(19)
(11)EP 3 153 375 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.09.2018 Bulletin 2018/38

(21)Application number: 16192381.8

(22)Date of filing:  05.10.2016
(51)Int. Cl.: 
B60W 40/12  (2012.01)
G01G 19/08  (2006.01)

(54)

ROBUST TIRE FORCES ESTIMATION SYSTEM

ROBUSTES REIFENKRÄFTESCHÄTZUNGSSYSTEM

SYSTÈME D'ESTIMATION DE ROBUSTESSE DE PNEUMATIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.10.2015 US 201514879457

(43)Date of publication of application:
12.04.2017 Bulletin 2017/15

(73)Proprietor: The Goodyear Tire & Rubber Company
Akron, Ohio 44316 (US)

(72)Inventor:
  • SINGH, Kanwar Bharat
    7363 Lorentzweiler (LU)

(74)Representative: Kutsch, Bernd 
Goodyear S.A. Patent Department Avenue Gordon Smith
7750 Colmar-Berg
7750 Colmar-Berg (LU)


(56)References cited: : 
EP-A1- 2 957 440
US-B1- 6 549 842
US-A1- 2015 057 877
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The invention relates generally to tire monitoring systems for collecting measured tire parameter data during vehicle operation and, more particularly, to a system and method for estimating tire forces based upon tire sensor-based measurements in combination with vehicle-based sensor-measured data.

    Background of the Invention



    [0002] An accurate and robust estimation of tire normal, lateral and longitudinal forces is important for certain vehicle safety, control, and operating systems. Achievement of a system for making reliable estimations of tire forces, however, has proven to be problematic. In particular, achievement of a robust system and method for estimating tire forces based upon indirect tire and vehicle sensor measurements over the lifetime of a tire tread has eluded the industry.

    [0003] It is accordingly desirable to achieve such a robust system that accurately and reliably measures tire forces in vehicle-supporting tires in real time during vehicle operation.

    [0004] EP-A-2 957 440, which has been published only after the priority date of the application, describes a tire state estimation system in accordance with the preamble of claim 1.

    [0005] US-A-2015/0057877 describes a tire wear state estimation system utilizing cornering stiffness.

    [0006] US-A-6,549,842 describes a method and apparatus for determining an individual wheel surface coefficient of adhesion.

    Summary of the Invention



    [0007] The invention relates to a system in accordance with claim 1.

    [0008] Dependent claims refer to preferred embodiments of the invention.

    [0009] According to a preferred aspect of the invention, a tire state estimation system is provided for estimating normal force, lateral force, and longitudinal force on a tire mounted to a wheel and supporting a vehicle. The vehicle has a CAN-bus for delivering vehicle sensor-measured input sensor data from a multiple CAN-bus accessible vehicle-mounted sensors including acceleration and angular velocities, steering wheel angle measurement, angular wheel speed of the wheel, roll rate, pitch rate and yaw rate. The system employs a normal force estimator operable to estimate a normal force on the tire from a summation of longitudinal load transfer, lateral load transfer and static normal force using as inputs lateral acceleration, longitudinal acceleration and roll angle derived from the input sensor data; a lateral force estimator operable to estimate a lateral force on the tire from a planar vehicle model using as inputs measured lateral acceleration, longitudinal acceleration, and yaw rate derived from the input sensor data; and a longitudinal force estimator operable to estimate a longitudinal force on the tire from a wheel rotational dynamics model using as inputs wheel angular speed and drive/brake torque derived from the input sensor data.

    [0010] According to a further preferred aspect of the invention, the system employs a roll and pitch angle estimator, an acceleration bias compensation estimator, a center of gravity estimator, a tire rolling radius estimator, a mass estimator operable to generate a vehicle mass estimation from the tire longitudinal force estimation and a road grade angle input, a center of gravity longitudinal position estimator and a yaw inertia adaptation model operable to generate a yaw inertia output from the vehicle mass estimation.

    [0011] In yet another further preferred aspect of the invention, the input sensor data excludes data from a global positioning system and data from a vehicle suspension sensor.

    Definitions



    [0012] "ANN" or "Artificial Neural Network" is an adaptive tool for non-linear statistical data modeling that changes its structure based on external or internal information that flows through a network during a learning phase. ANN neural networks are non-linear statistical data modeling tools used to model complex relationships between inputs and outputs or to find patterns in data.

    [0013] "Axial" and "axially" means lines or directions that are parallel to the axis of rotation of the tire.

    [0014] "CAN bus" is an abbreviation for controller area network.

    [0015] "Circumferential" means lines or directions extending along the perimeter of the surface of the annular tread perpendicular to the axial direction.

    [0016] "Equatorial centerplane (CP)" means the plane perpendicular to the tire's axis of rotation and passing through the center of the tread.

    [0017] "Footprint" means the contact patch or area of contact created by the tire tread with a flat surface as the tire rotates or rolls.

    [0018] "Inboard side" means the side of the tire nearest the vehicle when the tire is mounted on a wheel and the wheel is mounted on the vehicle.

    [0019] "Kalman filter" is a set of mathematical equations that implement a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance when some presumed conditions are met.

    [0020] "Lateral" means an axial direction.

    [0021] "Luenberger observer" is a state observer or estimation model. A "state observer" is a system that provide an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.

    [0022] "MSE" is an abbreviation for mean square error, the error between and a measured signal and an estimated signal which the Kalman filter minimizes.

    [0023] "Net contact area" means the total area of ground contacting tread elements between the lateral edges around the entire circumference of the tread divided by the gross area of the entire tread between the lateral edges.

    [0024] "Sensor" means a device mounted to a vehicle or to a tire for the purpose of measuring a specific vehicle or tire parameter and communicating the parameter measurement either wirelessly or via a vehicle CAN-bus for application. "PSD" is power spectral density (a technical name synonymous with FFT (fast fourier transform).

    [0025] "Radial" and "radially" means directions radially toward or away from the axis of rotation of the tire.

    Brief Description of the Drawings



    [0026] The invention will be described by way of example and with reference to the accompanying drawings in which:

    FIG. 1 is a wheel rotational dynamics model and longitudinal force estimation made therefrom.

    FIG. 2 is a planar vehicle model and the lateral force estimation made therefrom.

    FIG. 3A is a vertical force estimation model.

    FIG. 3B is a vehicle representation used in making a vertical force estimation from the model of FIG. 3A.

    FIG. 3C is a vertical force estimation method using designated algorithms.

    FIG. 4 is a table of vehicle inertial parameters used in estimation of longitudinal, lateral, and vertical forces.

    FIG. 5A is a summary flow diagram for the robust estimation of tire forces with vehicle model parameter adaptation.

    FIG. 5B is a flow diagram showing parameter estimation blocks outlined.

    FIG. 6A is a graph showing rolling radius sensitivity to tire load.

    FIG. 6B is a graph showing rolling radius sensitivity to tire inflation pressure.

    FIG. 7A is a graph showing rolling radius sensitivity to speed.

    FIG. 7B is a graph showing rolling radius sensitivity to tire wear condition.

    FIG. 8 is a schematic on the method of updating tire rolling radius based upon vehicle speed.

    FIG. 9A is a graph showing vehicle speed estimation based on correlation analysis of time dependent signals to show algorithm validation.

    FIG. 9B is a graph showing cross-correlation coefficient over time in estimating vehicle speed in comparison with actual vehicle speed.

    FIG. 10A is a graph showing experimental validation via track testing of force estimations, comparing estimated with measured Fx for a front left tire.

    FIG 10B is a graph similar to FIG. 10A but for the front right tire.

    FIG. 10C is a graph similar to FIG. 10A but for the rear left tire.

    FIG. 10D is a graph similar to FIG. 10A but for the rear left tire.

    FIGS. 11A and 11B are graphs showing experimental validation via track testing of force estimation Fy comparing estimated with measured Fy for front and rear tires respectively.

    FIG. 12 is a graph showing experimental validation via track testing of tire load estimation Fz for a front left tire and comparing measured with estimated load values.


    Detailed Description of Example Embodiments of the Invention



    [0027] Referring initially to FIG. 4, a summary of the subject robust tire force estimation system and method is shown by the table 10 presented. A tire 12 creates a contact patch 14 on a ground surface as it rotates. Tire forces Fx (longitudinal), Fz (vertical) and Fy (lateral) are created within the tire and identification of such forces are used to determine vehicle performance parameters. As seen in table 10, the goal of the subject system and method is to estimate the listed vehicle inertial parameters (column 16) using standard vehicle sensors such as accelerometers and a gyroscope, i. e. signals available on major vehicle controller area networks (CAN-bus). The subject system force estimate is preferably made without using global positioning system (GPS) or suspension. The forces Fx, Fy, Fz are estimated using the model identified for each in column 18 as will be explained below. While a number of alternative approaches for estimating such forces have been proposed, they unanimously use fixed vehicle parameters such as inertial parameters to estimate the tire forces. However, depending on how the vehicle is loaded, inertial parameters of the vehicle, including mass, moments of inertia, and spatial components for location of center of mass, can have different magnitudes. The subject system and method is more robust in avoiding the use of load-dependent inertial parameters.

    [0028] With reference to FIG. 1, the longitudinal force estimation approach of the subject system is represented. From the wheel rotation dynamics model 20, the equations shown are generated. Model inputs for the model 20 are shown in table 22 to include wheel angular speed and drive/brake torque. The model parameter is rolling radius and the model output yields individual tire longitudinal force (Fx).

    [0029] FIG. 2 shows the scheme for estimation of lateral force (Fy). A planar vehicle model 24 is used in the estimation, generating the dynamic equations shown. In table 26, the model inputs of lateral acceleration, longitudinal acceleration and yaw rate are used to determine the model parameters of mass, longitudinal center of gravity (CoG) and yaw moment of inertial. The model outputs front and rear axle lateral force (Fy). For the equations shown, Fxi is the longitudinal force of each wheel, Fyi is the lateral force of each wheel (where fl, fr, rl and rr represent the front left, front right, rear left, and rear right wheel, respectively, hereinafter inclusive) and Fyf and Fyr are the lateral forces of the front and rear axle, respectively. δ is the steering angle of the front wheels, m is the mass of the vehicle, ax and ay are the longitudinal and lateral accelerations of the vehicle, respectively, γ is the yaw rate of the vehicle, Iz is the moment of inertia of the vehicle, If and Ir are the distances from the center of mass of the vehicle to the front axle and rear axle, respectively, and 2t is the wheel base. Inputs, parameters and outputs for the model are as indicated in table 26.

    [0030] Referring to FIGS. 3A through 3C, the vertical force estimation used in the subject system and method are described. The vertical tire forces can be estimated by the summation of longitudinal load transfer, lateral load transfer and static normal force. FIG. 3A represents a vehicle lateral dynamics model showing the vehicle CoG and identifying model parameters. FIG. 3B shows a vehicle longitudinal dynamics model and CoG for the vehicle. In FIG. 3C, equations are identified from which to calculate an estimation of longitudinal load transfer, lateral load transfer and static normal force. The table 32 identifies the model inputs, model parameters and model output of individual tire vertical force (Fz).

    [0031] A diagram of the robust estimation of tire forces with vehicle model parameter adaptation is seen in FIG. 5A. Information from CAN-bus sensors is shown in broken line arrows while the internal state estimates are shown in solid line arrow. A 6D IM U 34 provides acceleration and angular velocities from the CAN-bus. Steering input 36 and wheel speed 38 are likewise provided by means of the vehicle CAN-bus.

    [0032] Acceleration measurements, roll rate, pitch rate and yaw rate are provided from a 6D IM U unit 34 mounted to the vehicle and available by CAN-bus with steering input 36 and wheel speed 38. A kinematics based roll and pitch angle estimator 40 receives the acceleration, roll rate, pitch rate and yaw rate and provides an estimation of roll and pitch angles to a RLS CoG height estimation model (1 DOF roll model) 48 to yield a height estimation hcg. The acceleration data ax and ay are used in an acceleration bias compensation adjustment 46 to yield compensated acceleration measurement axc and ayc. The compensated acceleration measurements axc and ayc with height estimation hcg are inputs to a tire dynamic load estimator 54 with CoG longitudinal position estimation a, b from estimator 52 and mass estimation m from estimator 50. The tire dynamic load estimator 54 outputs a load estimation normal force (Fz) 60.

    [0033] Wheel speed, engine torque and braking torque available from the CAN-bus as inputs to a tire longitudinal force estimator (SMC) 42 with tire rolling radius estimation 44 to yield longitudinal force estimations Fxfl, Fxfr, Fxrl and Fxrr 64. The longitudinal force estimations are inputs with road grade θ and longitudinal acceleration ax to a longitudinal dynamics mass estimation model 50. An estimation of mass m is generated by the model 50. Mass m is used in a yaw inertia adaptation model 56 that uses regression equations to approximate moments of inertia Iz.

    [0034] The load estimation Fz from the tire dynamic load estimator 54, the compensated acceleration data axc and ayc, the yaw inertial adaptation Iz, mass "m" and CoG position estimation a, b are inputs to an axle force estimator configured as a 3 DOF Planar (SMC) model 58. Lateral force (Fy) 62 is an estimation output from the axle force estimator 58.

    [0035] The model equations used in creating the normal force (Fz) 60, the lateral force (Fy) 62, and the longitudinal force (Fx) 64 estimations from the system and method of FIG. 5A are as described previously.

    [0036] In FIG. 5B, the parameter estimation blocks are outlined in broken line as indicated. The parameters estimated are tire rolling radius 44, mass 50, CoG longitudinal position 52, yaw inertia adaptation 56 and CoG height 48. The derivation of tire rolling radius 44 is explained below. Vehicle sprung mass and longitudinal CoG position are derived as set forth in US-B-8,886,395 and US-A-2014/0278040, which are incorporated herein by reference in their entireties. The yaw inertia adaptation 56 is estimated using regression equations that approximate moments of inertia. Such equations are set forth and discussed in the paper authored by Allen R. Wade, et al. entitled "Estimation of Passenger Vehicle Inertial Properties and Their Effect on Stability and Handling" No. 2003-01-966. SAE Technical Paper, 2003, which paper being incorporated herein in its entirety. The CoG height estimation 48 is set forth in US-A-2014/0114558, incorporated herein in its entirety by reference.

    [0037] It will be seen from FIGS. 5A and 5B that the subject estimates of longitudinal force, lateral force and vertical force are "robust" in the sense that the estimates of vehicle inertial parameters use standard vehicle sensors such as accelerometers and a gyroscope, signals available on major vehicle controller area networks. Global positioning system (GPS) or suspension displacement sensors are not used. Hence, the subject system and method for making its force estimates are GPS independent and suspension displacement measurement independent and consequently are referred to as "robust".

    [0038] The methodology for estimation of rolling radius 44 will be understood from the experimentally derived sensitivity graph 66 of FIG. 6A (load), graph 68 of FIG. 6B (pressure), graph 70 of FIG. 7A (speed), graph 72 of FIG. 7B (wear). The sensitivity of rolling radius to load is the slope of the line of FIG. 6A or 0.9 mm/300 pounds. The sensitivity of rolling radius to tire pressure in FIG. 6B is seen as 0.45 mm/4 psi (1 psi = 6895 Pa). The sensitivity of rolling radius to speed is seen in FIG. 7A as 1.8 mm/40 kph. The sensitivity to tire wear is seen in FIG. 7B as 0.22677 mm/3 mm. Tire rolling radius is thus shown to be a function of load, pressure, speed and tire wear state with increasing load and decreasing tread depth acting to decrease rolling radius and increasing pressure and increasing speed acting to increase rolling radius.

    [0039] The rolling radius can therefore be updated as seen in FIG. 8 by vehicle speed estimation based on correlation analysis of time dependent signals 74. Wheel speed in the equation shown is obtained from the CAN-bus of the vehicle as seen at 76 while rolling radius (static) r is recursively estimated under constant speed conditions using a recursive least squares algorithm as seen at block 78. Vehicle speed estimation is shown schematically in FIGS. 9A and 9B and is based on correlation analysis of time dependent signals. The graph 80 graphs spindle acceleration for both front and rear wheels as a first step. In FIG. 9B, cross-correlation coefficient against lag [sec] is graphed at 82. The peak in the graph 82 of FIG. 9B indicates that disturbances in signals are most similar at these time delay values. For example, from the raw signal of FIG. 9A the cross-correlation coefficient graph 82 is generated.

    [0040] The algorithm speed [mph] = (wheel base [m]/lag time [sec]) is used in estimating speed. FIG. 9B indicates a lag time of 0.1609 seconds, from which an estimated speed of 39.95 mph (1 mph = 1.609344 km/h) is determined through application of the algorithm. The actual vehicle speed of 40 mph (64.4 km/h) compares favorably with estimated, whereby validating use of the algorithm above. It will be noted that this method is only applicable when the vehicle is driving with constant velocity. A varying vehicle velocity would result in a smearing of the peak in FIG. 9B in the cross correlation function since the peak shifts with increasing velocity to the left and decreasing velocity to the right. Once the speed estimation is made, it may be used to update the rolling radius estimation pursuant to use of the algorithm of FIG. 8.

    [0041] The force estimation made pursuant to the methodology of FIGS. 5A, 5B may be validating via track testing using the following vehicle parameters:

    m = 1722; % kg

    ms = 1498; % kg

    mu = m-ms; % kg

    a = 1.33; % m

    b = 1.33; % m

    t = 1.619; % m

    hcg = 0.545; CG height from ground % m

    hr = 0.13; % roll center height from ground % m

    ha = 0.1; % unsprung mass height from ground % m

    Croll = 1000; % roll damping N-sec/m

    kroll = 1300 % roll stiffness Nm/deg.



    [0042] Measured force hub readings are compared to estimated with the results shown in FIGS. 10A through 10D in experimental validation of Fx. FIG. 10A in graph 84 shows Fx for the front left tire, graph 86 of FIG. 10B for the front right, graph 88 of FIG. 10C for the rear left and graph 90 of FIG. 10D for the rear right. Measured vs. estimated shows good correlation.

    [0043] Validation of Fy estimations using the subject system and method are shown in FIGS. 11A graph 92 and FIG. 11B graph 94 for the front and rear axles, respectively. Validation of Fz (tire load estimate) is seen in graph 96 of FIG. 12. Again, good correlation is seen between measured and estimated force values, indicating validation of the subject system and method.

    [0044] From the foregoing, it will be appreciated that the subject system estimates tire state forces in a robust, accurate and flexible manner through use of CAN-bus accessible sensor data. From the schematics of FIGS. 5A, 5B, and the pending US patent applications incorporated by reference herein and US-B-8, 886, 395 likewise incorporated by reference herein, the subject system estimates normal force, lateral force and longitudinal force on a tire by accessing a vehicle CAN-bus for vehicle sensor-measured information. Vehicles are equipped with a multiple CAN-bus accessible, vehicle mounted sensors providing by the CAN-bus input sensor data. Such input sensor data includes acceleration and angular velocities, steering wheel angle measurement, angular wheel speed of the wheel, roll rate, pitch rate and yaw rate. The estimation system disclosed deploys a normal force estimator to estimate a normal force on the tire from a summation of longitudinal load transfer, lateral load transfer and static normal force using as inputs lateral acceleration, longitudinal acceleration, and roll angle derived from the input sensor data. The system further deploys a lateral force estimator to estimate a lateral force on the tire from a planar vehicle model using as inputs measured lateral acceleration, longitudinal acceleration and yaw rate derived from the input sensor data. The system further deploys a longitudinal force estimator operable to estimate a longitudinal force on the tire from a wheel rotational dynamics model using as inputs wheel angular speed and drive/brake torque derived from the input sensor data.

    [0045] The schematics of FIGS. 5A and 5B show use by the system of a roll and pitch angle estimator to generate a roll angle estimation and a pitch angle estimation from the input sensor data; an acceleration bias compensation estimator to generate bias-compensated acceleration data from the roll estimation, the pitch estimation, and the input sensor data; a center of gravity estimator to generate a center of gravity height estimation from the roll angle estimation, the pitch angle estimation, and the input sensor data; a tire rolling radius estimator to generate a tire rolling radius estimation from the input sensor data; a mass estimator to generate a vehicle mass estimation from the tire longitudinal force estimation and a road grade angle input; a center of gravity longitudinal position estimator to generate a vehicle longitudinal center of gravity estimation; and a yaw inertia adaptation model to generate a yaw inertia output from the vehicle mass estimation.

    [0046] Finally, it will be noted that the subject system configures the CAN-bus input sensor data to exclude data from a global positioning system and data from a suspension displacement sensor. Avoidance of the use of GPS and suspension displacement sensor data makes the inputs to the identified estimators more predictable, accurate, and less susceptible to erroneous sensor readings. As a result, the subject method is considered "robust" and capable of estimation of tire forces in real time on a consistently accurate basis. Such force estimations may then be advantageously applied to various vehicle operating systems such as suspension and braking systems for improve vehicle operability and control.


    Claims

    1. A tire state estimation system for estimating normal force, lateral force, and longitudinal force on a tire mounted to a wheel and supporting a vehicle, the system comprising:

    a vehicle having a CAN-bus for delivering vehicle sensor-measured information and a plurality of CAN-bus accessible vehicle-mounted sensors;

    a normal force estimator operable to estimate a normal force on the tire mounted to the vehicle from a summation of longitudinal load transfer, lateral load transfer and static normal force using as inputs lateral acceleration, longitudinal acceleration and roll angle derived from the input sensor data;

    a lateral force estimator operable to estimate a lateral force on the tire from a planar vehicle model using as inputs measured lateral acceleration, longitudinal acceleration and yaw rate derived from the input sensor data; and

    a longitudinal force estimator operable to estimate a longitudinal force on the tire from a wheel rotational dynamics model using as inputs wheel angular speed and drive/brake torque derived from input sensor data; characterized in that

    the longitudinal force estimator is operable to generate the tire longitudinal force estimation from a tire rolling radius estimation, an engine torque input, and a braking torque input.


     
    2. The tire state estimation system of claim 1, wherein the plurality of CAN-bus accessible vehicle-mounted sensors are configured to provide the input sensor data, the input sensor data comprising: at least one acceleration and an angular velocity or acceleration and angular velocities, a steering wheel angle measurement, an angular wheel speed of the wheel, a roll rate, a pitch rate and a yaw rate.
     
    3. The tire state estimation system of claim 1 or 2, further comprising one, two or all of the following elements:

    a roll and pitch angle estimator operable to generate a roll angle estimation and a pitch angle estimation from the input sensor data;

    an acceleration bias compensation estimator operable to generate bias-compensated acceleration data from the roll estimation, the pitch estimation and the input sensor data; and

    a center of gravity estimator operable to generate a center of gravity height estimation from the roll angle estimation, the pitch angle estimation and the input sensor data.


     
    4. The tire state estimation system of claim 1, 2 or 3, further comprising a tire rolling radius estimator operable to generate a tire rolling radius estimation from the input sensor data; and/or a mass estimator operable to generate a vehicle mass estimation from the tire longitudinal force estimation and a road grade angle input.
     
    5. The tire state estimation system of claim 1, 2, 3 or 4, further comprising a center of gravity longitudinal position estimator operable to generate a vehicle longitudinal center of gravity estimation; and/or a yaw inertia adaptation model operable to generate a yaw inertia output from the vehicle mass estimation.
     
    6. The tire state estimation system of at least one of the previous claims, wherein the normal force estimator is operable to generate the normal force on the tire estimation from the center of gravity height estimation, the center of gravity longitudinal position estimation and the vehicle mass estimation.
     
    7. The tire state estimation system of at least one of the previous claims, wherein the lateral force estimator is operable to generate the lateral force on the tire from the input sensor data including a measured lateral acceleration, a measured longitudinal acceleration and the yaw rate.
     
    8. The tire state estimation system of claim 7, further comprising:

    a yaw inertia adaptation model operable to generate a yaw inertia output from the vehicle mass estimation; and

    an axle force estimator operable to generate a lateral force estimation from the vehicle mass estimation, the yaw inertia output, the tire dynamic load estimation, the center of gravity longitudinal position estimation, the bias-compensated acceleration data, a steering wheel angle input, a yaw rate input and the tire dynamic load estimation.


     
    9. The tire state estimation system of at least one of the previous claims, further comprising a six degree inertial measuring unit mounted to the vehicle for generating the acceleration and angular velocities, the pitch rate, the yaw rate and the roll rate.
     
    10. The tire state estimation system of at least one of the previous claims, wherein the roll and pitch angle estimator is based upon a kinematics model of the vehicle.
     
    11. The tire state estimation system of at least one of the previous claims, wherein the center of gravity estimator is based upon a one degree of freedom roll model employing a recursive least squares algorithm.
     
    12. The tire state estimation system of at least one of the previous claims, wherein the tire longitudinal force estimator is based upon an application of a wheel dynamics model using as model inputs the wheel angular speed and a measured drive and brake torque.
     


    Ansprüche

    1. Reifenzustandsschätzsystem zum Schätzen von Normalkraft, Seitenkraft und Längskraft an einem Reifen, der auf einem Rad montiert ist und ein Fahrzeug trägt, wobei das System umfasst:

    ein Fahrzeug, das einen CAN-Bus zur Abgabe von Fahrzeugsensor-gemessener Information und eine Vielzahl von CAN-Bus-zugänglichen fahrzeugmontierten Sensoren aufweist;

    einen Normalkraftschätzer, der betreibbar ist, um eine Normalkraft an dem fahrzeugmontierten Reifen aus einer Summierung von Längslastübertragung, Seitenlastübertragung und statischer Normalkraft zu schätzen, wobei als Eingaben Seitenbeschleunigung, Längsbeschleunigung und Rollwinkel, abgeleitet von den Eingabesensordaten, genutzt werden;

    einen Seitenkraftschätzer, der betreibbar ist, um eine Seitenkraft auf dem Reifen aus einem planaren Fahrzeugmodell zu schätzen, wobei als Eingaben gemessene Seitenbeschleunigung, Längsbeschleunigung und Giergeschwindigkeit, abgeleitet von den Eingabesensordaten, genutzt werden; und

    einen Längskraftschätzer, der betreibbar ist, um eine Längskraft auf dem Reifen aus einem Radrotationsdynamikmodell zu schätzen, wobei als Eingaben Radwinkelgeschwindigkeit und Antriebs-/Bremsmoment, abgeleitet von Eingabesensordaten, genutzt werden; dadurch gekennzeichnet, dass

    der Längskraftschätzer betreibbar ist, um die Reifenlängskraftschätzung aus einer Reifenrollradiusschätzung, einer Motordrehmomenteingabe und einer Bremsmomenteingabe zu generieren.


     
    2. Reifenzustandsschätzsystem nach Anspruch 1, wobei die Vielzahl von CAN-Bus-zugänglichen fahrzeugmontierten Sensoren dafür ausgelegt ist, die Eingabesensordaten bereitzustellen, wobei die Eingabesensordaten umfassen: mindestens eine Beschleunigung und eine Winkelgeschwindigkeit oder Beschleunigung und Winkelgeschwindigkeiten, eine Lenkradwinkelmessung, eine Winkelradgeschwindigkeit des Rades, eine Rollgeschwindigkeit, eine Nickgeschwindigkeit und eine Giergeschwindigkeit.
     
    3. Reifenzustandsschätzsystem nach Anspruch 1 oder 2, weiter eines, zwei oder alle der folgenden Elemente umfassend:

    einen Roll- und Nickwinkelschätzer, der betreibbar ist, um eine Rollwinkelschätzung und eine Nickwinkelschätzung aus den Eingabesensordaten zu generieren;

    einen Beschleunigungsvorspannungskompensationsschätzer, der betreibbar ist, um vorspannungskompensierte Beschleunigungsdaten aus der Rollschätzung, der Nickschätzung und den Eingabesensordaten zu generieren; und

    einen Schwerpunktschätzer, der betreibbar ist, um eine Schwerpunkthöhenschätzung aus der Rollwinkelschätzung, der Nickwinkelschätzung und den Eingabesensordaten zu generieren.


     
    4. Reifenzustandsschätzsystem nach Anspruch 1, 2 oder 3, weiter einen Reifenrollradiusschätzer umfassend, der betreibbar ist, um eine Reifenrollradiusschätzung aus den Eingabesensordaten zu generieren; und/oder einen Masseschätzer, der betreibbar ist, um eine Fahrzeugmasseschätzung aus der Reifenlängskraftschätzung und einer Straßenneigungswinkeleingabe zu generieren.
     
    5. Reifenzustandsschätzsystem nach Anspruch 1, 2, 3 oder 4, weiter einen Schwerpunkt-Längspositionsschätzer umfassend, der betreibbar ist, um eine Fahrzeugschwerpunktlängspositionsschätzung zu generieren; und/oder en Gierträgheitsanpassungsmodell, das betreibbar ist, um aus der Fahrzeugmasseschätzung eine Gierträgheitsausgabe zu generieren.
     
    6. Reifenzustandsschätzsystem nach mindestens einem der vorhergehenden Ansprüche, wobei der Normalkraftschätzer betreibbar ist, um die Schätzung der Normalkraft auf dem Reifen aus der Schwerpunkthöhenschätzung, der Schwerpunktlängspositionsschätzung und der Fahrzeugmasseschätzung zu generieren.
     
    7. Reifenzustandsschätzsystem nach mindestens einem der vorhergehenden Ansprüche, wobei der Seitenkraftschätzer betreibbar ist, um die Seitenkraft auf dem Reifen aus den Eingabesensordaten zu generieren, einschließlich einer gemessenen Seitenbeschleunigung, einer gemessenen Längsbeschleunigung und der Giergeschwindigkeit.
     
    8. Reifenzustandsschätzsystem nach Anspruch 7, weiter umfassend:

    ein Gierträgheitsanpassungsmodell, das betreibbar ist, um eine Gierträgheitsausgabe aus der Fahrzeugmasseschätzung zu generieren; und

    einen Achskraftschätzer, der betreibbar ist, um eine Seitenkraftschätzung aus der Fahrzeugmasseschätzung, der Gierträgheitsausgabe, der dynamischen Reifenlast-Schätzung, der Schwerpunktlängspositionsschätzung, den vorspannungskompensierten Beschleunigungsdaten, einer Lenkradwinkeleingabe, einer Giergeschwindigkeitseingabe und der dynamischen Reifenlast-Schätzung zu generieren.


     
    9. Reifenzustandsschätzsystem nach mindestens einem der vorhergehenden Ansprüche, weiter eine an dem Fahrzeug montierte 6-Freiheitsgrade-Trägheitsmesseinheit zum Generieren der Beschleunigung und Winkelgeschwindigkeiten, der Nickgeschwindigkeit, der Giergeschwindigkeit und der Rollgeschwindigkeit umfassend.
     
    10. Reifenzustandsschätzsystem nach mindestens einem der vorhergehenden Ansprüche, wobei der Roll- und Nickwinkelschätzer auf einem kinematischen Modell des Fahrzeugs basiert ist.
     
    11. Reifenzustandsschätzsystem nach mindestens einem der vorhergehenden Ansprüche, wobei der Schwerpunktschätzer auf einem Ein-Freiheitsgrad-Rollmodell basiert ist, das einen rekursiven Kleinste-Quadrate-Algorithmus einsetzt.
     
    12. Reifenzustandsschätzsystem nach mindestens einem der vorhergehenden Ansprüche, wobei der Reifenlängskraftschätzer auf einer Anwendung eines Raddynamikmodells basiert ist, das als Modelleingaben die Radwinkelgeschwindigkeit und ein gemessenes Antriebs- und Bremsmoment nutzt.
     


    Revendications

    1. Système d'estimation de l'état d'un bandage pneumatique pour estimer la force normale, la force latérale et la force longitudinale s'exerçant sur un bandage pneumatique monté sur une roue et supportant un véhicule, le système comprenant :

    un véhicule possédant un bus de données CAN pour distribuer des informations mesurées par un capteur du véhicule et plusieurs capteurs montés sur le véhicule, auxquels peut avoir accès le bus de données CAN ;

    un dispositif d'estimation de la force normale, qui peut être activé pour estimer une force normale s'exerçant sur le bandage pneumatique monté sur le véhicule à partir d'une addition du transfert de la charge longitudinale, du transfert de la charge latérale et de la force normale statique en utilisant comme entrées l'accélération latérale, l'accélération longitudinale et l'angle de roulis qui dérivent des données des capteurs d'entrée ;

    un dispositif d'estimation de la force latérale qui peut être activé pour estimer une force latérale s'exerçant sur le bandage pneumatique à partir d'un modèle de véhicule planaire en utilisant comme entrées l'accélération latérale mesurée, l'accélération longitudinale et l'ampleur du mouvement de lacet qui dérivent des données des capteurs d'entrée ; et

    un dispositif d'estimation de la force longitudinale qui peut être activé pour estimer la force longitudinale s'exerçant sur le bandage pneumatique à partir d'un modèle de la dynamique de rotation de la roue en utilisant comme entrées la vitesse angulaire de la roue et le couple d'entraînement/de freinage qui dérivent des données des capteurs d'entrée ;

    caractérisé en ce que

    le dispositif d'estimation de la force longitudinale peut être activé pour générer l'estimation de la force longitudinale du bandage pneumatique à partir d'une estimation du rayon de roulement du bandage pneumatique, d'une entrée du couple moteur et d'une entrée du couple de freinage.


     
    2. Système d'estimation de l'état d'un bandage pneumatique selon la revendication 1, dans lequel lesdits plusieurs capteurs montés sur le véhicule accessibles au bus de données CAN sont configurés pour fournir les données des capteurs d'entrée, les données des capteurs d'entrée comprenant : au moins une accélération et une vitesse angulaire ou bien des vitesses d'accélération et angulaire, une mesure de l'angle de la roue de direction, une vitesse angulaire de la roue, une vitesse angulaire de roulis, une vitesse angulaire de tangage et une ampleur du mouvement de lacet.
     
    3. Système d'estimation de l'état d'un bandage pneumatique selon la revendication 1 ou 2, comprenant en outre un, deux ou la totalité des éléments suivants :

    un dispositif d'estimation de l'angle de roulis et de l'angle de tangage qui peut être activé pour générer une estimation de l'angle de roulis et une estimation de l'angle de tangage à partir des données des capteurs d'entrée ;

    un dispositif d'estimation de la compensation du biais de l'accélération qui peut être activé pour générer des données d'accélération dont le biais a été compensé, à partir de l'estimation du roulis, de l'estimation du tangage et des données des capteurs d'entrée ; et

    un dispositif d'estimation du centre de gravité qui peut être activé pour générer une estimation de la hauteur du centre de gravité à partir de l'estimation de l'angle de roulis, de l'estimation de l'angle de tangage et des données des capteurs d'entrée.


     
    4. Système d'estimation de l'état d'un bandage pneumatique selon la revendication 1, 2 ou 3, comprenant en outre un dispositif d'estimation du rayon de roulement du bandage pneumatique, qui peut être activé pour générer une estimation du rayon de roulement du bandage pneumatique à partir des données des capteurs d'entrée ; et/ou un dispositif d'estimation de la masse qui peut être activé pour générer une estimation de la masse du véhicule à partir de l'estimation de la force longitudinale du bandage pneumatique et d'une entrée de l'angle de niveau de la route.
     
    5. Système d'estimation de l'état d'un bandage pneumatique selon la revendication 1, 2, 3 ou 4, comprenant en outre un dispositif d'estimation de la position longitudinale du centre de gravité qui peut être activé pour générer une estimation du centre de gravité longitudinal du véhicule ; et/ou un modèle d'adaptation de l'inertie de lacet qui peut être activé pour générer une sortie d'inertie de lacet à partir de l'estimation de la masse du véhicule.
     
    6. Système d'estimation de l'état d'un bandage pneumatique selon au moins une des revendications précédentes, dans lequel le dispositif d'estimation de la force normale peut être activé pour générer la force normale s'exerçant sur le bandage pneumatique à partir de l'estimation de la hauteur du centre de gravité, de l'estimation de la position longitudinale du centre de gravité et de l'estimation de la masse du véhicule.
     
    7. Système d'estimation de l'état d'un bandage pneumatique selon au moins une des revendications précédentes, dans lequel le dispositif d'estimation de la force latérale peut être activé pour générer la force latérale s'exerçant sur le bandage pneumatique à partir des données des capteurs d'entrée, y compris une accélération latérale mesurée, une accélération longitudinale mesurée et l'ampleur du mouvement de lacet.
     
    8. Système d'estimation de l'état d'un bandage pneumatique selon la revendication 7, comprenant en outre :

    un modèle d'adaptation de l'inertie de lacet qui peut être activé pour générer une sortie d'inertie de lacet à partir de l'estimation de la masse du véhicule ; et

    un dispositif d'estimation de la force d'essieu qui peut être activé pour générer une estimation de la force latérale à partir de l'estimation de la masse du véhicule, de la sortie d'inertie de lacet, de l'estimation de la charge dynamique du bandage pneumatique, de l'estimation de la position longitudinale du centre de gravité, des données d'accélération dont le biais a été compensé, d'une entrée d'angle de la roue de direction, d'une entrée de l'ampleur du mouvement de lacet et de l'estimation de la charge dynamique du bandage pneumatique.


     
    9. Système d'estimation de l'état d'un bandage pneumatique selon au moins une des revendications précédentes, comprenant en outre une unité de mesure de l'inertie à six degrés montée sur le véhicule pour générer les vitesses d'accélération et angulaire, la vitesse angulaire de tangage, l'ampleur du mouvement de lacet et la vitesse angulaire de roulis.
     
    10. Système d'estimation de l'état d'un bandage pneumatique selon au moins une des revendications précédentes, dans lequel le dispositif d'estimation de l'angle de roulis et de l'angle de tangage se base sur un modèle de la cinématique du véhicule.
     
    11. Système d'estimation de l'état d'un bandage pneumatique selon au moins une des revendications précédentes, dans lequel le dispositif d'estimation du centre de gravité se base sur un modèle de roulis du type à un degré de liberté qui utilise un algorithme des moindres carrés récursifs.
     
    12. Système d'estimation de l'état d'un bandage pneumatique selon au moins une des revendications précédentes, dans lequel le dispositif d'estimation de la force longitudinale du bandage pneumatique se base sur une application d'un modèle de la dynamique de la roue qui utilise comme entrées du modèle, la vitesse angulaire de la roue et un couple mesuré d'entraînement et de freinage.
     




    Drawing































































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description