(19)
(11)EP 3 154 432 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 15795044.5

(22)Date of filing:  15.06.2015
(51)International Patent Classification (IPC): 
A61B 6/00(2006.01)
(86)International application number:
PCT/US2015/035760
(87)International publication number:
WO 2015/195515 (23.12.2015 Gazette  2015/51)

(54)

SYSTEM AND METHOD FOR DETERMINING X-RAY EXPOSURE PARAMETERS

SYSTEM UND VERFAHREN ZUR BESTIMMUNG DER RÖNTGENSTRAHLUNGSBELASTUNGSPARAMETER

SYSTÈME ET PROCÉDÉ PERMETTANT DE DÉTERMINER DES PARAMÈTRES D'EXPOSITION AUX RAYONS X


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.06.2014 US 201414305410

(43)Date of publication of application:
19.04.2017 Bulletin 2017/16

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • ZOU, Yun
    Niskayuna, New York 12309 (US)
  • SAUNDERS, Rowland Frederick
    Niskayuna, New York 12309 (US)
  • ZELAKIEWICZ, Scott Stephen
    Niskayuna, New York 12309 (US)
  • HEUKENSFELDT JANSEN, Floribertus P.M.
    Niskayuna, New York 12309 (US)
  • FRONTERA, Mark Alan
    Niskayuna, New York 12309 (US)
  • WIEDMANN, Uwe
    Niskayuna, New York 12309 (US)
  • WALIMBE, Vivek
    San Diego, California 92122 (US)

(74)Representative: Fennell, Gareth Charles et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
EP-A1- 0 990 419
US-A1- 2012 087 474
US-A1- 2002 085 672
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The subject matter disclosed herein generally relates to X-ray imaging systems. More specifically, the subject matter relates to systems and methods for determining X-ray exposure parameters.

    [0002] X-ray imaging systems, for example, digital radiography (RAD) systems, mammography systems, computed tomography systems, and the like, generate images of an object by projecting an X-ray beam towards the object using an X-ray source and capturing the X-ray beam that has passed through the object using an X-ray detector. The exposure parameters (e.g., peak kilovoltage and milliampere second values) that define the X-ray beam generated by the X-ray source are often controlled either manually by an operator or by a computing device using, for example, automatic exposure control (AEC) methods. In some AEC methods, a computing device controls the exposure parameters based on information received from an ionization chamber coupled with the X-ray detector. In some other AEC methods, a computing device controls the exposure parameters based on a preliminary image captured by the X-ray detector using a low dose X-ray beam. The implementation of such AEC methods on current X-ray imaging systems (e.g., mobile RAD systems) is problematic as they either lack the ionization chamber or have X-ray detectors which cause long time delays by wirelessly transmitting the preliminary images to the computing device.

    [0003] Thus there is a need for an enhanced system and method for determining X-ray exposure parameters.

    BRIEF DESCRIPTION



    [0004] In accordance with one aspect of the present system, an X-ray detector of an X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the X-ray imaging system. The X-ray detector further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The X-ray detector further includes a determination module configured to calculate one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The determination module is further configured to send the one or more main-shot parameters to the source controller of the X-ray imaging system.

    [0005] In accordance with one aspect of the present technique, a method includes receiving a pre-shot image from a detection circuitry of an X-ray imaging system and receiving one or more pre-shot parameters from a source controller of the X-ray imaging system. The method further includes determining one or more image characteristics of the pre-shot image. The method further includes calculating one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The method further includes sending the one or more main-shot parameters to the source controller of the X-ray imaging system.

    [0006] In accordance with one aspect of the present technique, a computer program product encoding instructions is disclosed. The instructions when executed by a processor cause the processor to receive a pre-shot image from a detection circuitry of an X-ray imaging system and receive one or more pre-shot parameters from a source controller of the X-ray imaging system. The instructions further cause the processor to determine one or more image characteristics of the pre-shot image. The instructions further cause the processor to calculate one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The instructions further cause the processor to send the one or more main-shot parameters to the source controller of the X-ray imaging system.

    [0007] Document US2002/085672 A1 may be considered to disclose a device and method according to the preambles of the independent claims.

    DRAWINGS



    [0008] These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

    FIG. 1 is a block diagram illustrating a system for determining X-ray exposure parameters according to one embodiment;

    FIG. 2 is a block diagram illustrating a parameter optimizer according to one embodiment;

    FIG. 3 is a graphical representation of a pre-shot image according to one embodiment; and

    FIG. 4 is a flow diagram illustrating a method for determining X-ray exposure parameters according to one embodiment.


    DETAILED DESCRIPTION



    [0009] In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.

    [0010] The singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise.

    [0011] As used herein, the term "non-transitory computer-readable media" is intended to be representative of any tangible computer-based device implemented in any method or technology for short-term and long-term storage of information, such as, computer-readable instructions, data structures, program modules and sub-modules, or other data in any device. Therefore, the methods described herein may be encoded as executable instructions embodied in a tangible, non-transitory, computer readable medium, including, without limitation, a storage device and/or a memory device. Such instructions, when executed by a processor, cause the processor to perform at least a portion of the methods described herein. Moreover, as used herein, the term "non-transitory computer-readable media" includes all tangible, computer-readable media, including, without limitation, non-transitory computer storage devices, including, without limitation, volatile and nonvolatile media, and removable and non-removable media such as a firmware, physical and virtual storage, CD-ROMs, DVDs, and any other digital source such as a network or the Internet, as well as yet to be developed digital means, with the sole exception being a transitory, propagating signal.

    [0012] As used herein, the terms "software" and "firmware" are interchangeable, and include any computer program stored in memory for execution by devices that include, without limitation, mobile devices, clusters, personal computers, workstations, clients, and servers.

    [0013] As used herein, the term "computer" and related terms, e.g., "computing device", are not limited to integrated circuits referred to in the art as a computer, but broadly refers to at least one microcontroller, microcomputer, programmable logic controller (PLC), application specific integrated circuit, and other programmable circuits, and these terms are used interchangeably herein.

    [0014] Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as "about" and "substantially", are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.

    [0015] A system and method for determining X-ray exposure parameters are described herein. FIG. 1 illustrates a block diagram of an X-ray imaging system 100 (e.g., a mammography system, a RAD system, a computed tomography system, a tomosynthesis system, and the like) configured to generate images of an object (e.g., a human patient), according to one embodiment. The X-ray imaging system 100 includes an X-ray source 110, a source controller 120, and an X-ray detector 140. The source controller 120 and the X-ray source 110 are communicatively coupled via signal line 125. The source controller 120 and the X-ray detector 140 are communicatively coupled via a network 130. In the illustrated embodiment, the system 100 is configured to generate a pre-shot image of the object using a low dose X-ray beam that is defined by pre-shot X-ray exposure parameters. The system 100 is further configured to determine the main-shot X-ray exposure parameters based on the pre-shot image and then generate the main-shot image of the object.

    [0016] For the purpose of clarity and convenience, the pre-shot X-ray exposure parameters and the main-shot X-ray exposure parameters, are referred to herein, as the pre-shot parameters and the main-shot parameters respectively. The pre-shot parameters include, for example, a pre-shot peak kilovoltage (kVp) of the X-ray source 110, a pre-shot milliampere seconds (mAs) of the X-ray source 110, a patient size, an anatomical region of the patient (e.g., chest, leg, and the like), a view type (e.g., lateral view, frontal view, and the like), and a distance between the X-ray source 110 and the X-ray detector 140. The main-shot parameters include, for example, main-shot kVp of the X-ray source 110, a main-shot mAs of the X-ray source 110, a main-shot milliampere (mA) of the X-ray source 110, a main-shot exposure time of the X-ray source 110, a main-shot X-ray focal spot size, and a main-shot X-ray filter.

    [0017] The X-ray source 110 may be any type of device that is configured to generate and direct an X-ray beam 115 towards the X-ray detector 140 and a patient positioned between the X-ray source 110 and the X-ray detector 140. The X-ray source 110 includes an X-ray tube comprising an anode and a cathode that emits electrons and generates the X-ray beam. The X-ray source 110 generates a pre-shot X-ray beam and a main-shot X-ray beam based on the pre-shot parameters and the main-shot parameters respectively. The X-ray source 110 receives the pre-shot and the main-shot parameters from the source controller 120 via signal line 125.

    [0018] The source controller 120 may be any type of computing device that is configured to control the operation of the X-ray source 110 based on the pre-shot and the main-shot parameters. The source controller 120 receives the pre-shot parameters from, for example, an operator of the X-ray imaging system 100 as user input. For example, the operator may input the pre-shot kVp as 50 kVp, the pre-shot mAs as 3 mAs, the distance between the X-ray source 110 and the X-ray detector 140 as 1 meter, the patient size as 10 cm or in general Large, Medium and Small Adults, and the like, the view type as postero-anterior, antero-posterior, lateral, and the like. The operator may define the pre-shot parameters based on, for example, previously generated clinical data, the set-up of the X-ray imaging system, the patient, and the like. The source controller 120 sends the pre-shot parameters to the X-ray source 110 for generating the pre-shot X-ray beam. The source controller 120 also sends the pre-shot parameters to the X-ray detector 140.

    [0019] In one embodiment, the operator may modify the pre-shot parameters based on a notification received from the X-ray detector 140. In such an embodiment, the source controller 120 sends the modified pre-shot parameters to the X-ray source 110 for re-generating the pre-shot X-ray beam. The notification received from the X-ray detector 140 is described below in further detail with reference to FIG. 2. The source controller 120 further receives the main-shot parameters from the X-ray detector 140. For example, the source controller 120 receives the main-shot kVp as 60 kVp and the main-shot mAs as 10 mAs. The source controller 120 sends the main-shot parameters to the X-ray source 110 for generating the main-shot X-ray beam. In a further embodiment, the process can be automated or semi-automated, wherein the source controller 120 receives the pre-shot parameters from memory or from a processing section that interpolates certain pre-shot parameters based on system configurations, apriori data and general thresholds.

    [0020] The X-ray detector 140 may be any type of device configured to generate a pre-shot image of a patient, determine the main-shot parameters, and generate a main-shot image of the patient. In the illustrated system 100, the X-ray detector 140 is a portable X-ray detector (e.g., detector of a mobile RAD system) that includes a detection circuitry 150 and a parameter optimizer 160. The detection circuitry 150 may be any type of device configured to receive X-ray photons of the pre-shot X-ray beam and the main-shot X-ray beam 115 and generate the pre-shot image and main-shot image respectively. The detection circuitry 150 may include for example, photographic plates, photostimulable phosphor plates, semiconductor detectors, scintillators, flat panel detectors, and the like. The detection circuitry 150 is further configured to send the pre-shot image and main-shot image to the parameter optimizer 160 via signal line 155. The parameter optimizer 160 may be any type of computing device configured to determine and send the main-shot parameters to the source controller 120 via the network 130. The parameter optimizer 160 is described below in further detail with reference to FIG. 2.

    [0021] The network 130 may be a wired or a wireless type network, and may have any number of configurations such as a star configuration, token ring configuration, or other known configurations. Furthermore, the network 130 may include a local area network (LAN), a wide area network (WAN) (e.g., the internet), and/or any other interconnected data path across which multiple devices may communicate. In one embodiment, the network 130 may be a peer-to-peer network. The network 130 may also be coupled to or include portions of a telecommunication network for sending data in a variety of different communication protocols. In another embodiment, the network 130 includes Bluetooth communication networks or a cellular communications network for sending and receiving data such as via a short messaging service (SMS), a multimedia messaging service (MMS), a hypertext transfer protocol (HTTP), a direct data connection, WAP, email, or the like. While only one network 130 is shown coupled to the X-ray detector 140 and the source controller 120, multiple networks 130 may be coupled to the entities.

    [0022] FIG. 2 is a block diagram illustrating the parameter optimizer 160 according to one embodiment. The parameter optimizer 160 includes a parameter application 200, a processor 235, and a memory 237. The parameter application 200 includes a communication module 202, a region of interest (ROI) module 204, an analysis module 206, and a determination module 208. The modules of the parameter application 200, the processor 235, and the memory 237 are coupled to a bus 220 for communication with one another.

    [0023] The processor 235 may include at least one arithmetic logic unit, microprocessor, general purpose controller or other processor arrays to perform computations, and/or retrieve data stored on the memory 237. In another embodiment, the processor 235 is a multiple core processor. The processor 235 processes data signals and may include various computing architectures including a complex instruction set computer (CISC) architecture, a reduced instruction set computer (RISC) architecture, or an architecture implementing a combination of instruction sets. The processing capability of the processor 235 may be limited to supporting the retrieval of data and transmission of data. The processing capability of the processor 235 may also perform more complex tasks, including various types of feature extraction, modulating, encoding, multiplexing, or the like. In other embodiments, other type of processors, operating systems, and physical configurations are also envisioned.

    [0024] The memory 237 may be a non-transitory storage medium. For example, the memory 237 may be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, flash memory or other memory devices. In one embodiment, the memory 237 also includes a non-volatile memory or similar permanent storage device, and media such as a hard disk drive, a floppy disk drive, a compact disc read only memory (CD-ROM) device, a digital versatile disc read only memory (DVD-ROM) device, a digital versatile disc random access memories (DVD-RAM) device, a digital versatile disc rewritable (DVD-RW) device, a flash memory device, or other non-volatile storage devices.

    [0025] The memory 237 stores data that is required for the parameter application 200 to perform associated functions. In one embodiment, the memory 237 stores the modules (e.g., the communication module 202, the analysis module 206, and the like) of the parameter application 200. In another embodiment, the memory 237 stores the pre-shot parameters, for example, the pre-shot kVp, the distance between the X-ray source 110 and the X-ray detector 140, the patient size, and the like.

    [0026] The communication module 202 includes codes and routines configured to handle communication between the source controller, the detection circuitry, and the modules of the parameter application 200. In one embodiment, the communication module 202 includes a set of instructions executable by the processor 235 to provide the functionality for handling communication between the source controller, the detection circuitry, and the modules of the parameter application 200. In another embodiment, the communication module 202 is stored in the memory 237 and is accessible and executable by the processor 235. In either embodiment, the communication module 202 is adapted for communication and cooperation with the processor 235 and other modules of the parameter application 200 via the bus 220.

    [0027] In one embodiment, the communication module 202 receives the pre-shot parameters from the source controller and sends the pre-shot parameters to the determination module 208. In another embodiment, the communication module 202 receives a pre-shot image from the detection circuitry and sends the pre-shot image to the ROI module 204 and the analysis module 206. In yet another embodiment, the communication module 202 receives main-shot parameters from the determination module 208 and wirelessly sends the main-shot parameters to the source controller via the network.

    [0028] The ROI module 204 includes codes and routines configured to generate one or more ROI images from the pre-shot image. In one embodiment, the ROI module 204 includes a set of instructions executable by the processor 235 to provide the functionality for generating one or more ROI images from the pre-shot image. In another embodiment, the ROI module 204 is stored in the memory 237 and is accessible and executable by the processor 235. In either embodiment, the ROI module 204 is adapted for communication and cooperation with the processor 235 and other modules of the parameter application 200 via the bus 220.

    [0029] The ROI module 204 receives the pre-shot image from the communication module 202 and determines one or more ROI in the pre-shot image. In one embodiment, the ROI module 204 determines one or more ROI in the pre-shot image based on segmentation algorithms, for example, edge detection algorithms, region-based algorithms, clustering algorithms, histogram based algorithms, and the like. In another embodiment, the ROI module 204 determines one or more ROI in the pre-shot image based on ROI location data (e.g., x-y coordinates of the ROI within the pre-shot image) received from the source controller. In such an embodiment, the pre-shot parameters received from the source controller include the ROI location data. In either embodiment, the ROI module 204 generates one or more ROI images by, for example, cropping the one or more ROI from the pre-shot image. The ROI module 204 then sends the one or more ROI images to the analysis module 206.

    [0030] FIG. 3 illustrates a graphical representation 300 of a pre-shot image 320 received according to one embodiment. The pre-shot image 320 is an image of a human chest. In the illustrated embodiment, the ROI module determines two ROI 340 within the pre-shot image 320. The ROI module then generates and sends two ROI images to the analysis module.

    [0031] Referring back to FIG. 2, the analysis module 206 includes codes and routines configured to analyze the one or more ROI images and determine one or more image characteristics of the pre-shot image. In one embodiment, the analysis module 206 includes a set of instructions executable by the processor 235 to provide the functionality for analyzing the one or more ROI images and determine one or more image characteristics of the pre-shot image. In another embodiment, the analysis module 206 is stored in the memory 237 and is accessible and executable by the processor 235. In either embodiment, the analysis module 206 is adapted for communication and cooperation with the processor 235 and other modules of the parameter application 200 via the bus 220.

    [0032] The analysis module 206 analyzes the one or more ROI images received from the ROI module 204 and determines one or more image characteristics of the corresponding pre-shot image. The one or more image characteristics of the pre-shot image includes a number of counts in the one or more ROI images, an average (e.g., arithmetic mean, weighted mean, median, and the like) of the counts in the one or more ROI images, a histogram of the counts, a noise level, a signal to noise ratio, a contrast level, a contrast to noise ratio, and the like. A count of an ROI image is proportional to the intensity level (e.g., linearly, logarithmically, quadratically, and the like) of each pixel in the ROI image. The analysis module 206 determines the histogram of the counts for an ROI image by binning the number of counts associated with each pixel of the ROI images into multiple bins (e.g., two bins, three bins, 256 bins, 65000 bins, and the like). In one embodiment, the analysis module 206 determines the histogram of the counts by binning the counts of all the ROI images received from the ROI module 204 into the same number of bins. In another embodiment, the analysis module 206 determines the histogram of the counts by dynamically binning the counts of the ROI images based on, for example, the location of each ROI image within the pre-shot image, the intensity level of each ROI image, and the like. For example, the analysis module 206 receives two ROI images of a pre-shot image from the ROI module 204. In such an example, the analysis module 206 determines the histogram of the first and the second ROI image by binning the number of counts into 4 bins and 8 bins respectively, based on the location of the ROI images. The analysis module 206 is further configured to send the one or more image characteristics of the pre-shot image to the determination module 208.

    [0033] In one embodiment, the analysis module 206 analyzes the one or more ROI images to determine a quality metric (e.g., intensity level of the pre-shot image, motion blur, and the like) of the pre-shot image. The analysis module 206 determines whether the quality metric satisfies a quality criterion (e.g., intensity threshold, motion threshold, and the like). The quality criterion is stored in the memory 237 and may be defined by, for example, an operator of the X-ray imaging system based on previously collected clinical data. In such an embodiment, the analysis module 206 determines the image characteristics of the pre-shot image in response to determining that the quality metric satisfies a quality criterion. The analysis module 206 sends a notification to the source controller for re-generating the pre-shot image in response to determining that the quality metric fails to satisfy the quality criterion. For example, the analysis module 206 determines that the average intensity level of the pre-shot image is less than the intensity threshold. In such an example, since the quality metric (i.e., average intensity level) fails to satisfy the quality criterion (i.e., intensity threshold), the analysis module 206 sends a notification to the source controller. The notification instructs an operator of the X-ray imaging system to re-take the pre-shot image by, for example, modifying the pre-shot parameters, re-positioning the patient relative to the X-ray detector, and the like. In another example, the analysis module 206 determines that the motion blur in the pre-shot image exceeds the motion threshold. In such an example, since the quality metric (i.e., motion blur) fails to satisfy the (i.e., motion threshold), the analysis module 206 sends a notification instructing the operator of the X-ray imaging system to re-take the pre-shot image.

    [0034] Although, the analysis module 206 is described above as determining the quality metric and the image characteristics of the pre-shot image based on the one or more ROI images, in one embodiment, the analysis module 206 may determine the quality metric and the image characteristics based on the pre-shot image. In such an embodiment, the analysis module 206 receives the pre-shot image from the communication module 202.

    [0035] The determination module 208 includes codes and routines configured to determine one or more main-shot parameters. In one embodiment, the determination module 208 includes a set of instructions executable by the processor 235 to provide the determining one or more main-shot parameters. In another embodiment, the determination module 208 is stored in the memory 237 and is accessible and executable by the processor 235. In either embodiment, the determination module 208 is adapted for communication and cooperation with the processor 235 and other modules of the parameter application 200 via the bus 220.

    [0036] The determination module 208 receives the pre-shot parameters and the image characteristics from the communication module 202 and the analysis module 206 respectively. The determination module 208 then calculates one or more main-shot parameters based on the pre-shot parameters and the image characteristics. The main-shot parameters include, for example, main-shot kVp, a main-shot mAs, a main-shot milliampere (mA), a main-shot exposure time, a main-shot X-ray focal spot size, and a main-shot X-ray filter. In one embodiment, the determination module 208 calculates the main-shot kVp and the main-shot mAs based on the number of counts in the pre-shot image or the one or more ROI images, the pre-shot mAs, the pre-shot kVp, the patient size, and the distance between the X-ray source and the X-ray detector. In another embodiment, the determination module 208 determines the main-shot kVp, the main-shot exposure time, the main-shot X-ray focal spot size, and the main-shot X-ray filter based on a look-up table stored in the memory 237 and defined by, for example, an operator of the X-ray imaging system. In such an embodiment, the look-up table includes, for example, the pre-shot kVp, the pre-shot mAs, the patient size, the anatomical region of the patient, the view type, an intended target of optimization (e.g., bone, soft tissue, and the like), the image characteristics, and the like.

    [0037] The determination module 208 is further configured to wirelessly send the one or more main-shot parameters to the source controller via the network. The source controller then instructs the X-ray source to project a main-shot X-ray beam based on the received main-shot parameters, for generating the main-shot image of the patient. In X-ray imaging systems, for example, mobile RAD systems, wirelessly sending the main-shot parameters is faster than sending the pre-shot image due to the large size of the pre-shot image and the network's slow data transmission speeds. Thus, wirelessly sending the main-shot parameters is advantageous as it significantly reduces the time delay between generating the pre-shot image and the main-shot image and reduces the inconvenience experienced by the patient while generating the X-ray image. In one embodiment, the determination module 208 is further configured to wirelessly send the one or more image characteristics and the ROI images to the source controller along with the one or more main-shot parameters. In another embodiment, the determination module 208 is further configured to generate a new image by reducing the spatial resolution (i.e., the size) of the pre-shot image and wirelessly send the new image to the source controller. In such an embodiment, the determination module 208 generates the new image by processing the pre-shot image using a Gaussian filter, a weighted median filter, and the like. Although the determination module 208 is described above as wirelessly sending the main-shot parameters, the one or more image characteristics, the one or more ROI images, and the like to the source controller, in one embodiment, the determination module 208 may send the data to the source controller via a wired network.

    [0038] FIG. 4 is a flow diagram illustrating a method for determining one or more main-shot parameters according to one embodiment. The communication module receives a pre-shot image from a detection circuitry of an X-ray imaging system 402. The communication module also receives one or more pre-shot parameters from a source controller of the X-ray imaging system 404. For example, the communication module receives the pre-shot kVP, the pre-shot mAs, the patient size, and the distance between the X-ray source and the X-ray detector. The ROI module generates one or more ROI images from the pre-shot image 406. The analysis module determines one or more image characteristics of the pre-shot image 408. For example, the analysis module determines an average of the counts and the histogram of the counts in the one or more ROI images. The determination module calculates one or more main-shot parameters based on the one or more image characteristics and the one or more pre-shot parameters 410. For example, the determination module calculates the main-shot mAs and the main-shot kVp based on the average of the counts, the histogram of the counts, the pre-shot kVp, the pre-shot mAs, and the patient size. The determination module then sends the one or more main-shot parameters to the source controller of the X-ray imaging system 412.

    [0039] It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.

    [0040] While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. An X-ray detector (140) of an X-ray imaging system (100), the X-ray detector (140) comprising:

    a detection circuitry (150) configured to generate a pre-shot image based on a pre-shot X-ray beam and

    a parameter optimizer (160) communicatively coupled to the detection circuitry (150) and configured to determine one or more main-shot parameters; wherein the parameter optimizer (160) comprises:

    at least one processor (235);

    a memory (237);

    a communication module (202) stored in the memory (237) and executable by the at least one processor (235), the communication module (202) configured to receive the pre-shot image from the detection circuitry (150) and receive one or more pre-shot parameters from a source controller (120) of the X-ray imaging system (100);

    an analysis module (206) stored in the memory (237) and executable by the at least one processor (235), the analysis module (206) communicatively coupled with the communication module (202) and configured to determine one or more image characteristics of the pre-shot image; and

    a determination module (208) stored in the memory (237) and executable by the at least one processor (235), the determination module (208) communicatively coupled with the analysis module (206) and configured to calculate the one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics and send the one or more main-shot parameters to the source controller (120) of the X-ray imaging system (100);

    wherein the analysis module (206) is further configured to determine a quality metric of the pre-shot image and send a notification to the source controller (120) for re-generating the pre-shot image based on the quality metric.


     
    2. The system of claim 1, further comprises a region of interest (ROI) module (204) configured to generate one or more ROI images from the pre-shot image.
     
    3. The system of claim 2, wherein the determination module (208) is further configured to send the one or more ROI images to the source controller (120).
     
    4. The system of claim 1, wherein the determination module (208) is further configured to generate a new image by reducing a spatial resolution of the pre-shot image and send the new image to the source controller (120).
     
    5. The system of claim 1, wherein the one or more image characteristics includes at least one of a number of counts, an average of the counts, a histogram of the counts, a noise level, a signal to noise ratio, a contrast, and a contrast to noise ratio.
     
    6. The system of claim 1, wherein the one or more pre-shot parameters includes at least one of a peak kilovoltage (kVp) of an X-ray source, a pre-shot milliampere seconds (mAs) of the X-ray source (110), a patient size, an anatomy, a view, and a distance between the X-ray source (110) and the X-ray detector (140).
     
    7. The system of claim 6, wherein the one or more main-shot parameters includes at least one of a main-shot mAs, a main-shot mA, a main-shot exposure time, a main-shot kVp, a main-shot x-ray focal spot size, and a main-shot X-ray filter.
     
    8. A computer-implement method, comprising:

    receiving a pre-shot image from a detection circuitry (150) of an X-ray imaging system (100);

    receiving one or more pre-shot parameters from a source controller (120) of the X-ray imaging system (100);

    determining a quality metric of the pre-shot image;

    sending a notification to the source controller for re-generating the pre-shot image based on the quality metric;

    determining one or more image characteristics of the pre-shot image;

    calculating one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics; and

    sending the one or more main-shot parameters to the source controller (120) of the X-ray imaging system (100).


     
    9. The method of claim 8, wherein the one or more pre-shot parameters includes at least one of a peak kilovoltage (kVp) of an X-ray source, a pre-shot milliampere seconds (mAs) of the X-ray source, a patient size, an anatomy, a view, and a distance between the X-ray source and the X-ray detector.
     
    10. The method of claim 9, wherein the one or more main-shot parameters includes at least one of a main-shot mAs, a main-shot mA, a main-shot exposure time, a main-shot x-ray focal spot size, a main-shot kVp, and a main-shot X-ray filter.
     


    Ansprüche

    1. Röntgenstrahlendetektor (140) eines Röntgenstrahlenbildsystems (100), wobei der Röntgenstrahlendetektor (140) umfasst:

    eine Erfassungsschaltung (150), die konfiguriert ist zum Erzeugen eines Vorabaufnahmebildes aufgrund eines Vorabaufnahmeröntgenstrahls; und

    einen Parameteroptimierer (160), der in einem Datenaustausch mit der Erfassungsschaltung (150) verbunden ist und konfiguriert ist zum Ermitteln eines oder mehrerer Hauptaufnahmeparameter; wobei der Parameteroptimierer (160) umfasst:

    mindestens einen Prozessor (235);

    einen Speicher (237);

    ein Kommunikationsmodul (202), das in dem Speicher (237) gespeichert ist und durch den mindestens einen Prozessor (235) ausführbar ist, wobei das Kommunikationsmodul (202) konfiguriert ist zum Empfangen des Vorabaufnahmebildes von der Erfassungsschaltung (150) und zum Empfangen eines oder mehrerer Vorabaufnahmeparameter von einer Quellensteuereinheit (120) des Röntgenstrahlenbildsystems (100);

    ein Analysemodul (206), das in dem Speicher (237) gespeichert ist und durch den mindestens einen Prozessor (235) ausführbar ist, wobei das Analysemodul (206) in einem Datenaustausch mit dem Kommunikationsmodul (202) verbunden ist und konfiguriert ist zum Ermitteln einer oder mehrerer Bildeigenschaften des Vorabaufnahmebildes; und

    ein Ermittlungsmodul (208), das in dem Speicher (237) gespeichert ist und durch den mindestens einen Prozessor (235) ausführbar ist, wobei das Ermittlungsmodul (208) in einem Datenaustausch mit dem Analysemodul (206) verbunden ist und konfiguriert ist zum Berechnen des einen oder der mehreren Hauptaufnahmeparameter aufgrund des einen oder der mehreren Vorabaufnahmeparameter und aufgrund der einen oder der mehreren Bildeigenschaften; und zum Senden des einen oder der mehreren Hauptaufnahmeparameter an die Quellensteuereinheit (120) des Röntgenstrahlenbildsystems (100);

    wobei das Analysemodul (206) außerdem konfiguriert ist zum Ermitteln einer Qualitätsmetrik des Vorabaufnahmebildes und zum Senden einer Benachrichtigung an die Quellensteuereinheit (120), um das Vorabaufnahmebild aufgrund der Qualitätsmetrik erneut zu erzeugen.


     
    2. System nach Anspruch 1, das außerdem ein Modul für ein interessierendes Gebiet (Region Of Interest module, ROI-Modul) (204) umfasst, das konfiguriert ist zum Erzeugen eines oder mehrerer ROI-Bilder aus dem Vorabaufnahmebild.
     
    3. System nach Anspruch 2, wobei das Ermittlungsmodul (208) außerdem konfiguriert ist zum Senden des einen oder der mehreren ROI-Bilder an die Quellensteuereinheit (120).
     
    4. System nach Anspruch 1, wobei das Ermittlungsmodul (208) außerdem konfiguriert ist zum Erzeugen eines neuen Bildes, indem eine räumliche Auflösung des Vorabaufnahmebildes verringert wird, und zum Senden des neuen Bildes an die Quellensteuereinheit (120).
     
    5. System nach Anspruch 1, wobei die eine oder mehreren Bildeigenschaften mindestens eines umfassen von: einer Anzahl von Registrierungen, einem Mittelwert der Registrierungen, einem Histogramm der Registrierungen, einem Rauschpegel, einem Signal-Rausch-Verhältnis, einem Kontrast und einem Kontrast-Rausch-Verhältnis.
     
    6. System nach Anspruch 1, wobei der eine oder die mehreren Vorabaufnahmeparameter mindestens eines aufweisen von: einer Spitzenkilospannung (kVp), einer Röntgenstrahlenquelle, einem Vorabaufnahme-Milliamperesekundenwert (mAs) der Röntgenstrahlenquelle (110), einer Patientengröße, einer Anatomie, einer Ansicht und einem Abstand zwischen der Röntgenstrahlenquelle (110) und dem Röntgenstrahlendetektor (140).
     
    7. System nach Anspruch 6, wobei der eine oder die mehreren Hauptaufnahmeparameter mindestens eines aufweisen von: einem Hauptaufnahme-mAs, einem Hauptaufnahme-mA, einer Hauptaufnahmebelastungszeit, einer Hauptaufnahme-kVp, einer Brennpunktgröße der Hauptaufnahmeröntgenstrahlen und einem Hauptaufnahmenröntgenstrahlenfilter.
     
    8. Computergestütztes Verfahren, umfassend:

    Empfangen eines Vorabaufnahmebildes von einer Erfassungsschaltung (150) eines Röntgenstrahlenbildsystems (100);

    Empfangen eines oder mehrerer Vorabaufnahmeparameter von einer Quellensteuereinheit (120) des Röntgenstrahlenbildsystems (100);

    Ermitteln einer Qualitätsmetrik des Vorabaufnahmebildes;

    Senden einer Benachrichtigung an die Quellensteuereinheit, um das Vorabaufnahmebild aufgrund der Qualitätsmetrik erneut zu erzeugen;

    Ermitteln einer oder mehrerer Bildeigenschaften des Vorabaufnahmebildes;

    Berechnen eines oder mehrerer Hauptaufnahmeparameter aufgrund des einen oder der mehreren Vorabaufnahmeparameter und aufgrund der einen oder der mehreren Bildeigenschaften; und

    Senden des einen oder der mehreren Hauptaufnahmeparameter an die Quellensteuereinheit (120) des Röntgenstrahlenbildsystems (100).


     
    9. Verfahren nach Anspruch 8, wobei der eine oder die mehreren Vorabaufnahmeparameter mindestens eines aufweisen von: einer Spitzenkilospannung (kVp), einer Röntgenstrahlenquelle, einem Vorabaufnahme-Milliamperesekundenwert (mAs) der Röntgenstrahlenquelle, einer Patientengröße, einer Anatomie, einer Ansicht und einem Abstand zwischen der Röntgenstrahlenquelle und dem Röntgenstrahlendetektor.
     
    10. Verfahren nach Anspruch 9, wobei der eine oder die mehreren Hauptaufnahmeparameter mindestens eines aufweisen von: einem Hauptaufnahme-mAs, einem Hauptaufnahme-mA, einer Hauptaufnahmebelastungszeit, einer Brennpunktgröße der Hauptaufnahmeröntgenstrahlen, einer Hauptaufnahme-kVp und einem Hauptaufnahmenröntgenstrahlenfilter.
     


    Revendications

    1. Détecteur de rayons X (140) d'un système d'imagerie à rayons X (100), le détecteur de rayons X (140) comprenant :

    un ensemble de circuits de détection (150) configuré pour générer une image de pré-cliché sur la base d'un faisceau de rayons X de pré-cliché et

    un optimiseur de paramètres (160) couplé par voie de communication à l'ensemble de circuits de détection (150) et configuré pour déterminer un ou plusieurs paramètres de cliché principal ; dans lequel

    l'optimiseur de paramètres (160) comprend :

    au moins un processeur (235) ;

    une mémoire (237) ;

    un module de communication (202) stocké dans la mémoire (237) et exécutable par ledit au moins un processeur (235), le module de communication (202) étant configuré pour recevoir l'image de pré-cliché en provenance de l'ensemble de circuits de détection (150) et pour recevoir un ou plusieurs paramètres de pré-cliché en provenance d'un dispositif de commande de source (120) du système d'imagerie à rayons X (100) ;

    un module d'analyse (206) stocké dans la mémoire (237) et exécutable par ledit au moins un processeur (235), le module d'analyse (206) étant couplé par voie de communication au module de communication (202) et configuré pour déterminer une ou plusieurs caractéristiques d'image de l'image de pré-cliché ; et

    un module de détermination (208) stocké dans la mémoire (237) et exécutable par ledit au moins un processeur (235), le module de détermination (208) étant couplé par voie de communication au module d'analyse (206) et configuré pour calculer lesdits un ou plusieurs paramètres de cliché principal sur la base desdits un ou plusieurs paramètres de pré-cliché et desdites une ou plusieurs caractéristiques d'image et envoyer lesdits un ou plusieurs paramètres de cliché principal au dispositif de commande de source (120) du système d'imagerie à rayons X (100) ;

    dans lequel le module d'analyse (206) est en outre configuré pour déterminer une métrique de qualité de l'image de pré-cliché et envoyer une notification au dispositif de commande de source (120) pour générer à nouveau l'image de pré-cliché sur la base de la métrique de qualité.


     
    2. Système selon la revendication 1, comprenant en outre un module (204) de région d'intérêt (ROI) configuré pour générer une ou plusieurs images de ROI à partir de l'image de pré-cliché.
     
    3. Système selon la revendication 2, dans lequel le module de détermination (208) est en outre configuré pour envoyer une ou plusieurs images de ROI au dispositif de commande de source (120).
     
    4. Système selon la revendication 1, dans lequel le module de détermination (208) est en outre configuré pour générer une nouvelle image en réduisant une résolution spatiale de l'image de pré-cliché et envoyer la nouvelle image au dispositif de commande de source (120).
     
    5. Système selon la revendication 1, dans lequel lesdites une ou plusieurs caractéristiques d'image comprennent au moins l'une d'un nombre de comptes, d'une moyenne des comptes, d'un histogramme des comptes, d'un niveau de bruit, d'un rapport signal à bruit, d'un contraste et d'un rapport contraste à bruit.
     
    6. Système selon la revendication 1, dans lequel lesdits un ou plusieurs paramètres de pré-cliché comprennent au moins l'un d'un nombre de kilovolts crête (kVp) d'une source de rayons X, d'un nombre de milliampères secondes (mAs) de pré-cliché de la source de rayons X (110), d'une taille du patient, d'une anatomie, d'une vue et d'une distance entre la source de rayons X (110) et le détecteur de rayons X (140).
     
    7. Système selon la revendication 6, dans lequel lesdits un ou plusieurs paramètres de cliché principal comprennent au moins l'un d'un nombre de mAs de cliché principal, d'un nombre de mA de cliché principal, d'un temps d'exposition de cliché principal, d'un nombre de kVp de cliché principal, d'une taille de point focal de rayons X de cliché principal et d'un filtre à rayons X de cliché principal.
     
    8. Procédé mis en Ĺ“uvre par ordinateur, comprenant :

    la réception d'une image de pré-cliché en provenance d'un ensemble de circuits de détection (150) d'un système d'imagerie à rayons X (100) ;

    la réception d'un ou de plusieurs paramètres de pré-cliché en provenance d'un dispositif de commande de source (120) d'un système d'imagerie à rayons X (100) ;

    la détermination d'une métrique de qualité de l'image de pré-cliché ;

    l'envoi d'une notification au dispositif de commande de source pour générer à nouveau l'image de pré-cliché sur la base de la métrique de qualité ;

    la détermination d'une ou de plusieurs caractéristiques d'image de l'image de pré-cliché ;

    le calcul d'un ou de plusieurs paramètres de cliché principal sur la base desdits un ou plusieurs paramètres de pré-cliché et desdites une ou plusieurs caractéristiques d'image ; et

    l'envoi desdits un ou plusieurs paramètres de cliché principal au dispositif de commande de source (120) du système d'imagerie à rayons X (100).


     
    9. Procédé selon la revendication 8, dans lequel lesdits un ou plusieurs paramètres de pré-cliché comprennent au moins l'un d'un nombre de kilovolts crête (kVp) d'une source de rayons X, d'un nombre de milliampères secondes (mAs) de pré-cliché de la source de rayons X, d'une taille du patient, d'une anatomie, d'une vue et d'une distance entre la source de rayons X et le détecteur de rayons X.
     
    10. Procédé selon la revendication 9, dans lequel lesdits un ou plusieurs paramètres de cliché principal comprennent au moins l'un d'un nombre de mAs de cliché principal, d'un nombre de mA de cliché principal, d'un temps d'exposition de cliché principal, d'une taille de point focal de rayons X de cliché principal, d'un nombre de kVp de cliché principal et d'un filtre à rayons X de cliché principal.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description