heat exchanger unit; a second header coupled to the second heat exchanger unit; and a check valve between the first and second headers.

    [0025] In one embodiment, the second bypass pipe may be disposed in an inner space of the first header.

    [0026] In one embodiment, the system may further comprise a variable valve disposed at the variable pipe, the variable valve being configured to selectively block a refrigerant flow through the variable pipe.

    [0027] The system further comprises a gas-liquid separation output pipe configured to guide vapor-phase refrigerant from the gas-liquid separator to the compressor, wherein the system further comprises a combiner disposed at the gas-liquid separation output pipe, the combiner being coupled to the third bypass pipe.

    [0028] In one embodiment, the system may further comprise a variable valve disposed at the third bypass pipe, wherein the variable valve is configured to open or close respectively in a cooling or warming operation mode of the system.

    [0029] In one embodiment, the second bypass pipe may comprise first and second sub-pipes disposed in first and second inner spaces in the first header and second header respectively.

    [0030] In one embodiment, the second bypass pipe comprises a pipeline including: a first heat exchange pipe disposed in a first inner space of the first header;
    a second heat exchange pipe disposed in a second inner space of the second header; and a connection pipe between the first heat exchange pipe and second heat exchange pipe.

    [0031] The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0032] 

    FIG. 1 shows a block diagram for illustrating a configuration of an air conditioner system in accordance with an embodiment of the present disclosure.

    FIG. 2 shows a flow of a refrigerant along a flow switching unit, an outdoor heat exchanger and a gas-liquid separator in FIG. 1 when an air conditioner system in accordance with a first embodiment of the present disclosure performs cooling operation.

    FIG. 3 shows a flow of a refrigerant along a flow switching unit, an outdoor heat exchanger and a gas-liquid separator in FIG. 1 when an air conditioner system in accordance with a second embodiment of the present disclosure performs cooling operation.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0033] Examples of various embodiments are illustrated in the accompanying drawings and described further below. It will be understood that the description herein is not intended to limit the claims to the specific embodiments described. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the scope of the present invention as defined by the appended claims.

    [0034] Example embodiments will be described in more detail with reference to the accompanying drawings. The present disclosure, however, may be embodied in various different forms, and should not be construed as being limited to only the illustrated embodiments herein. Rather, these embodiments are provided as examples so that this disclosure will be thorough and complete, and will fully convey the aspects and features of the present disclosure to those skilled in the art.

    [0035] It will be understood that when an element or layer is referred to as being "connected to", or "coupled to" another element or layer, it can be directly on, connected to, or coupled to the other element or layer, or one or more intervening elements or layers may be present. In addition, it will also be understood that when an element or layer is referred to as being "between" two elements or layers, it can be the only element or layer between the two elements or layers, or one or more intervening elements or layers may also be present.

    [0036] Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.

    [0037] FIG. 1 shows a block diagram for illustrating a configuration of an air conditioner system in accordance with an embodiment of the present disclosure. FIG. 2 shows a flow of a refrigerant along a flow switching unit, an outdoor heat exchanger and a gas-liquid separator in FIG. 1 when an air conditioner system in accordance with a first embodiment of the present disclosure performs cooling operation.

    [0038] Referring to FIG. 1 and FIG. 2, an air conditioner system 10 in accordance with an embodiment of the present disclosure may include at least one of an outdoor subsystem 100, and an indoor subsystem 200.

    [0039] The outdoor subsystem 100 may include at least one of an outdoor heat exchanger 110, an expansion valve 120, a compressor 130, and a flow switching unit 140. The outdoor subsystem 100 may include a supercooling heat exchanger 150 and/or a gas-liquid separator 160.

    [0040] The indoor subsystem 200 may include at least one of an indoor heat exchanger 210, an indoor EEV (electronic expansion valve) 220 and an indoor pipe 230.

    [0041] The compressor 130 may have an output coupled to the flow switching unit 140 configured to guide a refrigerant from the compressor 130 to the outdoor heat exchanger 110 or the indoor subsystem 200. In one example, the flow switching unit 140 may include a four-way valve.

    [0042] The flow switching unit 140 may have an output coupled to a first switching pipe 141, a second switching pipe 142 and a third switching pipe 143. In this connection, the first switching pipe 141 may run from the flow switching unit 140 to the outdoor heat exchanger 110, the second switching pipe 142 may extend from the flow switching unit 140 to the gas-liquid separator 160, and the third switching pipe 143 may run from the flow switching unit 140 to the outdoor subsystem 200.

    [0043] When the air conditioner system 10 performs cooling operation, the refrigerant may flow from the compressor 130 to the flow switching unit 140 and then to the first switching pipe 141 and in turn to the outdoor heat exchanger 110, acting in this case as a condenser C. To the contrary, when the air conditioner system 10 performs warming operation, the refrigerant may flow from the flow switching unit 140 to the third switching pipe 143 and then to the indoor heat exchanger 210.

    [0044] The outdoor heat exchanger 110 may include a first outdoor heat exchanger unit 111, a second outdoor heat exchanger unit 112, and headers 115, 116. The headers 115 and 116 may be coupled to inputs of the first and second outdoor heat exchanger units 111, 112 respectively. The headers 115, 116 may be coupled respectively to first and second multiple refrigerant pipes forming the first and second outdoor heat exchanger units 111 and 112 respectively. Each of the headers 115 and 116 may have a space defined therein to receive the refrigerant.

    [0045] When the air conditioner system 10 performs cooling operation, the refrigerant may flow from the flow switching unit 140 to the headers 115 and 116 and then to the first and second outdoor heat exchanger unit 111 and 112 respectively. To the contrary, when the air conditioner system 10 perform warming operation, the refrigerant may flow from the first and second outdoor heat exchanger units 111 and 112 and then to the headers 115 and 116 respectively and in turn to the flow switching unit 140.

    [0046] Further, the first outdoor heat exchanger unit 111 may have a first header 115 at one side thereof, and the second outdoor heat exchanger unit 112 may have a second header 116 at one side thereof. Further, the air conditioner system 10 may include a check valve 119 between the first header 115 and second header 116 to be configured to allow the refrigerant from the second header 116 to the first header 115.

    [0047] The refrigerant may flow from the flow switching unit 140 to the first header 115 and then to the check valve 119 which may in turn limit the flow of the refrigerant to the second header 116. Thus, the refrigerant may flow from the first header 115 only toward the first outdoor heat exchanger unit 111.

    [0048] The outdoor heat exchanger 110 may include a variable pipe 117 configured to guide the refrigerant from the output of the first outdoor heat exchanger unit 111 to the second header 116 coupled to the input of the second outdoor heat exchanger unit 112.

    [0049] Further, the outdoor heat exchanger 110 may include a variable valve 118 disposed at the variable pipe 117 to be configured to control the flow of the refrigerant via the variable pipe 117.

    [0050] Based on the variable valve 118 being opened/closed, the refrigerant may or may not flow from the first outdoor heat exchanger unit 111 to the second outdoor heat exchanger unit 112.

    [0051] Specifically, when the variable valve 118 is closed, the refrigerant may flow from the first outdoor heat exchanger unit 111 via a first heat pipe 113 coupled to the output of the first outdoor heat exchanger to an expansion valve 120 as will be described later.

    [0052] Otherwise, when the variable valve 118 is opened, the refrigerant may partially flow from the first outdoor heat exchanger unit 111 via the variable pipe 117 to the second header 116 corresponding to the second outdoor heat exchanger unit 112. Then, the refrigerant may flow from the second header 116 via the second outdoor heat exchanger unit 112 and then via a second heat pipe 114 coupled to the output of the second outdoor heat exchanger unit 112 to the expander 120.

    [0053] The refrigerant may partially flow from the first outdoor heat exchanger unit 111 via the first heat pipe 113 to the expander 120.

    [0054] On the other hand, when the air conditioner system 10 performs warming operation, the refrigerant may branch from the expander 120 into the first heat pipe 113 and the second heat pipe 114. In this connection, the refrigerant may flow from the first heat pipe 113 via the first heat exchanger 111 to the first header 115. Meanwhile, the refrigerant may flow from the second heat pipe 114 via the second heat exchanger 112 to the second header 116, from which the refrigerant may flow via the check valve 119 to the first header 115.

    [0055] The expansion valve 120 may be coupled to the output of the outdoor heat exchanger 110 in a cooling operation mode. The expansion valve 120 may include a first outdoor EEV 121 coupled to the first heat pipe 113 and a second outdoor EEV 122 coupled to the second heat pipe 114.

    [0056] Further, both the first and second outdoors EEV 121 and 122 of the expansion valve 120 may be coupled to an outdoor combiner 123 and an outdoor pipe 124 coupled to the outdoor combiner. Thus, both the refrigerants from the first and second outdoors EEV 121 and 122 may be combined at the outdoor combiner 123.

    [0057] It may be noted that when the air conditioner system 10 is in a cooling operation mode, the expansion valves 121 and 122 may be completely opened to disallow reduction of the pressure for the refrigerant.

    [0058] The air conditioner system 10 may include a supercooling heat exchanger 150 coupled to the outdoor pipe 124 coupled to the expansion valves 121 and 122 and a supercooling divider 151 coupled to the supercooling heat exchanger 150 to be configured to divide the flow of the refrigerant from the supercooling heat exchanger 150 toward a supercooling expander 152 and an indoor heat exchanger 210 as will be described later.

    [0059] The supercooling heat exchanger 150 may act as an intermediate heat exchanger to allow heat exchange between first refrigerant circulating the present air conditioner system and a second refrigerant partially branched from the first refrigerant.

    [0060] In this connection, the first refrigerant may refer to refrigerant flowing from the supercooling divider 151 to the supercooling heat exchanger 150. The first refrigerant may be supercooled using the second refrigerant. Thus, the second refrigerant may receive heat energy from the first refrigerant. That is, the first refrigerant may be cooled, while the second refrigerant may be heated.

    [0061] The air conditioner system 10 may include a first supercooling pipe 153 coupled to the output of the supercooling heat exchanger 150 to be configured to allow the second refrigerant to be branched from the first refrigerant. Further, the supercooling pipe 153 may have the supercooling expander 152 disposed thereat to be configured to reduce the pressure of the second refrigerant. The supercooling expander 152 may include an EEV (Electric Expansion Valve).

    [0062] The second refrigerant may flow from the supercooling pipe 153 to the supercooling heat exchanger 150 and then may exchange heat with the first refrigerant and then may flow via a second supercooling pipe 154 to the compressor 130.

    [0063] The first refrigerant may flow from supercooling heat exchanger 150 via an indoor pipe 230 to the indoor subsystem 200.

    [0064] The air conditioner system 10 may include a divider 181 and a combiner 182. The divider 181 may be configured to divide the refrigerant from the second switching pipe 142 coupled to the flow switching unit 140 into third and fourth refrigerants as will be described later. The combiner 182 may be coupled to an input of the compressor 130 to be configured to combine the third and fourth refrigerants.

    [0065] Further, the air conditioner system 10 may include a gas-liquid separator 160 to allow the third refrigerant to be separated into vapor-phase and liquid-phase refrigerants before flowing into the compressor 130. The system 10 may further include a heat exchange pipe 170 configured to allow the fourth refrigerant from the divider 181 to exchange heat with the refrigerant currently flowing through the outdoor heat exchanger 110.

    [0066] For this, the heat exchange pipe 170 may be disposed in an inner flow space defined in the first header 115 and/or second header 116. The heat exchange pipe 170 may be configured to allow heat exchange between vapor-phase refrigerant at a high-temperature and high-pressure from the compressor 130 and vapor-phase refrigerant at a low-temperature and low-pressure from an indoor heat exchanger 210 (in this case, acting as an evaporator E). Thus, the heat exchange pipe 170 may heat refrigerant from the indoor heat exchanger 210 as the evaporator.

    [0067] During a cooling cycle, the refrigerant from the indoor heat exchanger 210 as the evaporator may flow via the flow switching unit 140 to the second connection pipe 142 and then to the divider 181 which in turn may divide the refrigerant into the third and fourth refrigerants. In this connection, the third refrigerant may flow into the gas-liquid separator 160, while the fourth refrigerant may flow into the heat exchange pipe 170.

    [0068] Specifically, the refrigerant from the indoor heat exchanger 210 as the evaporator may flow to the second connection pipe 142 and to the divider 181 where the third refrigerant thereof may flow via a first branched pipe 161 to the gas-liquid separator and the fourth refrigerant thereof may flow via a second branched pipe 171 to the heat exchange pipe 170.

    [0069] The third refrigerant may flow via the first branched pipe 161 to the gas-liquid separator 160 where only the vapor-phase refrigerant thereof may be outputted. The fourth refrigerant may flow via the second branched pipe 171 to the heat exchange pipe 170 where the fourth refrigerant may heat the refrigerant from the indoor heat exchanger 210 as the evaporator.

    [0070] The third refrigerant may flow via the first branched pipe 161 to the gas-liquid separator 160 from which the third refrigerant with a vapor phase may flow into a first combining pipe 162. At the same time, the fourth refrigerant from the second branched pipe 171 may flow into the heat exchange pipe 170 from which the fourth refrigerant may flow into a second combining pipe 172. The third and fourth refrigerants from the first combining pipe 162 and second combining pipe 172 respectively may be combined in the combiner 182, and the combined refrigerant may flow to the compressor 130.

    [0071] The fourth refrigerant from the second combining pipe 172 may exchange heat with the refrigerant at the high-temperature and high-pressure flowing in the outdoor heat exchanger 110. Thus, the combined refrigerant of the third and fourth refrigerants at the combiner 182 may have higher-temperature and higher-pressure than those of only the third refrigerant from the gas-liquid separator 160 due to the fact that the fourth refrigerant may have acquire additional temperature and pressure while passing through the pipe 170. Further, the combined refrigerant of the third and fourth refrigerants at the combiner 182 may have higher-temperature and higher-pressure than those of the refrigerant just flowing after the flow switching unit 140.

    [0072] In this connection, the second branched pipe 171 may be defined as a "first pipe" through which the fourth refrigerant may flow from the divider 181 to the heat exchange pipe 170. The heat exchange pipe 170 may be defined as a "second pipe". The second combining pipe 172 may be defined as a "third pipe" through which the fourth refrigerant may flow from the heat exchange pipe 170 to the combiner 182.

    [0073] Further, in this connection, since a series of the first to third bypass pipes bypasses the gas-liquid separation input pipe and the gas-liquid separation output pipe, the series of the first to third bypass pipe may be defined as a "bypass pipeline". In this way, the second branched pipe 171 may be defined as a "first bypass pipe"; the heat exchange pipe 170 may be defined as a "second bypass pipe"; and the second combining pipe 172 may be defined as a "third bypass pipe".

    [0074] The heat exchange pipe 170 may be formed in a serpentine shape. The fourth refrigerant flowing through the heat exchange pipe 170 may encounter the refrigerant flowing in the outdoor heat exchanger 110.

    [0075] The second combining pipe 172 may have a variable valve 180 disposed thereat. The variable valve 180 may be opened when the air conditioner system 10 is in a cooling operation mode, whereas the variable valve 180 may be closed when the air conditioner system 10 is in a warming operation mode.

    [0076] That is, in the warming operation mode, the variable valve 180 may disallow the flow of the refrigerant via the first branched pipe 171 and second branched pipe 172. Thus, all of the refrigerant after the flow switching unit 140 may flow only to the first branched pipe 161 and first combining pipe 162 and then to the compressor 130.

    [0077] The combiner 182 may be coupled to a suction pipe 132 which in turn may be coupled to the compressor 130.

    [0078] The refrigerant may flow from the suction pipe 132 to the compressor 130 by which the refrigerant changes into a high-temperature and high-pressure state. Then, the refrigerant at the high-temperature and high-pressure state may again be outputted from the output pipe 131 to circulate the air conditioner system 10.

    [0079] In this connection, since the second connection pipe 142 and the first branched pipe 161 guide the refrigerant into the gas-liquid separator, a series of the second connection pipe 142 and the first branched pipe 161 may be defined as the "gas-liquid separation input pipe". Further, since the first combining pipe 162 and suction pipe 132 guide the refrigerant outputted from the gas-liquid separator to the compressor, a series of the first combining pipe 162 and suction pipe 132 may be defined as the "gas-liquid separation output pipe".

    [0080] Hereinafter, in a cooling operation mode of the air conditioner system 10, flows of the refrigerant in the air conditioner system 10 will be described.

    [0081] First, using the compressor 130, the refrigerant may change into a high-temperature and high-pressure state. Then, the refrigerant may flow via the flow switching unit 140 to the first switching pipe 141 and then to the first header 115.

    [0082] Thereafter, the refrigerant may flow via the first header 115 into refrigerant pipes of the first outdoor heat exchanger unit 111 where the refrigerant may exchange heat with an ambient air. In this connection, the refrigerant may be prevented from flowing from the first header 115 to the second header 116 using the check valve 119. Then, the refrigerant flow may be divided from the first heat exchanger unit 111 into the first heat pipe 113 and variable pipe 117.

    [0083] The refrigerant divided into variable pipe 117 may flow into the second header 116 and then to the second outdoor heat exchanger unit 112 where the refrigerant may exchange heat with an ambient air, and may flow to the second heat pipe 114.

    [0084] The refrigerants from the first and second heat pipes 113, 114 respectively may flow into the first and second expanders 121, 122 and then may be combined at the outdoor combining pipe 123, and then to the outdoor pipe 124.

    [0085] Subsequently, the refrigerant may flow from the outdoor pipe 124 to the supercooling divider 151 where the refrigerant may be divided into the first refrigerant and second refrigerant. Next, the second refrigerant may flow to the supercooling expander 152 disposed at the supercooling pipe 153, where the second refrigerant may be expanded. Then, the second refrigerant may flow to the supercooling heat exchanger 150 where the second refrigerant may be heated using the first refrigerant therein. Thus, the first refrigerant in the supercooling heat exchanger 150 may be cooled via the heat exchange.

    [0086] The second refrigerant may flow via the supercooling pipe 154 to the compressor 130. The first refrigerant may flow via the indoor pipe 230 to the indoor subsystem 200 where the first refrigerant may be evaporated in the indoor heat exchanger 210.

    [0087] Then, the evaporated refrigerant may flow via the indoor pipe 230 to the outdoor subsystem 100. The refrigerant may flow via the indoor pipe 230 to the third switching pipe 143 to the flow switching unit 140 which in turn may guide the refrigerant to the second switching pipe 142.

    [0088] Then, the refrigerant may flow from the second switching pipe 142 to the divider 181 wherein the refrigerant flow may be divided into the first branched pipe 161 and second branched pipe 171. The third refrigerant from the first branched pipe 161 may flow into the gas-liquid separator 160 and then to first combining pipe 162. The fourth refrigerant from the second branched pipe 171 may flow through the heat exchange pipe 170 where the fourth refrigerant may be heated using the refrigerant currently flowing in the first header and/or second header. Then, the fourth refrigerant may flow to the second combining pipe 172 and to the combiner 182.

    [0089] Then, the third and fourth refrigerants from the first and second combining pipes 162, 172 respectively may be combined at the combiner 182. The combined refrigerant may flow via the input pipe 132 to the compressor 130.

    [0090] In this way, the fourth refrigerant may be heated during passing through the heat exchange pipe 170, and, thus, the combined refrigerant may acquire thermal energy to allow reduction of power consumption of the compressor 130.

    [0091] Hereinafter, an air conditioner system in accordance with a second embodiment of the present disclosure will be described. This second embodiment may differ from the first embodiment only in terms of the bypass pipe configuration. Thus, the same configurations between them may have the same reference numerals and descriptions. Thus, only the difference will be detailed below.

    [0092] FIG. 3 shows a flow of a refrigerant along a flow switching unit, an outdoor heat exchanger and a gas-liquid separator in FIG. 1 when an air conditioner system in accordance with a second embodiment of the present disclosure performs cooling operation.

    [0093] Referring to FIG. 3, the air conditioner system in accordance with a second embodiment of the present disclosure may have the same configurations as the first embodiment except for the heat exchange pipe configuration in the inner flow spaces defined in the headers 115 and 116.

    [0094] In this embodiment, the heat exchange pipe 170 may include a plurality of heat exchange sub-pipes, which, may include, for example, a first heat exchange sub-pipe 173, and a second heat exchange sub-pipe 174. Between the first heat exchange sub-pipe 173, and second heat exchange sub-pipe 174, a connection pipe 175 may be disposed to connect therebetween.

    [0095] The first heat exchange sub-pipe 173 may be disposed in the first header 115, and the second heat exchange sub-pipe 174 may be disposed in the second header 116.

    [0096] Thus, in the cooling operation mode of the air conditioner system 10, the second branched pipe 171 from the divider 181 may be coupled to one end of the second heat exchange sub-pipe 174, and the other end of the second heat exchange sub-pipe 174 may be connected to one end of the first heat exchange sub-pipe 173 via the connection pipe 175. The other end of the first heat exchange sub-pipe 173 may be coupled to the second combining pipe 172.

    [0097] In this embodiment, the first header 115 and second header 116 receive heat exchange sub-pipes 173, 174 respectively, thereby to enlarge a total heat exchange pipe compared to the first embodiment where the heat exchange pipe is disposed only in a single header, and thus to improve heat exchange.

    [0098] It may be appreciated that although the heat exchange pipe configuration is applied to the two headers as shown in the figure, the present discourse is not limited thereto. For example, the heat exchange pipe configuration may be applied to three or more headers.

    [0099] In accordance with the present disclosure, the evaporated refrigerant may acquire additional temperature and pressure, to allow reduction of power consumption of the compressor.

    [0100] Further, without a separate heat source, the evaporated refrigerant at a low-temperature and low-pressure may be heated using the condenser. This may lead to a simple structure and thus a manufacturing cost of the present system. Further, it may dispense with further power to otherwise drive the separate heat source.

    [0101] Furthermore, since the evaporated refrigerant may be heated through the condenser, a dryness thereof may improve to facilitate a phase change from liquid-phase refrigerant to vapor-phase refrigerant.

    [0102] Moreover, the gas-liquid separator may remove from the liquid-phase refrigerant, and, thus, the remaining vapor-phase refrigerant and the refrigerant passing after the condenser may be combined. Then, the combined refrigerant may flow to the compressor. Thus, the liquid-phase refrigerant may not be injected into the compressor, thereby suppressing the compressor failure.

    [0103] Additionally, the multiple condensers or outdoor heat exchangers may be available, thereby to be adapted to an air conditioner system requiring larger condensation.

    [0104] Still additionally, the evaporated refrigerant may be heated using the refrigerant flowing in the condenser header. Thus, the evaporated refrigerant may acquire further temperature and pressure before being subjected to condensation. This may improve heat exchange thereof.

    [0105] Further still additionally, the flow switching unit and variable valve may control the refrigerant flow. Thus, the refrigerant flow control may be facilitated for example by opening the variable valve in a cooling mode or by closing the variable valve in a warming mode.


    Claims

    1. An air conditioner system (10) comprising:

    a compressor (130) configured to compress refrigerant;

    a condenser (C) configured to condense the compressed refrigerant in the compressor (130);

    an expander (120) configured to expand the condensed refrigerant in the condenser (C);

    an evaporator (E) configured to evaporate the expanded refrigerant in the expander (120);

    a flow switching unit (140) configured to control a direction of refrigerant flow based on an operation mode of the system, wherein the operation mode comprises a cooling or warming operation mode;

    a gas-liquid separator (160) configured to receive the evaporated refrigerant from the flow switching unit (140); and

    a bypass pipeline configured to guide the evaporated refrigerant from the evaporator (E) to the condenser (C),

    wherein the bypass pipeline comprises:

    a fist bypass pipe (171) configured to guide at least partially the evaporated refrigerant from the evaporator (E) to the condenser (C);

    a second bypass pipe (170; 173, 174) connected to the first bypass pipe (171) and configured to allow heat exchange between refrigerant in the condenser (C) and refrigerant therein; and

    a third bypass pipe (172) connected to the second bypass pipe (170; 173, 174) and configured to guide the refrigerant from the second bypass pipe (170; 173, 174) to outside of the condenser (C),

    wherein the system (10) further comprises:

    a gas-liquid separation input pipe (142, 161) extending from the flow switching unit (140) to the gas-liquid separator (160) and configured to guide the evaporated refrigerant to the gas-liquid separator (160);

    a divider (181) coupled to the first bypass pipe (171);

    a gas-liquid separation output pipe (162, 132) configured to guide vapor-phase refrigerant separated in the gas-liquid separator (160) to the compressor (130), wherein the gas-liquid separation output pipe (162, 132) comprises a combiner (182) coupled to the third bypass pipe (172), characterised in that said divider (181) is disposed at the gas-liquid separation input pipe (142,161).


     
    2. The system of claim 1, wherein the condenser (C) comprises an outdoor heat exchanger (110) for exchanging heat between the refrigerant and outdoor air, and
    wherein the evaporator (E) comprises an indoor heat exchanger (210) for exchanging heat between the refrigerant and indoor air.
     
    3. The system of claim 2, wherein the outdoor heat exchanger (110) comprises:

    a plurality of refrigerant pipes configured to guide the refrigerant; and

    at least one header (115, 116) coupled to the plurality of refrigerant pipes, the at least one header (115, 116) having a refrigerant-flow inner space defined therein.


     
    4. The system of claim 3, wherein the first bypass pipe (171) is coupled to the header (115, 116).
     
    5. The system of claim 4, wherein the second bypass pipe (170; 173, 174) is disposed in the inner space of the header (115, 116).
     
    6. The system of claim 5, wherein the third bypass pipe (172) extends out of the header (115, 116).
     
    7. The system of claim 3, wherein the outdoor heat exchanger (110) includes first heat exchanger and second heat exchanger units (111, 112), and
    wherein the system further comprises a variable pipe (117) extending from an outlet of the first heat exchanger unit (111) to an inlet of the second heat exchanger unit (112) and configured to guide the refrigerant.
     
    8. The system of claim 7, wherein the at least one header (115, 116) comprises:

    a first header (115) coupled to the first heat exchanger unit (111);

    a second header (116) coupled to the second heat exchanger unit (112); and

    a check valve (119) between the first header (115) and second header (116).


     
    9. The system of claim 8, wherein the second bypass pipe (170) is disposed in an inner space of the first header (115).
     
    10. The system of claims 7, 8 or 9, further comprising a variable valve (118) disposed at the variable pipe (117), the variable valve (118) being configured to selectively block a refrigerant flow through the variable pipe (117).
     
    11. The system of any one of the claims 1 to 10, further comprising a variable valve (180) disposed at the third bypass pipe (172),
    wherein the variable valve (180) is configured to open in a cooling operation mode, and close in a warming operation mode of the system.
     
    12. The system of any one of the claims 1 to 11, wherein the second bypass pipe comprises first and second sub-pipes (173; 174) disposed in first and second inner spaces in the first header (115) and second header (116) respectively.
     


    Ansprüche

    1. Klimaanlage (10), umfassend:

    einen Kompressor (130), der zum Komprimieren von Kältemittel konfiguriert ist;

    einen Kondensator (C), der konfiguriert ist, um das komprimierte Kältemittel im Kompressor (130) zu kondensieren;

    einen Expander (120), der konfiguriert ist, um das kondensierte Kältemittel im Kondensator (C) zu expandieren;

    einen Verdampfer (E), der konfiguriert ist, um das expandierte Kältemittel im Expander (120) zu verdampfen;

    eine Strömungsschalteinheit (140), die konfiguriert ist, um eine Richtung des Kältemittelstroms basierend auf einem Betriebsmodus des Systems zu steuern, wobei der Betriebsmodus einen Kühl- oder Wärmebetriebsmodus umfasst;

    einen Gas-Flüssigkeits-Abscheider (160), der konfiguriert ist, um das verdampfte Kältemittel von der Strömungsschalteinheit (140) aufzunehmen; und

    eine Bypass-Rohrleitung, die konfiguriert ist, um das verdampfte Kältemittel von dem Verdampfer (E) zu dem Kondensator (C) zu leiten, wobei die Bypass-Rohrleitung Folgendes umfasst:

    ein erstes Bypassrohr (171), das konfiguriert ist, um zumindest teilweise das verdampfte Kältemittel vom Verdampfer (E) zum Kondensator (C) zu leiten;

    ein zweites Bypassrohr (170; 173, 174), das mit dem ersten Bypassrohr (171) verbunden und konfiguriert ist, um einen Wärmeaustausch zwischen dem Kältemittel im Kondensator (C) und dem darin befindlichen Kältemittel zu ermöglichen; und

    ein drittes Bypassrohr (172), das mit dem zweiten Bypassrohr (170; 173, 174) verbunden und konfiguriert ist, um das Kältemittel von dem zweiten Bypassrohr (170; 173, 174) zur Außenseite des Kondensators (C) zu leiten, wobei das System (10) ferner Folgendes umfasst:

    ein Gas-Flüssigkeits-Abscheidungs-Eingangsrohr (142, 161), das sich von der Strömungsschalteinheit (140) zu dem Gas-Flüssigkeits-Abscheider (160) erstreckt und konfiguriert ist, um das verdampfte Kältemittel zu dem Gas-Flüssigkeits-Abscheider (160) zu leiten;

    einen Teiler (181), der mit dem ersten Bypassrohr (171) gekoppelt ist;

    ein Gas-Flüssigkeits-Abscheidungs-Ausgangsrohr (162, 132), das konfiguriert ist, um in dem Gas-Flüssigkeits-Abscheider (160) abgeschiedenes Dampfphasen-Kältemittel zum Kompressor (130) zu leiten, wobei das Gas-Flüssigkeits-Abscheidungs-Ausgangsrohr (162, 132) einen mit dem dritten Bypassrohr (172) gekoppelten Kombinator (182) umfasst, dadurch gekennzeichnet, dass der Teiler (181) an dem Gas-Flüssigkeits-Abscheidungs-Eingangsrohr (142, 161) angeordnet ist.


     
    2. System nach Anspruch 1, wobei der Kondensator (C) einen Außen-Wärmetauscher (110) zum Austausch von Wärme zwischen dem Kältemittel und der Außenluft umfasst, und wobei der Verdampfer (E) einen Innen-Wärmetauscher (210) zum Austausch von Wärme zwischen dem Kältemittel und der Innenraumluft umfasst.
     
    3. System nach Anspruch 2, wobei der Außen-Wärmetauscher (110) Folgendes umfasst:

    mehrere Kältemittelrohre, die konfiguriert sind, um das Kältemittel zu leiten; und

    mindestens einen Verteilerkopf (115, 116), der mit den mehreren Kältemittelrohren verbunden ist, wobei der mindestens eine Verteilerkopf (115, 116) einen darin definierten Kältemittel strom-Innenraum aufweist.


     
    4. System nach Anspruch 3, wobei das erste Bypassrohr (171) mit dem Verteilerkopf (115, 116) gekoppelt ist.
     
    5. System nach Anspruch 4, wobei das zweite Bypassrohr (170; 173, 174) im Innenraum des Verteilerkopfes (115, 116) angeordnet ist.
     
    6. System nach Anspruch 5, wobei das dritte Bypassrohr (172) aus dem Verteilerkopf (115, 116) herausführt.
     
    7. System nach Anspruch 3, wobei der Außen-Wärmetauscher (110) eine erste Wärmetauschereinheit und eine zweite Wärmetauschereinheit (111, 112) umfasst und wobei das System ferner ein variables Rohr (117) umfasst, das sich von einem Ausgang der ersten Wärmetauschereinheit (111) zu einem Eingang der zweiten Wärmetauschereinheit (112) erstreckt und konfiguriert ist, um das Kältemittel zu leiten.
     
    8. System nach Anspruch 7, wobei der mindestens eine Verteilerkopf (115, 116) Folgendes umfasst:

    einen ersten Verteilerkopf (115), der mit der ersten Wärmetauschereinheit (111) gekoppelt ist;

    einen zweiten Verteilerkopf (116), der mit der zweiten Wärmetauschereinheit (112) gekoppelt ist; und

    ein Rückschlagventil (119) zwischen dem ersten Verteilerkopf (115) und dem zweiten Verteilerkopf (116).


     
    9. System nach Anspruch 8, wobei das zweite Bypassrohr (170) in einem Innenraum des ersten Verteilerkopfes (115) angeordnet ist.
     
    10. System nach Anspruch 7, 8 oder 9, ferner umfassend ein variables Ventil (118), das an dem variablen Rohr (117) angeordnet ist, wobei das variable Ventil (118) so konfiguriert ist, dass es einen Kältemittelstrom durch das variable Rohr (117) selektiv blockiert.
     
    11. System nach einem der Ansprüche 1 bis 10, ferner umfassend ein variables Ventil (180), das am dritten Bypassrohr (172) angeordnet ist, wobei das variable Ventil (180) so konfiguriert ist, dass es sich in einem Kühlbetriebsmodus öffnet und in einem Wärmebetriebsmodus des Systems schließt.
     
    12. System nach einem der Ansprüche 1 bis 11, wobei das zweite Bypassrohr ein erstes und ein zweites Hilfsrohr (173; 174) umfasst, die in einem ersten und einem zweiten Innenraum des ersten Verteilerkopfes (115) bzw. des zweiten Verteilerkopfes (116) angeordnet sind.
     


    Revendications

    1. Système de climatiseur (10) comportant :

    un compresseur (130) configuré pour comprimer du fluide frigorigène ;

    un condenseur (C) configuré pour condenser le fluide frigorigène comprimé dans le compresseur (130) ;

    un détendeur (120) configuré pour détendre le fluide frigorigène condensé dans le condenseur (C) ;

    un évaporateur (E) configuré pour évaporer le fluide frigorigène détendu dans le détendeur (120) ;

    une unité de commutation d'écoulement (140) configurée pour commander une direction d'écoulement de fluide frigorigène sur la base d'un mode de fonctionnement du système, dans lequel le mode de fonctionnement comporte un mode de fonctionnement en refroidissement ou en réchauffement ;

    un séparateur de gaz-liquide (160) configuré pour recevoir le fluide frigorigène évaporé provenant de l'unité de commutation d'écoulement (140) ; et

    une tuyauterie de dérivation configurée pour guider le fluide frigorigène évaporé de l'évaporateur (E) au condenseur (C),

    dans lequel la tuyauterie de dérivation comporte :

    un premier tuyau de dérivation (171) configuré pour guider au moins partiellement le fluide frigorigène évaporé de l'évaporateur (E) au condenseur (C),

    un deuxième tuyau de dérivation (170 ; 173, 174) raccordé au premier tuyau de dérivation (171) et configuré pour permettre un échange de chaleur entre le fluide frigorigène dans le condenseur (C) et le fluide frigorigène dans celui-ci ; et

    un troisième tuyau de dérivation (172) raccordé au deuxième tuyau de dérivation (170 ; 173, 174) et configuré pour guider le fluide frigorigène depuis le deuxième tuyau de dérivation (170 ; 173, 174) jusqu'à l'extérieur du condenseur (C),

    dans lequel le système (10) comporte en outre :

    un tuyau d'entrée de séparation de gaz-liquide (142, 161) s'étendant depuis l'unité de commutation d'écoulement (140) jusqu'au séparateur de gaz-liquide (160) et configuré pour guider le fluide frigorigène évaporé jusqu'au séparateur de gaz-liquide (160) ;

    un séparateur (181) couplé au premier tuyau de dérivation (171) ;

    un tuyau de sortie de séparation de gaz-liquide (162, 132) configuré pour guider du fluide frigorigène en phase vapeur séparé dans le séparateur de gaz-liquide (160) jusqu'au compresseur (130), dans lequel le tuyau de sortie de séparation de gaz-liquide (162, 132) comporte un organe de combinaison (182) couplé au troisième tuyau de dérivation (172), caractérisé en ce que ledit séparateur (181) est disposé au niveau du tuyau d'entrée de séparation de gaz-liquide (142, 161).


     
    2. Système selon la revendication 1, dans lequel le condenseur (C) comporte un échangeur de chaleur extérieur (110) pour échanger de la chaleur entre le fluide frigorigène et l'air extérieur, et
    dans lequel l'évaporateur (E) comporte un échangeur de chaleur intérieur (210) pour échanger de la chaleur entre le fluide frigorigène et l'air intérieur.
     
    3. Système selon la revendication 2, dans lequel l'échangeur de chaleur extérieur (110) comporte :

    une pluralité de tuyaux de fluide frigorigène configurés pour guider le fluide frigorigène ; et

    au moins un collecteur (115, 116) couplé à la pluralité de tuyaux de fluide frigorigène, le au moins un collecteur (115, 116) ayant un espace intérieur d'écoulement de fluide frigorigène défini dans celui-ci.


     
    4. Système selon la revendication 3, dans lequel le premier tuyau de dérivation (171) est couplé au collecteur (115, 116).
     
    5. Système selon la revendication 4, dans lequel le deuxième tuyau de dérivation (170 ; 173, 174) est disposé dans l'espace intérieur du collecteur (115, 116).
     
    6. Système selon la revendication 5, dans lequel le troisième tuyau de dérivation (172) s'étend à l'extérieur du collecteur (115, 116).
     
    7. Système selon la revendication 3, dans lequel l'échangeur de chaleur extérieur 1(10) inclut une première unité d'échange de chaleur et une seconde unité d'échange de chaleur (111, 112), et
    dans lequel le système comporte en outre un tuyau variable (117) s'étendant depuis une sortie de la première unité d'échange de chaleur (111) jusqu'à une entrée de la seconde unité d'échange de chaleur (112) et configuré pour guider le fluide frigorigène.
     
    8. Système selon la revendication 7, dans lequel le au moins un collecteur (115, 116) comporte :

    un premier collecteur (115) couplé à la première unité d'échange de chaleur (111) ;

    un second collecteur (116) couplé à la seconde unité d'échange de chaleur (112) ; et

    un clapet anti-retour (119) entre le premier collecteur (115) et le second collecteur (116).


     
    9. Système selon la revendication 8, dans lequel le deuxième tuyau de dérivation (170) est disposé dans un espace intérieur du premier collecteur (115).
     
    10. Système selon les revendications 7, 8 ou 9, comportant en outre une soupape variable (118) disposée au niveau du tuyau variable (117), la soupape variable (118) étant configurée pour bloquer sélectivement un écoulement de fluide frigorigène à travers le tuyau variable (117).
     
    11. Système selon l'une quelconque des revendications 1 à 10, comportant en outre une soupape variable (180) disposée au niveau du troisième tuyau de dérivation (172),
    dans lequel la soupape variable (180) est configurée pour s'ouvrir dans un mode de fonctionnement en refroidissement, et se fermer dans un mode de fonctionnement en réchauffement du système.
     
    12. Système selon l'une quelconque des revendications 1 à 11, dans lequel le deuxième tuyau de dérivation comporte des premier et second sous-tuyaux (173 ; 174) disposés dans des premier et second espaces intérieurs du premier collecteur (115) et du second collecteur (116) respectivement.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description