(19)
(11)EP 3 153 235 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16192672.0

(22)Date of filing:  06.10.2016
(51)Int. Cl.: 
B04C 5/04  (2006.01)
B01D 19/00  (2006.01)
B04C 5/181  (2006.01)
B04C 5/103  (2006.01)
B01D 1/22  (2006.01)
B04C 9/00  (2006.01)

(54)

CYCLONE TYPE LIQUID-VAPOR SEPARATOR AND FORCED CIRCULATION TYPE EVAPORATOR USING THE SAME

ZYKLONFLÜSSIGKEITSDAMPFABSCHEIDER UND ZWANGSUMLAUFVERDAMPFER AUF BASIS DES ZYKLONFLÜSSIGKEITSDAMPFABSCHEIDERS

SÉPARATEUR LIQUIDE-VAPEUR DE TYPE CYCLONE ET ÉVAPORATEUR DE TYPE À CIRCULATION FORCÉE L'UTILISANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.10.2015 KR 20150140309

(43)Date of publication of application:
12.04.2017 Bulletin 2017/15

(73)Proprietor: Doosan Heavy Industries & Construction Co., Ltd.
Gyeongsangnam-do 642-792 (KR)

(72)Inventors:
  • KIM, Sangmoon
    08801 Seoul (KR)
  • LEE, Gunmyung
    41584 Daegu (KR)
  • KANG, Weekwan
    08802 Seoul (KR)

(74)Representative: Isarpatent 
Patent- und Rechtsanwälte Behnisch Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56)References cited: : 
EP-A2- 1 125 620
CH-A- 281 743
US-A1- 2011 203 914
WO-A1-2004/030793
GB-A- 2 485 251
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a cyclone type liquid-vapor separator according to the preamble of claim 1 which is known from WO 2004/030793 A1. Moreover, the present invention relates to a forced circulation type evaporator.

    [0002] CH 281 743 A discloses a liquid-vapor separator, wherein partition walls protrude from a vessel's inner wall with an inclination between 90 and 180 degrees.

    [0003] More generally, the invention relates to apparatuses which include a cyclone type liquid-vapor separator and a forced circulation type evaporator using the same, and more particularly, to a cyclone type liquid-vapor separator that is coupled to a heat exchanger to constitute a forced circulation type evaporator, thereby replacing a conventional liquid-vapor separator in which a reflection plate or a diffusion nozzle is disposed to ensure flashing area therewith.

    Background of the Related Art



    [0004] A forced circulation type evaporator is generally used as a crystallizer in sewage and wastewater treatment facilities, seawater desalination facilities, zero liquid discharge ZLD facilities, and facilities for concentrating food like sugar, salt, fruit liquids and so on.

    [0005] The forced circulation type evaporator includes a heat exchanger for heating treatment liquid through a heat medium and a liquid-vapor separator for injecting the heated treatment liquid into a chamber, evaporating the treatment liquid, and separating the evaporated treatment liquid into vapors and concentrated liquid, and the concentrated liquid discharged from the liquid-vapor separator is recycled to the heat exchanger through a pump.

    [0006] As shown in FIGS.1a and 1b, the liquid-vapor separator of the related art used in the forced circulation type evaporator has a reflection plate (which is shown in FIG.1a) or a diffusion nozzle (which is shown in FIG.1b) disposed in a chamber so as to ensure the flashing area in the chamber.

    [0007] In the process where the treatment liquid is injected through the spray nozzle in the liquid-vapor separator of the related art, however, foams are produced and mixed with the separated vapors, thereby giving bad influences on next stage. Further, caking is caused so that crystals of solid substances are produced from the concentrated liquid discharged to the lower portion of the liquid-vapor separator of the related art, thereby undesirably reducing the efficiencies in the removal of the solid substances in a dewatering process on the next stage.

    [0008] Accordingly, there is a need for the development of a new liquid-vapor separator capable of ensuring a flashing area over a given level, while not adopting the spray nozzle injection of the related art, so that no foams are produced, thereby enhancing the efficiency of evaporation, and further capable of forming round and uniform crystals, thereby improving the efficiencies in the removal of solid substances on next stage thereof.

    SUMMARY OF THE INVENTION



    [0009] Accordingly, the exemplary embodiment has been made in view of the above-mentioned problems occurring in the prior art, and it is an object of the present disclosure to provide a cyclone type liquid-vapor separator and a forced circulation type evaporator using the same that is capable of ensuring a flashing area over a given level, while not adopting a spray nozzle injection, so that no foams are produced, thereby enhancing the efficiency of evaporation, and further capable of forming round and uniform crystals, thereby improving the efficiencies in the removal of solid substances on next stage thereof.

    [0010] To accomplish the above-mentioned object, according to the invention, there is provided a cyclone type liquid-vapor separator for separating vapors from treatment liquid introduced thereinto, as defined in independent claim 1.

    [0011] According to the exemplary embodiment, desirably, the partition walls inclinedly protrude upwardly from the inner peripheral surface of the chamber 110 at an angle of 90 to 180°

    [0012] According to the exemplary embodiment, desirably, the liquid-vapor separator further includes an interior demister disposed on any one or more areas above or under the partition walls in the chamber and having a mesh type plate member adapted to block the mist contained in the vapors in the process wherein the generated vapors are discharged upwardly.

    [0013] According to the exemplary embodiment, desirably, the liquid-vapor separator further includes an exterior demister disposed separately to the outside of the chamber in such a manner as to be connected to the end of the vapor outlet to introduce the discharged vapors from the vapor outlet thereinto and having a chevron type member disposed in a moving path of the introduced vapors to block the mist contained in the vapors.

    [0014] According to the exemplary embodiment, desirably, the inner peripheral wall of the chamber is tapered toward the concentrated liquid outlet formed on the bottom of the chamber 110 to reduce the turning radius of the treatment liquid.

    [0015] To accomplish the above-mentioned object, according to the invention, there is also provided a forced circulation type evaporator

    [0016] A for evaporating and concentrating treatment liquid, as defined in dependent claim 6.

    [0017] According to the exemplary embodiment, desirably, the forced circulation type evaporator further includes a suction pump connected to the rear end of the liquid-vapor separator to provide power for discharging the concentrated treatment liquid from the liquid-vapor separator.

    [0018] According to the exemplary embodiment, desirably, the forced circulation type evaporator further includes an interior demister 140a disposed on any one or more areas above or under the partition walls 130 in the chamber 110 and having a mesh type plate member adapted to block the mist contained in the vapors in the process wherein the generated vapors are discharged upwardly, or an exterior demister 140b disposed separately to the outside of the chamber 110 in such a manner as to be connected to the end of the vapor outlet 111 to introduce the discharged vapors from the vapor outlet thereinto and having a chevron type member disposed in a moving path of the introduced vapors to block the mist contained in the vapors.

    [0019] The invention is defined in claim 1.

    [0020] The at least one partition wall may inclinedly protrude upwardly from the inner peripheral surface of the chamber at an angle of 90 to 180°.

    [0021] The inlet part includes a guide part disposed extendedly by a section along the inner peripheral surface of the chamber from a connected portion to the side surface of the chamber and configured to guide a rotation of the treatment liquid introduced through the inlet part.

    [0022] The guide part may be separate from the inlet part and protrude from the inner peripheral surface of the chamber.

    [0023] The guide part includes a pipe passing through the inlet part, the pipe extendedly inserted into the chamber, and being fastened to the inner peripheral surface of the chamber along the inner peripheral surface of the chamber.

    [0024] The pipe of the inlet part, which is passed through the chamber and extendedly inserted into the chamber, is open on a top portion of the pipe.

    [0025] The liquid-vapor separator may further include an interior demister disposed above or under the at least one partition wall in the chamber and having a mesh type plate member configured to block the mist contained in the vapors discharged upwardly.

    [0026] The liquid-vapor separator may further include an exterior demister disposed separately to an exterior of the chamber in such a manner as to be connected to an end of the vapor outlet to introduce the discharged vapors from the vapor outlet thereinto and having a chevron type member disposed in a moving path of the introduced vapors to block the mist contained in the vapors.

    [0027] The inner peripheral wall of the chamber may be tapered toward the concentrated liquid outlet formed on the bottom of the chamber to reduce a turning radius of the treatment liquid.

    [0028] The liquid-vapor separator may further include a vortex breaking member disposed on an area wherein the concentrated liquid outlet is formed on the bottom of the chamber so as to break the vortexes generated from the treatment liquid.

    [0029] The vortex breaking member may include at least two plate members crossing each other in such a manner as to be parallel to a discharge direction of the concentrated treatment liquid.

    [0030] Also provided is a forced circulation type evaporator, as defined in dependent claim 6.

    [0031] The forced circulation type evaporator may further include a suction pump connected to a rear end of the liquid-vapor separator and configured to provide power for discharging the concentrated treatment liquid from the liquid-vapor separator.

    [0032] The at least one partition wall may inclinedly protrude upwardly from the inner peripheral surface of the chamber at an angle of 90 to 180°.

    [0033] The inlet part includes a guide part disposed extendedly by a section along the inner peripheral surface of the chamber from a connected portion to the side surface of the chamber and configured to guide a rotation of the treatment liquid introduced through the inlet part.

    [0034] The guide part may be separate from the inlet part and protrudes from the inner peripheral surface of the chamber.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0035] The above and other objects, features and advantages of the exemplary embodiment will be apparent from the following detailed description of the exemplary embodiments of the disclosure in conjunction with the accompanying drawings, in which:

    FIGS.1a and 1b are schematic views showing two kinds of forced circulation type evaporators of the related art;

    FIG.2 is a schematic view showing a liquid-vapor separator in which an interior demister is mounted;

    FIGS. 3a and 3b are front and plan views showing the liquid-vapor separator, wherein an example of the coupling of an inlet part and a guide part to a chamber is shown;

    FIGS. 4a and 4b are front and plan views showing the liquid-vapor separator according to the exemplary embodiment, wherein another example of the coupling of an inlet part and a guide part to a chamber;

    FIG.5 is a sectional view taken along the line A-A' of FIG.2;

    FIG.6 is a schematic view showing a liquid-vapor separator in which an exterior demister is mounted; and

    FIG.7 is a schematic view showing a forced circulation type evaporator.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0036] Hereinafter, an explanation on a liquid-vapor separator and a forced circulation type evaporator having the liquid-vapor separator according to the exemplary embodiment will be in detail given with reference to the attached drawing. Before the description, the terms or terminology used in the description and claims of the exemplary embodiment are used to only describe specific exemplary embodiments and are not intended to restrict the exemplary embodiment.

    [0037] In the description, when it is said that one member is located "above" or "under" another member, it means that one member may come into contact with another member as well as yet another member may exist between the two members.

    [0038] In the description, when it is said that one portion is described as "includes" any component, one element further may include other components unless no specific description is suggested.

    [0039] Identification symbols on steps are used for the convenience of the description, and they do not mean the order of the steps. The steps may be differently carried out from the described order unless a specific order is described. That is, the steps may be carried out in the same order as described, carried out at the same time, or carried out in the opposite order to that described.

    [0040] In the description, a "front end" of a given member means all directions to which a given gas or fluid is introduced into the given member, and in the same manner as above, a "rear end" of a given member means all directions to which a given gas or fluid is discharged from the given member,

    [0041] The exemplary embodiment is disclosed with reference to the attached drawings wherein the corresponding parts in the exemplrary embodiments are indicated by corresponding reference numerals and the repeated explanation on the corresponding parts will be avoided. If it is determined that the detailed explanation on the well-known technology related to the inventive concept makes the scope of the present invention not clear, the explanation will be avoided for the brevity of the description.

    [0042] In the description of the components of the exemplary embodiment, further, terms, such as the first, the second, A, B, (a), (b) and so on may be used to describe various elements, but the elements should not be restricted by the terms. The terms are used to only distinguish one element from the other element. Accordingly, the inherence, sequence or order of the corresponding element is not restricted by the terms.

    [0043] When it is said that one element is described as being "connected" or "coupled" to another element, one element may be directly connected or coupled to another element, but it should be understood that yet another element may be "connected" or "coupled" between the two elements.

    [0044] In the description, when it is said that one element is located "above" another element, it should be understood that one element is located in such a manner as to pass through another element, and otherwise, another member is located in such a manner as to pass through one element.

    [0045] The present disclosure relates to a liquid-vapor separator that separates vapors from treatment liquid to discharge the separated vapors upwardly and discharge concentrated treatment liquid downwardly, and FIG.2 is a schematic view showing a liquid-vapor separator.

    [0046] A liquid-vapor separator 100 includes a chamber 110 having a vapor outlet 111 formed on the top thereof and a concentrated liquid outlet 112 formed on the bottom thereof, an inlet part 120 connected to the chamber 110 to introduce treatment liquid thereinto, and at least one or more partition walls 130 disposed in the chamber 110 to prevent the mist contained in the vapors produced in the depressurization and evaporation process of the treatment liquid from moving upwardly and introduced into next stage.

    [0047] Particularly, the liquid-vapor separator 100 is not a conventional type device using a spray nozzle, but a cyclone type device configured to have the inlet part 120 coupled to the side surface of the chamber 110 in a tangent line direction of the inner peripheral surface of the chamber 110, so that the treatment liquid forms vortexes along the inner peripheral surface of the chamber 110 by means of the inlet part 120.

    [0048] Accordingly, as shown in FIG.2, the treatment water rotates in the form of vortexes in the chamber 110, and depressurization and evaporation occur from the surfaces of the vortexes. Further, the efficiency of evaporation is enhanced by the increment of turbulent flow strength and flashing area, and hydrostatic pressure is lowered as it goes toward the center of the vortexes, thereby minimizing submersible loss. Also, round and uniform crystals are formed through the mixing effects generated by the turbulent flows in the form of vortexes, thereby improving the efficiency in the removal of solid substances on next stage, that is, in a dewatering process. Furthermore, a section in which the liquid stays does not exist in the chamber 110, thereby preventing the generation of caking.

    [0049] As shown in FIG.2, the liquid-vapor separator 100 includes the at least one or more partition walls 130 adapted to prevent the mist contained in the vapors produced in the chamber 110 from moving upwardly. In the vapor producing and raising process, large and small mist (droplets) may move upwardly together with the vapors, and in this case, relatively large mist is blocked by means of the partition walls 130 and falls down by means of gravity.

    [0050] The partition walls 130 are disposed in an internal space of the chamber 110 between the inlet part 120 and the vapor outlet 111 in such a manner as to protrude from the inner peripheral surface of the chamber 110. More particularly, as shown in FIG.2, the partition walls 130 inclinedly protrude upwardly from the inner peripheral surface of the chamber 110 at an angle of 90 to 180°, thereby more effectively blocking the upward movement of the mist and inducing downward movement of the blocked mist.

    [0051] On the other hand, relatively small mist may be not blocked by means of the partition walls 130 and thus move upwardly, and so as to avoid the problems, the liquid-vapor separator 100 further includes a demister. As shown in FIG.2, the liquid-vapor separator 100 has an interior demister 140a disposed therein. In more detail, the interior demister 140a is disposed on any one or more areas above or under the partition walls 130 in the chamber 110 and has a mesh type plate member adapted to block the mist contained in the vapors in the process wherein the generated vapors are discharged upwardly. Through the formation of the interior demister 140a, the mist not removed through the partition walls 130 is effectively filtered in the upward movement process of the vapors.

    [0052] As shown in FIG.6, the liquid-vapor separator 100 may include an exterior demister 140b. In more detail, the exterior demister 140b is disposed separately to the outside of the chamber 110 in such a manner as to be connected to the end of the vapor outlet 111 to introduce the discharged vapors from the vapor outlet 111 thereinto and has a chevron type member disposed in a moving path of the introduced vapors to block the mist contained in the vapor. If the exterior demister 140b is located at the outside of the chamber 11, the volume of the chamber 111 of the liquid-vapor separator 100 using relatively high quality and high cost materials can be reduced economically, and further, the contamination of the demister is minimized, thereby making it easy to perform maintenance like cleaning.

    [0053] The liquid-vapor separator 100 according to the exemplary embodiment includes a guide part 121 disposed within the chamber 110 to guide the rotation of the treatment liquid so that the vortexes in the chamber 110 are formed in uniform heights to provide sufficient evaporation efficiencies.

    [0054] If the treatment liquid is introduced from the inlet part 120 in the tangent line direction of the inner peripheral surface of the chamber 110 into the chamber 110, without having the guide part 121, the water surface on the opposite area to the area adjacent to the inlet part 120 becomes lower than that on the area adjacent to the inlet part 120 through the influence of gravity and the reduction of the pressure of the introduced treatment liquid, and accordingly, unbalancing on the water surfaces is caused to have a bad influence on the evaporation efficiency.

    [0055] So as to remove the above-mentioned problems, accordingly, the guide part 121 is disposed extendedly by a given section along the inner peripheral surface of the chamber 110 in the rotating direction of the treatment liquid from the connected portion between the inlet part 120 and the side surface of the chamber 110, so that the treatment liquid supplied from the inlet part 120 can maintain the introduced pressure to a given level, without having influence under gravity for the given section.

    [0056] As shown in FIGS.3a and 3b, the guide part 121 is a separate member protruding from the inner peripheral surface of the chamber 110. Referring to FIG.3b, the treatment liquid supplied from the inlet part 120 flows along the guide part 121 protruding by the given section from the inner peripheral surface of the chamber 110, thereby causing the entirely uniform vortexes therefrom.

    [0057] On the other hand according to the exemplary embodiment, as shown in FIGS.4a and 4b, the guide part 121 is formed by extending the pipe constituting the inlet part 120 by the given section. In more detail, the pipe of the inlet part 120 is passed through the chamber 110, extendedly inserted into the chamber 110, and fastened to the inner peripheral surface of the chamber 110 along the inner peripheral surface of the chamber 110. So as to allow the evaporation to be carried out even in the extendedly inserted area of the inlet part 120, at this time, the pipe of the inlet part 120, which is extendedly inserted into the chamber 110 to form the guide part 121, as shown in FIGS.4a and 4b, is open on a given area of the top portion thereof.

    [0058] As shown in FIG.2, the inner peripheral wall of the chamber 110 of the liquid-vapor separator 100 is desirably tapered toward the concentrated liquid outlet 112 formed on the bottom thereof to reduce the turning radius of the treatment liquid. Under the lower portion structure of the chamber 110 wherein the sectional area thereof is gradually reduced, at this time, when the treatment liquid reaches the concentrated liquid outlet 112, drastic vortexes are generated to cause cavitation thereon, which gives bad influence on a pump connected to the rear end of the chamber 110 to provide the power for discharging the concentrated treatment liquid from the chamber 110.

    [0059] So as to remove the above-mentioned problems, the liquid-vapor separator 100 further includes vortex breaking members 150 disposed on the area wherein the concentrated liquid outlet 112 is formed on the lower portion of the chamber 110 so as to break the vortexes generated from the treatment liquid. The vortex breaking members 150 are located on the path of the discharged treatment liquid and block the vortex flows of the treatment liquid, thereby breaking the vortexes formed therein. FIG.5 is a sectional view taken along the line A-A' of FIG.2, and as shown in FIG.5, the vortex breaking members 150 are at least two or more plate members crossing each other in such a manner as to be parallel to the discharge direction of the concentrated treatment liquid.

    [0060] On the other hand, the disclosure relates to a forced circulation type evaporator A that has the liquid-vapor separator 100 to evaporate and concentrate the treatment liquid. FIG.7 is a schematic view showing the forced circulation type evaporator A.

    [0061] The forced circulation type evaporator A includes a heat exchanger 200 adapted to heat the treatment liquid introduced thereinto by means of heat exchange and the liquid-vapor separator 100 adapted to separate the heated treatment liquid into vapors and concentrated treatment liquid and to discharge the vapors and the concentrated treatment liquid.

    [0062] Further, the forced circulation type evaporator A includes a suction pump 300 adapted to provide power for discharging the concentrated treatment liquid from the concentrated liquid outlet 112 formed on the rear end of the liquid-vapor separator 100, and the whole or a portion of the concentrated treatment liquid discharged through the suction pump 300 is recycled to the heat exchanger 200.

    [0063] As mentioned above, the liquid-vapor separator and the forced circulation type evaporator having the liquid-vapor separator according to the exemplary embodiment do not adopt the conventional spray nozzle injection system so that no foams are produced and the flashing area is provided over a given level, thereby enhancing the efficiency of evaporation, and further form the round and uniform crystals, thereby improving the efficiency in the removal of solid substances on next stage thereof.

    [0064] Additionally, the liquid-vapor separator and the forced circulation type evaporator having the liquid-vapor separator according to the exemplary embodiment can enhance the efficiencies of evaporation and separation through the increment of turbulent flow strength and flashing area, thereby overcoming a scale production problem and a reference strengthening problem of water discharge, which are recently issued on the interior of the forced circulation type evaporator.

    [0065] While exemplary embodiment have been described with reference to the particular illustrative embodiments, it is not to be restricted by the embodiments but only by the appended claims. It is to be appreciated that those skilled in the art can change or modify the embodiments without departing from the scope of the appended claims.


    Claims

    1. A cyclone type liquid-vapor separator for separating vapors from treatment liquid introduced thereinto, discharging the separated vapors to the upper portion thereof, and discharging concentrated treatment liquid to the lower portion thereof, the liquid-vapor separator (100) comprising:
    a chamber (110) comprising:

    an internal space wherein the treatment liquid introduced into the internal space is depressurized and evaporated;

    a vapor outlet (111) formed on a top of the chamber and through which vapors generated through the evaporation is discharged; and

    a concentrated liquid outlet formed on a bottom of the chamber and through which the concentrated treatment liquid is discharged;

    an inlet part (120) coupled to a side surface of the chamber (110) in a tangent line direction of an inner peripheral surface of the chamber (110), the treatment liquid introduced into the chamber is turned in the form of vortexes along the inner peripheral surface of the chamber (110); and

    at least one partition wall (130) disposed in an area between the inlet part 120 and the vapor outlet (111) of the internal space of the chamber (110) and protruding from the inner peripheral wall of the chamber to prevent mist contained in the vapors from moving upwardly;

    wherein the inlet part (120) comprises a guide part (121) disposed extendedly by a section along the inner peripheral surface of the chamber (110) from a connected portion to the side surface of the chamber (110) and configured to guide a rotation of the treatment liquid introduced through the inlet part;

    wherein the guide part (121) comprises a pipe passing through the inlet part (120), the pipe extendedly inserted into the chamber (110), and being fastened to the inner peripheral surface of the chamber (110) along the inner peripheral surface of the chamber (110);

    wherein the pipe of the inlet part (120), which is passed through the chamber (110) and extendedly inserted into the chamber (110), is open on a top portion of the pipe;

    characterized in that

    the guide part (121) extends along the inner peripheral surface of the chamber (110) at a constant level with respect to gravity.


     
    2. The liquid-vapor separator according to claim 1, wherein the at least one partition wall (130) inclinedly protrudes upwardly from the inner peripheral surface of the chamber 110 at an angle of 90 to 180°.
     
    3. The liquid-vapor separator according to claim 1, further comprising an interior demister (140a) disposed above or under the at least one partition wall (130) in the chamber 110 and having a mesh type plate member configured to block the mist contained in the vapors discharged upwardly.
     
    4. The liquid-vapor separator according to claim 1, further comprising an exterior demister (140b) disposed separately to an exterior of the chamber (110) in such a manner as to be connected to an end of the vapor outlet (111) to introduce the discharged vapors from the vapor outlet thereinto and having a chevron type member disposed in a moving path of the introduced vapors to block the mist contained in the vapors.
     
    5. The liquid-vapor separator according to claim 1, wherein the inner peripheral wall of the chamber (110) is tapered toward the concentrated liquid outlet (112) formed on the bottom of the chamber (110) to reduce a turning radius of the treatment liquid.
     
    6. A forced circulation type evaporator (A) for evaporating and concentrating treatment liquid, comprising:

    a heat exchanger (200) configured to heat the treatment liquid introduced into the heat exchanger by a heat medium introduced from an exterior of the heat exchanger; and

    a liquid-vapor separator (100) according to one of the claims 1 to 5 configured to separate vapors from the heated treatment liquid from the heat exchanger (200), configured to discharge the separated vapors to an upper portion of the liquid-vapor separator, and configured to discharge concentrated treatment liquid to a lower portion of the liquid-vapor separator.


     
    7. The forced circulation type evaporator according to claim 6, further comprising a suction pump (300) connected to a rear end of the liquid-vapor separator (100) and configured to provide power for discharging the concentrated treatment liquid from the liquid-vapor separator (100).
     


    Ansprüche

    1. Flüssigkeit-Dampf-Abscheider vom Zyklontyp zum Abscheiden von Dämpfen aus Behandlungsflüssigkeit, die darin eingeführt wird, Auslassen der abgeschiedenen Dämpfe zu dem oberen Abschnitt davon und Auslassen konzentrierter Behandlungsflüssigkeit zu dem unteren Abschnitt davon, wobei der Flüssigkeit-Dampf-Abscheider (100) Folgendes umfasst:
    eine Kammer (110), umfassend:

    einen Innenraum, wobei die in den Innenraum eingeführte Behandlungsflüssigkeit druckentlastet und verdampft wird;

    einen Dampfauslass (111), der an einer Decke der Kammer gebildet ist und durch den Dämpfe, die durch die Verdampfung erzeugt werden, ausgelassen werden; und

    einen Konzentriertflüssigkeit-Auslass, der an einem Boden der Kammer gebildet ist und durch den die konzentrierte Behandlungsflüssigkeit ausgelassen wird;

    ein Einlassteil (120), der mit einer Seitenfläche der Kammer (110) in einer Tangentenlinienrichtung einer inneren Umfangsfläche der Kammer (110) gekoppelt ist, wobei die in die Kammer eingeführte Behandlungsflüssigkeit in Form von Wirbeln entlang der inneren Umfangsfläche der Kammer (110) gedreht wird; und

    mindestens eine Trennwand (130), die in einem Bereich zwischen dem Einlassteil (120) und dem Dampfauslass (111) des Innenraums der Kammer (110) angeordnet ist und von der inneren Umfangswand der Kammer vorsteht, um zu verhindern, dass sich Nebel, der in den Dämpfen enthalten ist, nach oben bewegt;

    wobei der Einlassteil (120) einen Führungsteil (121) umfasst, der sich durch einen Abschnitt entlang der inneren Umfangsfläche der Kammer (110) von einem verbundenen Abschnitt zu der Seitenfläche der Kammer (110) erstreckend angeordnet und eingerichtet ist, um eine Drehung der durch den Einlassteil eingeführten Behandlungsflüssigkeit zu führen;

    wobei der Führungsteil (121) ein Rohr umfasst, das durch den Einlassteil (120) verläuft, wobei das Rohr sich in die Kammer (110) erstreckend eingesetzt ist und an der inneren Umfangsfläche der Kammer (110) entlang der inneren Umfangsfläche der Kammer (110) befestigt ist;

    wobei das Rohr des Einlassteils (120), das durch die Kammer (110) verläuft und sich in die Kammer (110) erstreckend eingesetzt ist, an einem oberen Abschnitt des Rohrs offen ist;

    dadurch gekennzeichnet, dass

    sich der Führungsteil (121) entlang der inneren Umfangsfläche der Kammer (110) mit einem konstanten Niveau in Bezug auf die Schwerkraft erstreckt.


     
    2. Flüssigkeit-Dampf-Abscheider nach Anspruch 1, wobei die mindestens eine Trennwand (130) von der inneren Umfangsfläche der Kammer (110 in einem Winkel von 90 bis 180°) nach oben geneigt vorsteht.
     
    3. Flüssigkeit-Dampf-Abscheider nach Anspruch 1, ferner umfassend einen Innentropfabscheider (140a), der über oder unter der mindestens einen Trennwand (130) in der Kammer (110) angeordnet ist und ein Plattenelement vom Netztyp aufweist, das eingerichtet ist, um den Nebel, der in den Dämpfen enthalten ist, der nach oben ausgelassen wird, zu blockieren.
     
    4. Flüssigkeit-Dampf-Abscheider nach Anspruch 1, ferner umfassend einen Außentropfabscheider (140b), der getrennt zu einem Äußeren der Kammer (110) in einer derartigen Weise angeordnet ist, dass er mit einem Ende des Dampfauslasses (111) verbunden ist, um die aus dem Dampfauslass ausgelassenen Dämpfe darin einzuführen, und ein Element vom Chevrontyp aufweist, das in einem Bewegungspfad der eingeführten Dämpfe angeordnet ist, um den in den Dämpfen enthaltenen Nebel zu blockieren.
     
    5. Flüssigkeit-Dampf-Abscheider nach Anspruch 1, wobei die innere Umfangswand der Kammer (110) hin zu dem Konzentriertflüssigkeit-Auslass (112), der an dem Boden der Kammer (110) gebildet ist, verjüngt ist, um einen Wenderadius der Behandlungsflüssigkeit zu reduzieren.
     
    6. Verdampfer vom Zwangszirkulationstyp (A) zum Verdampfen und Konzentrieren von Behandlungsflüssigkeit, umfassend:

    einen Wärmetauscher (200), der eingerichtet ist, um die in den Wärmetauscher eingeführte Behandlungsflüssigkeit durch ein Wärmemedium von außerhalb des Wärmetauschers zu erwärmen; und

    einen Flüssigkeit-Dampf-Abscheider (100) nach einem der Ansprüche 1 bis 5, der eingerichtet ist, um Dämpfe aus der erwärmten Behandlungsflüssigkeit aus dem Wärmetauscher (200) abzuscheiden, der eingerichtet ist, um die abgeschiedenen Dämpfe zu einem oberen Abschnitt des Flüssigkeit-Dampf-Abscheiders auszulassen, und der eingerichtet ist, um eine konzentrierte Behandlungsflüssigkeit zu einem unteren Abschnitt des Flüssigkeit-Dampf-Abscheiders auszulassen.


     
    7. Verdampfer vom Zwangszirkulationstyp nach Anspruch 6, ferner umfassend eine Saugpumpe (300), die mit einem hinteren Ende des Flüssigkeit-Dampf-Abscheiders (100) verbunden und eingerichtet ist, um Energie zum Auslassen der konzentrierten Behandlungsflüssigkeit aus dem Flüssigkeit-Dampf-Abscheider (100) bereitzustellen.
     


    Revendications

    1. Séparateur liquide-vapeur du type à cyclone, permettant de séparer des vapeurs d'un liquide de traitement introduit dans celui-ci, d'évacuer les vapeurs séparées vers sa partie supérieure, et d'évacuer le liquide concentré de traitement vers sa partie inférieure, le séparateur liquide-vapeur (100) comprenant :
    une chambre (110) comprenant :

    un espace interne dans lequel le liquide de traitement introduit dans l'espace interne est décomprimé et évaporé ;

    une sortie de vapeurs (111) formée sur un sommet de la chambre et à travers laquelle sont évacuées les vapeurs engendrées par l'évaporation ; et

    une sortie de liquide concentré, formée sur un fond de la chambre et à travers laquelle est évacué le liquide concentré de traitement ;

    une partie d'entrée (120) raccordée à une surface latérale de la chambre (110) dans une direction de droite tangente d'une surface périphérique intérieure de la chambre (110), le liquide de traitement introduit dans la chambre est mis en rotation sous la forme de tourbillons le long de la surface périphérique intérieure de la chambre (110) ; et

    au moins une paroi de séparation (130) disposée dans une zone comprise entre la partie d'entrée (120) et la sortie de vapeurs (111) de l'espace interne de la chambre (110) et faisant saillie depuis la paroi périphérique intérieure de la chambre pour empêcher le brouillard contenu dans les vapeurs de se déplacer vers le haut ;

    dans lequel la partie d'entrée (120) comprend une partie de guidage (121) disposée de manière à se prolonger en une section le long de la surface périphérique intérieure de la chambre (110) depuis une partie reliée à la surface latérale de la chambre (110) et conçue pour guider une rotation du liquide de traitement introduit à travers la partie d'entrée ;

    dans lequel la partie de guidage (121) comprend un tuyau passant à travers la partie d'entrée (120), le tuyau étant inséré de manière à se prolonger dans la chambre (110) et étant fixé à la surface périphérique intérieure de la chambre (110) le long de la surface périphérique intérieure de la chambre (110) ;

    dans lequel le tuyau de la partie d'entrée (120) qui passe à travers la chambre (110) et qui est inséré de manière à se prolonger dans la chambre (110) est ouvert en une partie supérieure du tuyau ;

    caractérisé en ce que :
    la partie de guidage (121) s'étend le long de la surface périphérique intérieure de la chambre (110) à un niveau constant par rapport à la gravité.


     
    2. Séparateur liquide-vapeur selon la revendication 1, dans lequel l'au moins une paroi de séparation (130) fait saillie obliquement vers le haut, depuis la surface périphérique intérieure de la chambre (110) à un angle de 90 à 180°.
     
    3. Séparateur liquide-vapeur selon la revendication 1, comprenant en outre un dévésiculeur intérieur (140a) disposé au-dessus ou au-dessus de l'au moins une paroi de séparation (130) dans la chambre (110) et comportant un élément formant plaque de type à treillis conçu pour bloquer le brouillard contenu dans les vapeurs évacuées vers le haut.
     
    4. Séparateur liquide-vapeur selon la revendication 1, comprenant en outre un dévésiculeur extérieur (140b) disposé séparément, à l'extérieur de la chambre (110) de manière à être relié à une extrémité de la sortie de vapeurs (111), pour que soient introduites dans celui-ci les vapeurs évacuées par la sortie de vapeurs, et comportant un élément du type à chevrons disposé sur un trajet de déplacement des vapeurs introduites pour bloquer le brouillard contenu dans les vapeurs.
     
    5. Séparateur liquide-vapeur selon la revendication 1, dans lequel la paroi périphérique intérieure de la chambre (110) est de forme conique vers la sortie de liquide concentré (112) formée sur le fond de la chambre (110), pour réduire un rayon de rotation du liquide de traitement.
     
    6. Évaporateur du type à circulation forcée (A) permettant d'évaporer et de concentrer un liquide de traitement, comprenant :

    un échangeur de chaleur (200) conçu pour chauffer le liquide de traitement introduit dans l'échangeur de chaleur au moyen d'un fluide chauffant introduit depuis l'extérieur de l'échangeur de chaleur ; et

    un séparateur liquide-vapeur (100) selon l'une des revendications 1 à 5, conçu pour séparer des vapeurs du liquide de traitement chauffé provenant de l'échangeur de chaleur (200), conçu pour évacuer les vapeurs séparées vers une partie supérieure du séparateur liquide-vapeur, et conçu pour évacuer le liquide concentré de traitement vers une partie inférieure du séparateur liquide-vapeur.


     
    7. Évaporateur du type à circulation forcée selon la revendication 6, comprenant en outre une pompe aspirante (300) raccordée à une extrémité arrière du séparateur liquide-vapeur (100) et conçue pour fournir de l'énergie afin d'évacuer le liquide concentré de traitement depuis le séparateur liquide-vapeur (100).
     




    Drawing
























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description