(19)
(11)EP 3 157 064 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14861163.5

(22)Date of filing:  05.11.2014
(51)Int. Cl.: 
H01L 31/0272  (2006.01)
G03F 7/004  (2006.01)
G03F 7/00  (2006.01)
G03F 7/105  (2006.01)
(86)International application number:
PCT/CN2014/090385
(87)International publication number:
WO 2015/188577 (17.12.2015 Gazette  2015/50)

(54)

CU2ZN0.14SN0.25TE2.34 NANOCRYSTALLINE SOLUTION AND PREPARATION METHOD THEREOF , PHOTOSENSITIVE RESIN SOLUTION AND BLACK MATRIX PREPARATION METHOD, AND COLOR FILM SUBSTRATE

NANOKRISTALLINE CU2ZN0.14SN0.25TE2.34-LÖSUNG UND HERSTELLUNGSVERFAHREN DAFÜR, LICHTEMPFINDLICHE HARZLÖSUNG UND HERSTELLUNGSVERFAHREN FÜR SCHWARZE MATRIX SOWIE FARBFOLIENSUBSTRAT

SOLUTION NANOCRISTALLINE CU2ZN0,14SN0,25TE2,34 ET SON PROCÉDÉ DE PRÉPARATION, PROCÉDÉ DE PRÉPARATION DE SOLUTION DE RÉSINE PHOTOSENSIBLE ET DE MATRICE NOIRE, ET SUBSTRAT DE FILM COLORÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.06.2014 CN 201410252354

(43)Date of publication of application:
19.04.2017 Bulletin 2017/16

(73)Proprietor: BOE Technology Group Co., Ltd.
Beijing 100015 (CN)

(72)Inventors:
  • CUI, Ying
    Beijing 100176 (CN)
  • SONG, Yingying
    Beijing 100176 (CN)
  • LIU, Ze
    Beijing 100176 (CN)

(74)Representative: Brötz, Helmut et al
Rieder & Partner mbB Patentanwälte - Rechtsanwalt Corneliusstrasse 45
42329 Wuppertal
42329 Wuppertal (DE)


(56)References cited: : 
WO-A1-2011/066256
CN-A- 103 221 471
CN-A- 104 031 459
US-A1- 2006 263 593
US-A1- 2008 139 688
US-A1- 2014 096 826
WO-A1-2011/066273
CN-A- 103 842 289
US-A- 4 252 671
US-A1- 2008 124 831
US-A1- 2012 048 378
US-A1- 2014 099 749
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Embodiments of the present invention relate to nanotechnology in the field of display technology, in particular to a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, a preparation method, a photosensitive resin solution, a method for forming black matrixes (BMs), and a color filter (CF) substrate.

    BACKGROUND



    [0002] Currently, in order to improve the contrast between pixels and avoid reduction in the display quality due to light mixing between adjacent pixels, a latticed black film layer provided with BMs is disposed between pixels of a CF substrate.

    [0003] In the conventional process of forming BMs, the method of forming patterns by depositing and etching chromium (Cr) as a pigment on the entire glass substrate is used. The forming process is complex and meanwhile has the problems such as high reflectance of the raw material Cr and environmental pollution due to easy production of Cr waste.

    [0004] Therefore, the researchers have developed a method of dispersing black pigment (e.g., carbon black) in a resin layer and utilizing the light absorption characteristic of black pigment to achieve a light shielding effect. However, BMs formed by dispersing the black pigment in the resin layer still have the following defects:

    [0005] Firstly, as the majority of black pigment (e.g., carbon black) has a larger particle size (typically in micron level) and has poor dispersivity in resin, solvent and the like, the film uniformity and the film forming adhesion of the BMs can be adversely affected.

    [0006] Secondly, in order to ensure good light shielding effect of the BMs, the usage amount of the black pigment has to be greatly increased, so that the overall thickness of the resin layer can be larger, and hence the overall flatness of the CF substrate can be reduced, and consequently the display quality can be degraded.

    [0007] In view of this, a novel light shielding material with a better light shielding performance and a smaller particle size is urgently needed by those skilled in the art.
    US 2008/139688 A1 discloses a black matrix resist composition for a color filter characterized by comprising: (A) a photopolymerization initiator system containing a thiol compound; (B) a binder resin having a carboxyl group; (C) a compound having an ethylenically unsaturated group; (D) a black pigment; and (E) an organic solvent.
    US 2006/263593 A1 discloses a light-absorbing layer comprising metal nanoparticles and a matrix material, wherein the metal nanoparticles may be selected from Ag, Au, Cu, Se. Te, As, Zn, Sn, Ga, Co, Pt, Pd, Ni, In, Ti, alloys of Ag, Au, Cu, Se, Te, As, Zn, Sn, Ga, Co, Pt, Pd, Ni, In, Ti, and combinations thereof.

    SUMMARY



    [0008] Embodiments of the present invention provide a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, a preparation method, a photosensitive resin solution, a method for forming BMs, and a CF substrate. As the particle size of the nanocrystallines in the nanocrystalline solution is smaller and light within the ultraviolet-visible light range can be absorbed, the BMs formed by utilization of the nanocrystalline solution can obtain good light shielding performance while having a small thickness.

    [0009] At least one embodiment of the present invention provides a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. The particle size of Cu2Zn0.14Sn0.25Te2.34 nanocrystallines dispersed in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution is 5 to 20 nm; the band gap of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline is 0.8 to 1.5ev; and the grain surface of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline has organic functional groups such as a long-chain alkyl, an amino and a carbonyl.

    [0010] At least one embodiment of the present invention provides a method for preparing a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. The method comprises: adding 0.1 to 1 mmol copper acetylacetonate, 0.2 to 2 mmol zinc acetylacetonate and 0.1 to 1 mmol stannous chloride into 5 to 50 ml oleyl amine to form a mixed solution; heating the mixed solution up to 100-150 °C, performing vacuum pumping until no bubble is produced in the mixed solution, stopping vacuum pumping, and introducing nitrogen, argon or other inert gas into the mixed solution; heating the mixed solution up to 120-180°C, and adding 1 to 10ml of 1mol/L tributyl phosphate-tellurium (TBP-Te) precursor solution into the mixed solution; heating the mixed solution up to 150-220°C, and reacting for 5 to 10 min; and cooling the mixed solution to the room temperature after the reaction process is over and adding a dispersant into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution.

    [0011] For instance, elemental tellurium is dissolved in a tributyl phosphate (TBP) solvent under the protection of protective atmosphere such as nitrogen and argon to obtain the TBP-Te precursor solution.

    [0012] For instance, the step of cooling the mixed solution to the room temperature after the reaction process is over and adding the dispersant into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution includes: cooling the mixed solution to the room temperature after the reaction process is over and adding n-hexane into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, in which the volume of the n-hexane added is 5 to 10 times the volume of the mixed solution.

    [0013] At least one embodiment of the present invention provides a photosensitive resin solution. The photosensitive resin solution is used for forming BMs and includes a light shielding material, an organic solvent and a resin, in which the light shielding material is the foregoing Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. The resin material may be one or a combination of more selected from epoxy acrylate resin, polyurethane acrylate, unsaturated polyester, acrylate resin and polyether acrylate.

    [0014] For instance, the concentration of the photosensitive resin solution is 0.5 to 100g/L.

    [0015] For instance, the organic solvent is at least one selected from ethanol, ethylene glycol, n-butanol, isobutanol, isoamylol, tertiary amyl alcohol and glycerol; or the organic solvent is at least one selected from ethylene diamine, isobutylamine, diisopropylamine, hexamethylene diamine and triethylamine; or the organic solvent is at least one selected from acetic acid, propionic acid and ethane diacid.

    [0016] At least one embodiment of the present invention provides a method for manufacturing BMs. The manufacturing method is used for forming the BMs in a CF substrate. The method comprises: forming a photosensitive resin solution which is the foregoing photosensitive resin solution; cleaning a substrate obtained after forming a CF layer thereon; spraying the photosensitive resin solution onto the side of the substrate provided with the CF layer by a solution method via a mask; and drying the substrate sprayed with the photosensitive resin solution to obtain the BMs.

    [0017] For instance, the step of forming the photosensitive resin solution includes: dispersing the light shielding material into the organic solvent to form a mixed solution; and dispersing the resin into the mixed solution to form the photosensitive resin solution.

    [0018] For instance, the solution method includes spray coating method, inkjet printing method and screen printing method.

    [0019] At least one embodiment of the present invention provides a CF substrate, which comprises the BMs formed by the foregoing manufacturing method.

    [0020] At least one embodiment of the present invention provides a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. The particle size of Cu2Zn0.14Sn0.25Te2.34 nanocrystallines dispersed in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution is 5 to 20 nm; the band gap of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline is 0.8 to 1.5ev; and the grain surface of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline has organic functional groups. The particle size of the Cu2Zn0.14Sn0.25Te2.34 nanocrystallines in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution is small; the surface of the Cu2Zn0.14Sn0.25Te2.34 nanocrystallines has organic functional groups; the dispersivity is excellent; and light within the ultraviolet-visible light range is absorbed. Therefore, BMs formed by utilization of the nanocrystalline solution can obtain good light shielding performance while having a small thickness.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] Simple description will be given below to the accompanying drawings of the embodiments to provide a more clear understanding of the technical solutions of the embodiments of the present invention. Obviously, the drawings described below only involve some embodiments of the present invention. Other drawings may also be obtained by those skilled in the art without creative efforts on the basis of the accompanying drawings.

    FIG. 1 is a schematic diagram of a model of a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline;

    FIG. 2 is an ultraviolet-visible-near infrared absorption spectrogram of a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline according to an embodiment of the present invention;

    FIG. 3 is a flowchart of a method for preparing a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution according to an embodiment of the present invention; and

    FIG. 4 is a schematic structural view of a CF substrate according to an embodiment of the present invention.



    [0022] Reference numerals of the accompanying drawings:
    01- CF Substrate; 10- BM; 20- CF Layer; 100- Cu2Zn0.14Sn0.25Te2.34 Nanocrystalline; 101-Grain; 102- Organic Functional Group.

    DETAILED DESCRIPTION



    [0023] Clear and complete description will be given below to the technical solutions of the embodiments of the present invention with reference to the accompanying drawings of the embodiments of the present invention. Obviously, the preferred embodiments are only partial embodiments of the present invention, rather than all the embodiments of the present invention. All the other embodiments obtained by those skilled in the art without creative efforts on the basis of the embodiments of the present invention illustrated shall fall within the scope of protection of the present invention.

    [0024] An embodiment of the present invention provides a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. As illustrated in FIG. 1, the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 dispersed in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution has a particle size of 5 to 20 nm; the band gap of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 is 0.8 to 1.5ev; and the surface of a grain 101 of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 has organic functional groups 102.

    [0025] It should be noted that: firstly, the nanocrystalline refers to a crystal the particle size of which is in nanometer level (1 to 100 nm). FIG. 1 is only a model diagram of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100, in which the relative size between the grain of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 and the organic functional group on its surface does not correspond to the actual size.

    [0026] Secondly, in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 provided by the embodiment of the present invention, the grain is composed of a Cu2Zn0.14Sn0.25Te2.34 semiconductor compound which is formed by Cu element, Zn element, Sn element and Te element at a stoichiometric ratio of 2:0.14:0.25:2.34.

    [0027] Thirdly, the particle size distribution, the band gap and the chemical element distribution of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 can be obtained by related tests on the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, for example via a transmission electron microscope (TEM), an X-ray energy dispersive spectroscopy (EDS), an ultraviolet visible spectrophotometer (UV-VIS), and an inductively coupled plasma-atomic emission spectrometry (ICP-AES), in which the ratio of the metal elements in the compound can be further determined by ICP-AES analysis, and hence the molecular formula of the nanocrystalline compound of the present invention can be determined. In the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution provided by the embodiment of the present invention, the particle size of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 is 5 to 20nm. The particle size in a nanometer level is much smaller than the particle size in a micron level of the black pigment in the prior art, and uniformity of the particle size distribution is also higher. Due to a smaller particle size, the specific surface area of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline is larger, and hence the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline can be more easily and uniformly dispersed in a dispersant, which is conducive to the stability of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution.

    [0028] Fourthly, the band gap of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 is 0.8 to 1.5ev. it can be seen from the ultraviolet-visible absorption spectrogram of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 as illustrated in FIG. 2, the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 has an obvious absorption band over the ultraviolet-visible range (400 nm to 700nm), which indicates that in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution provided by the embodiment of the present invention, the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 has good UV-Vis absorption, and the BMs formed by utilization of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution have good light absorption characteristic.

    [0029] Fifthly, as the surface of the grain 101 of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 has organic functional groups 102, the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 may be easily dissolved in an organic solvent according to the Like Dissolves Like Theory, which facilitates forming a BM film.

    [0030] No limitation will be given here to the variety and amount of the organic functional groups 102 in the embodiments of the present invention.

    [0031] An embodiment of the present invention provides a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. The particle size of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 dispersed in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution is 5 to 20nm; the band gap of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 is 0.8 to 1.5ev; and the surface of a grain 101 of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 has organic functional groups 102. The particle size of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution is small; the surface has the organic functional groups 102; the dispersivity is excellent; and light within the ultraviolet-visible light range can be absorbed. Therefore, the BMs formed by utilization of the nanocrystalline solution can obtain good light shielding performance while having a small thickness.

    [0032] On this basis, an embodiment of the present invention further provides a method for preparing the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. As illustrated in FIG. 3, the method comprises:

    [0033] S01: adding 0.25 mmol copper acetylacetonate, 0.5mmol zinc acetylacetonate and 0.25 mmol stannous chloride into 12ml oleyl amine to form a mixed solution.

    [0034] Herein, as for the mmol (wherein mol is the unit of the amount of a substance, with a symbol of n), 1 mmol = 1/1000 mol, and the conversion formula between the mol (n) and the mass (m) of the substance is as follows:


    in which m refers to the mass of the substance, and M refers to the molar mass of the substance.

    [0035] Taking the copper acetylacetonate (also referred to as copper(II) acetylacetonate) as an example, it has a molecular formula of C10H14O4CU, and the relative molecular mass is 261.76, namely the molar mass of the copper acetylacetonate is equal to 261.76, and the unit is g/mol.

    [0036] As for the zinc acetylacetonate, the molecular formula is C10H14O4Zn; the relative molecular mass is 263.6248, namely the molar mass of the zinc acetylacetonate is equal to 263.6248; and the unit is g/mol.

    [0037] As for the stannous chloride, the molecular formula is SnCl2; the relative molecular mass is 189.616, namely the molar mass of the stannous chloride is equal to 189.616; and the unit is g/mol.

    [0038] As for the oleyl amine, the molecular formula is C18H37N; the relative molecular mass is 267.4931, namely the molar mass of the oleyl amine is equal to 267.4931; and the unit is g/mol.

    [0039] It should be noted that: in the step S01, the order of the copper acetylacetonate, the zinc acetylacetonate and the stannous chloride added into the oleyl amine is not limited. For instance, the copper acetylacetonate, the zinc acetylacetonate and the stannous chloride may be added into a reaction vessel (e.g., a three-necked flask), and then the oleyl amine is introduced into the reaction vessel, and magnetic stirring or ultrasonic vibration is employed to uniformly dissolve the above reaction substances in the oleyl amine. Alternatively, the copper acetylacetonate, the zinc acetylacetonate and the stannous chloride may be added in sequence under continuous stirring or vibration.

    [0040] S02: heating the mixed solution up to 110°C, performing vacuum pumping until no bubble is produced in the mixed solution, stopping vacuum pumping, and introducing nitrogen or argon into the mixed solution.

    [0041] S03: heating the mixed solution up to 160 °C, and adding 2ml of 1mol/L tributyl phosphate-tellurium (TBP-Te) precursor solution into the mixed solution.

    [0042] Herein, Tributyl phosphate (TBP) has a molecular formula of C12H27O4P and a relative molecular mass of 266.32 and is usually used as a solvent and/or an extractant for rare metal.

    [0043] S04: heating the mixed solution up to 200 °C and reacting for 5 min.

    [0044] S05: cooling the mixed solution to the room temperature after the reaction process is over and adding a dispersant into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution.

    [0045] It should be noted that the "room temperature", also called normal temperature or general temperature, typically has three range definitions, namely: (1) 23°C ± 2°C; (2) 25°C ± 5°C; and (3) 20°C ± 5°C.

    [0046] Herein, as the surface of the grain 101 of the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution has the organic functional groups 102, the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline 100 can maintain being in the solution state by the addition of the dispersant.

    [0047] In addition, the variety and amount of the dispersant is not limited in the embodiments of the present invention, as long as the Cu2Zn0.14Sn0.25Te2.34 nanocrystallines 100 are stably dispersed in the solution to form the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution. The dispersant may, for example, be a hydrocarbon organic solvent which has the function of dispersing the Cu2Zn0.14Sn0.25Te2.34 nanocrystallines 100 and avoiding the increase of the particle size due to mutual agglomeration.

    [0048] On this basis, for instance, as for the step S03, elemental tellurium (with the chemical element of Te) may be dissolved in a TBP solvent under the protection of nitrogen or argon to obtain the TBP-Te solution.

    [0049] As for the step S05, specifically, the mixed solution may be cooled to the room temperature after the reaction process is over, and n-hexane (also called hexane, with the molecular formula of C6H14 and the relative molecular mass of 86.2) is added into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, in which the volume of the n-hexane added is 5 to 10 times the volume of the mixed solution.

    [0050] Based on the above description, an embodiment of the present invention further provides a photosensitive resin solution for forming BMs. The photosensitive resin solution includes a light shielding material, an organic solvent and a resin, in which the light shielding material is the foregoing Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution.

    [0051] It should be noted that the resin may be a photosensitive resin or a non-photosensitive resin. No limitation will be given here.

    [0052] As the band gap of the CZST nanocrystalline 100 is 0.8 to 1.5ev, the BMs formed by utilization of the photosensitive resin solution comprising the CZST nanocrystalline solution have good light absorption. Moreover, as the particle size of the CZST nanocrystalline 100 is 5 to 20 nm and the surface of the grain 101 of the CZST nanocrystalline 100 has the organic functional groups 102, namely the CZST nanocrystalline 100 has high dispersivity, and the CZST nanocrystalline 100 has high light absorption, the formed BMs can have a small thickness while having good light absorption characteristic on the whole. Therefore, the problem in the prior art that BMs with large thickness affect the flatness of a CF layer in a CF substrate can be avoided.

    [0053] On this basis, the concentration of the photosensitive resin solution is 0.5 to 100g/L.

    [0054] Herein, the organic solvent in the photosensitive resin solution may be at least one selected from ethanol, ethylene glycol, n-butanol, isobutanol, isoamylol, tertiary amyl alcohol and glycerol; or the organic solvent may be at least one selected from ethylene diamine, isobutylamine, diisopropylamine, hexamethylene diamine and triethylamine; or the organic solvent may be at least one selected from acetic acid, propionic acid and ethane diacid.

    [0055] On this basis, the embodiment of the present invention further provides a method for forming BMs in a CF substrate. The method comprises:
    S11: forming a photosensitive resin solution which is any foregoing photosensitive resin solution.

    [0056] S12: cleaning the substrate obtained after forming a CF layer thereon.

    [0057] S13: spraying the photosensitive resin solution onto the side of the substrate provided with the CF layer by a solution method via a mask.

    [0058] Herein, the mask is provided with a plurality of hollow portions which correspond to gaps between color resists of different colors in the CF layer, namely corresponding to areas of BMs to be formed.

    [0059] S14: drying the substrate sprayed with the photosensitive resin solution to obtain the BMs.

    [0060] On this basis, compared to the prior art in which the BMs are formed by vapor deposition, sputtering, etching and other methods, the method of forming the BMs by the solution method in the embodiment of the present invention at least has the following advantages:
    Firstly, as multiple exposure and development in the process of forming the BMs in the prior art are avoided, the complexity of the process flow can be simplified and the consumption of raw materials can be reduced.

    [0061] Secondly, as the BMs can be formed after one drying process by the above solution method, the possibility of bringing process defects in multiple processes can be reduced, improving the quality of the formed BMs and facilitating a large-scale industrial production.

    [0062] Wherein the step S11 may specifically include the following substeps:
    S111: dispersing the light shielding material into the organic solvent to form a mixed solution.

    [0063] S112: dispersing the resin into the mixed solution to form the photosensitive resin solution.

    [0064] On this basis, in the step S13, the solution method includes spray coating method, inkjet printing method and screen printing method.

    [0065] In addition, the solution method may, for instance, include solution dropping method (Drop), etc.

    [0066] The embodiment of the present invention further provides a CF substrate 01. As illustrated in FIG. 4, the CF substrate 01 comprises the BMs 10 formed by any foregoing forming method.

    [0067] It should be noted that description is given in FIG. 4 only by taking the case that the CF layer includes a plurality of red color resists (marked as R in the figure), green color resists (marked as G in the figure) and blue color resists (marked as B in the figure) as an example, but the embodiments of the present invention are not limited thereto. The CF layer may, for instance, include color resists of other colors.

    [0068] The foregoing is only the preferred embodiments of the present invention and not intended to limit the scope of protection of the present invention. Any change or replacement that may be easily conceived of by those skilled in the art within the technical scope disclosed by the present invention shall fall within the scope of protection of the present invention. Therefore, the scope of protection of the present invention shall be defined by the appended claims.


    Claims

    1. A Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, characterized in that the particle size of Cu2Zn0.14Sn0.25Te2.34 nanocrystallines (100) dispersed in the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution is 5 to 20 nm; the band gap of the Cu2Zn0.14Sn0.25Te2.34 nanocrystallines (100) is 0.8 to 1.5 ev; and the grain (101) surface of the Cu2Zn0.14Sn0.25Te2.34 nanocrystallines (100) has organic functional groups (102).
     
    2. A method for preparing the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution according to claim 1, characterized in that it comprises:

    adding 0.1 to 1 mmol copper acetylacetonate, 0.2 to 2 mmol zinc acetylacetonate and 0.1 to 1 mmol stannous chloride into 5 to 50 ml oleyl amine to form a mixed solution;

    heating the mixed solution up to 100-150 °C, performing vacuum pumping until no bubble is produced in the mixed solution, stopping vacuum pumping, and introducing nitrogen, argon or other inert gas into the mixed solution;

    heating the mixed solution up to 120-180 °C, and adding 1 to 10 ml of 1mol/L tributyl phosphate-tellurium (TBP-Te) precursor solution into the mixed solution;

    heating the mixed solution up to 150-220 °C, and reacting for 5 to 10 min; and

    cooling the mixed solution to the room temperature after the reaction process is over, and adding a dispersant into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution.


     
    3. A method for preparing the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution according to claim 1, characterized in that it comprises:

    adding 0.25 mmol copper acetylacetonate, 0.5 mmol zinc acetylacetonate, and 0.25 mmol stannous chloride into 12 ml oleyl amine to form a mixed solution;

    heating the mixed solution up to 110 °C, performing vacuum pumping until no bubble is produced in the mixed solution, stopping vacuum pumping, and introducing nitrogen into the mixed solution;

    heating the mixed solution up to 160 °C, and adding 2 ml of 1mol/L tributyl phosphate-tellurium (TBP-Te) precursor solution into the mixed solution;

    heating the mixed solution up to 200 °C, and reacting for 5 min; and

    cooling the mixed solution to the room temperature after the reaction process is over, and adding a dispersant into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution.


     
    4. The preparation method according to claim 2 or 3, wherein the tributyl phosphate-tellurium (TBP-Te) precursor solution is obtained by dissolving elemental tellurium in a tributyl phosphate (TBP) solvent under the protection of protective atmosphere.
     
    5. The preparation method according to claim 2 or 3, wherein the step of cooling the mixed solution to the room temperature after the reaction process is over and adding the dispersant into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution includes:

    cooling the mixed solution to the room temperature after the reaction process is over and adding n-hexane into the mixed solution to obtain the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, in which

    the volume of the n-hexane added is 5 to 10 times the volume of the mixed solution.


     
    6. A photosensitive resin solution for forming black matrix, comprising a light shielding material, an organic solvent and a resin, characterized in that
    the light shielding material is the Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution according to claim 1.
     
    7. The photosensitive resin solution according to claim 6, wherein the concentration of the photosensitive resin solution is 0.5 to 100 g/L.
     
    8. The photosensitive resin solution according to claim 6, wherein the organic solvent is at least one selected from ethanol, ethylene glycol, n-butanol, isobutanol, isoamylol, tertiary amyl alcohol and glycerol; or
    the organic solvent is at least one selected from ethylene diamine, isobutylamine, diisopropylamine, hexamethylene diamine and triethylamine; or
    the organic solvent is at least one selected from acetic acid, propionic acid and ethane diacid.
     
    9. A method for manufacturing black matrix (10) in a color filter (CF) substrate (01), characterized in that it comprises:

    forming a photosensitive resin solution which is the photosensitive resin solution according to any one of claims 6 to 8;

    cleaning a substrate obtained after forming a CF layer (20) thereon;

    spraying the photosensitive resin solution onto the side of the substrate provided with the CF layer (20) by a solution method via a mask; and

    drying the substrate sprayed with the photosensitive resin solution to obtain the black matrix (10).


     
    10. The manufacturing method according to claim 9, wherein the step of forming the photosensitive resin solution includes:

    dispersing the light shielding material into the organic solvent to form a mixed solution; and

    dispersing the resin into the mixed solution to form the photosensitive resin solution.


     
    11. The manufacturing method according to claim 9, wherein the solution method includes spray coating method, inkjet printing method, or screen printing method.
     
    12. A color filter (CF) substrate (01), characterized in that it comprises the black matrix (10) formed by the manufacturing method according to any one of claims 9 to 11.
     


    Ansprüche

    1. Eine nanokristalline Cu2Zn0.14Sn0.25Te2.34-Lösung, dadurch gekennzeichnet, dass die Teilchengröße der Cu2Zn0.14Sn0.25Te2.34-Nanokristalle (100) dispergiert in der nanokristallinen Cu2Zn0.14Sn0.25Te2.34-Lösung 5 bis 20 nm beträgt; die Bandlücke der Cu2Zn0.14Sn0.25Te2.34-Nanokristalle (100) 0.8 bis 1.5 eV und die Korn (101)-Oberfläche der Cu2Zn0.14Sn0.25Te2.34-Nanokristalle (100) organische funktionelle Gruppen (102) aufweist.
     
    2. Ein Verfahren zur Herstellung der nanokristallinen Cu2Zn0.14Sn0.25Te2.34 Lösung nach Anspruch 1, dadurch gekennzeichnet, dass es umfasst:

    Zugabe von 0,1 bis 1 mmol Kupferacetylacetonat, 0,2 bis 2 mmol Zinkacetylacetonat und 0,1 bis 1 mmol Zinnchlorid zu 5 bis 50 ml Oleylamin zur Ausbildung einer gemischten Lösung;

    Erhitzen der gemischten Lösung bis zu 100-150°C, Vakuumpumpen bis keine Blasen mehr in der gemischten Lösung gebildet werden; Stoppen des Vakuumpumpens und Einführen von Stickstoff, Argon oder anderem Inertgas in die gemischte Lösung;

    Erhitzen der gemischten Lösung bis zu 120-180°C und Zugabe von 1 bis 10 ml einer 1 mol/L Tributylphosphat-Tellur (TBP-Te)-Precursor Lösung in die gemischte Lösung; Erhitzen der gemischten Lösung bis zu 150-220°C und Reaktion für 5 bis 10 Minuten; und

    Abkühlen der gemischten Lösung auf Raumtemperatur, nachdem der Reaktionsprozess vorbei ist, und Zugabe eines Dispersionsmittels in die gemischte Lösung, um die nanokristalline Cu2Zn0.114Sn0.25Te2.34 Lösung zu erhalten.


     
    3. Ein Verfahren zur Herstellung der nanokristallinen Cu2Zn0.14Sn0.25Te2.34-Lösung nach Anspruch 1, dadurch gekennzeichnet, dass es umfasst:

    Zugabe von 0,25 mmol Kupferacetylacetonat, 0,5 mmol Zinkacetylacetonat und 0,25 mmol Zinnchlorid zu 12 ml Oleylamin zur Ausbildung einer gemischten Lösung;

    Erhitzen der gemischten Lösung bis zu 110°C, Vakuumpumpen bis keine Blasen mehr in der gemischten Lösung gebildet werden; Stoppen des Vakuumpumpens und Einführen von Stickstoff in die gemischte Lösung;

    Erhitzen der gemischten Lösung bis zu 160°C und Zugabe von 2 ml einer 1 mol/L Tributylphosphat-Tellur (TBP-Te)-Precursor-Lösung in die gemischte Lösung;

    Erhitzen der gemischten Lösung bis zu 200°C und Reaktion für 5 Minuten; und

    Abkühlen der gemischten Lösung auf Raumtemperatur, nachdem der Reaktionsprozess vorbei ist, und Zugabe eines Dispersionsmittels in die gemischte Lösung, um die nanokristalline Cu2Zn0.14Sn0.25Te2.34-Lösung zu erhalten.


     
    4. Das Herstellungsverfahren gemäß Anspruch 2 oder 3, wobei die Tributylphosphat-Tellur (TBP-Te)-Precursor-Lösung durch Lösen von elementarem Tellur in einem Tributylphosphat (TBP)-Lösungsmittel unter dem Schutz einer Schutzatmosphäre erhalten wird.
     
    5. Das Herstellungsverfahren gemäß Anspruch 2 oder 3, wobei der Schritt des Abkühlens der gemischten Lösung auf Raumtemperatur, nachdem der Reaktionsprozess vorbei ist, und Zugabe des Dispersionsmittels in die gemischte Lösung, um die nanokristalline Cu2Zn0.14Sn0.25Te2.34-Lösung zu erhalten, beinhaltet:
    Abkühlen der gemischten Lösung auf Raumtemperatur, nachdem der Reaktionsprozess vorbei ist, und Zugabe von n-Hexan in die gemischte Lösung, um die nanokristalline Cu2Zn0.14Sn0.25Te2.34-Lösung zu erhalten, wobei das Volumen des zugegebenen n-Hexans 5 bis 10 Mal das Volumen der gemischten Lösung ist.
     
    6. Eine lichtempfindliche Harzlösung zur Bildung einer schwarzen Matrix, umfassend ein lichtabschirmendes Material, ein organisches Lösungsmittel und ein Harz, dadurch gekennzeichnet, dass
    das lichtabschirmende Material die nanokristalline Cu2Zn0.14Sn0.25Te2.34-Lösung gemäß Anspruch 1 ist.
     
    7. Die lichtempfindliche Harzlösung gemäß Anspruch 6, wobei die Konzentration der lichtempfindlichen Harzlösung 0,5 bis 100 g/L ist.
     
    8. Die lichtempfindliche Harzlösung gemäß Anspruch 6, wobei das organische Lösungsmittel mindestens eines ausgewählt aus Ethanol, Ethylenglykol, n-Butanol, iso-Butanol, iso-Amylol, tert.-Amylalkohol und Glyzerin ist; oder
    das organische Lösungsmittel mindestens eines ausgewählt aus Ethylendiamin, Isobutylamin, Diisopropylamin, Hexamethylendiamin und Triethylamin ist; oder
    das organische Lösungsmittel mindestens eines ausgewählt aus Essigsäure, Propionsäure und Ethandisäure ist.
     
    9. Ein Verfahren zur Herstellung einer schwarzen Matrix (10) in einem Farbfilter (CF)-Substrat (01), dadurch gekennzeichnet, dass es umfasst:

    Ausbildung einer lichtempfindlichen Harzlösung, die eine lichtempfindliche Harzlösung nach einem der Ansprüche 6 bis 8 ist,

    Reinigung eines Substrats, das nach Ausbildung einer CF-Schicht (20) darauf erhalten wird;

    Sprühen der lichtempfindlichen Harzlösung auf die Seite des Substrats, die mit der CF-Schicht (20) bereitgestellt wird, durch ein Lösungsverfahren mittels einer Maske; und

    Trocknen des mit der lichtempfindlichen Harzlösung besprühten Substrats, um die schwarze Matrix (10) zu erhalten.


     
    10. Das Herstellungsverfahren nach Anspruch 9, wobei der Schritt der Ausbildung der lichtempfindlichen Harzlösung umfasst:

    Dispergieren des Licht abschirmenden Materials in dem organischen Lösungsmittel zur Ausbildung einer gemischten Lösung; und

    Dispergieren des Harzes in der gemischten Lösung, zur Ausbildung der lichtempfindlichen Harzlösung.


     
    11. Das Herstellungsverfahren nach Anspruch 9, wobei das Lösungsverfahren Sprühbeschichtungsverfahren, Tintenstrahldruckverfahren und Siebdruckverfahren umfasst.
     
    12. Ein Farbfilter (CF)-Substrat (01), dadurch gekennzeichnet, dass es die schwarze Matrix (10) enthält, die durch das Herstellungsverfahren nach einem der Ansprüche 9 bis 11 gebildet wird.
     


    Revendications

    1. Une solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34, caractérisée en ce que la taille des particules de nanocristaux Cu2Zn0,14Sn0,25Te2,34 (100) dispersés dans la solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34 est de 5 à 20 nm ; la bande interdite de la solution de Cu2Zn0,14Sn0,25Te2,34 (100) est de 0,8 à 1,5 ev ; et la surface de grain (101) des nanocristaux Cu2Zn0,14Sn0,25Te2,34 (100) possède des groupes fonctionnels organiques (102).
     
    2. Un procédé de préparation de la solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34 selon la revendication 1, caractérisé en ce qu'il comprend :

    l'addition de 0,1 à 1 mmol d'acétylacétonate de cuivre, de 0,2 à 2 mmol d'acétylacétonate de zinc et de 0,1 à 1 mmol de chlorure stanneux dans 5 à 50 ml d'oléylamine pour former une solution mélangée ;

    le chauffage de la solution mélangée jusqu'à 100 à 150 °C, le pompage sous vide jusqu'à ce qu'aucune bulle ne soit produite dans la solution mélangée, l'arrêt du pompage sous vide et l'introduction d'azote, d'argon ou un autre gaz inerte dans la solution mélangée ;

    le chauffage de la solution mélangée jusqu'à 120 à 180 °C, et l'ajout de 1 à 10 ml de solution précurseur de 1 mol/L de phosphate de tributyle-tellurium (TBP-Te) dans la solution mélangée ;

    le chauffage de la solution mélangée jusqu'à 150 à 220 °C, et la réaction pendant 5 à 10 minutes ; et

    le refroidissement de la solution mélangée à la température ambiante après la fin du processus de réaction, et l'ajout d'un dispersant dans la solution mélangée pour obtenir la solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34.


     
    3. Un procédé de préparation de la solution nanocristalline Cu2Zn0,14Sn0,25Te2,34 selon la revendication 1, caractérisé en ce qu'il comprend :

    l'addition de 0,25 mmol d'acétylacétonate de cuivre, 0,5 mmol d'acétylacétonate de zinc et 0,25 mmol de chlorure stanneux dans 12 ml d'oléylamine pour former une solution mélangée ;

    le chauffage de la solution mélangée jusqu'à 110°C, le pompage sous vide jusqu'à ce qu'aucune bulle ne soit produite dans la solution mélangée, l'arrêt du pompage sous vide et l'introduction d'azote dans la solution mélangée ;

    le chauffage de la solution mélangée jusqu'à 160°C, et l'ajout de 2 ml de solution de précurseur de phosphate de tributyle-tellurium (TBP-Te) à 1 mol/L dans la solution mélangée ;

    le chauffage de la solution mélangée jusqu'à 200°C, et la réaction pendant 5 min ; et

    le refroidissement de la solution mélangée à la température ambiante après la fin du processus de réaction, et l'ajout d'un dispersant dans la solution mélangée pour obtenir la solution nanocristalline Cu2Zn0,14Sn0,25Te2,34.


     
    4. Le procédé de préparation selon la revendication 2 ou 3, dans lequel la solution de précurseur de phosphate de tributyle-tellurium (TBP-Te) est obtenue en dissolvant du tellure élémentaire dans un solvant de phosphate de tributyle (TBP) sous la protection d'une atmosphère protectrice.
     
    5. Le procédé de préparation selon la revendication 2 ou 3, dans lequel l'étape de refroidissement de la solution mélangée à la température ambiante après la fin du processus de réaction et d'ajout d'un dispersant dans la solution mélangée pour obtenir la solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34 comprend :

    le refroidissement de la solution mélangée à la température ambiante après la fin du processus de réaction et l'ajout de n-hexane dans la solution mélangée pour obtenir la solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34, dans lequel

    le volume de n-hexane ajouté est de 5 à 10 fois le volume de la solution mélangée.


     
    6. Une solution de résine photosensible pour former une matrice noire, comprenant un matériau de protection contre la lumière, un solvant organique et une résine, caractérisée en ce que
    le matériau de protection contre la lumière est la solution nanocristalline de Cu2Zn0,14Sn0,25Te2,34 selon la revendication 1.
     
    7. La solution de résine photosensible selon la revendication 6, dans laquelle la concentration de la solution de résine photosensible est de 0,5 à 100 g/L.
     
    8. La solution de résine photosensible selon la revendication 6, dans laquelle le solvant organique est au moins l'un parmi l'éthanol, l'éthylène glycol, le n-butanol, l'isobutanol, l'isoamylol, l'alcool amylique tertiaire et le glycérol ; ou

    le solvant organique est au moins l'un parmi l'éthylène diamine, l'isobutylamine, la diisopropylamine, l'hexaméthylène diamine et la triéthylamine ; ou

    le solvant organique est au moins l'un parmi l'acide acétique, l'acide propionique et l'éthane diacide.


     
    9. Un procédé de fabrication d'une matrice noire (10) dans un substrat (01) de filtre coloré (FC), caractérisé en ce qu'il comprend :

    la formation d'une solution de résine photosensible qui est la solution de résine photosensible selon l'une quelconque des revendications 6 à 8 ;

    le nettoyage d'un substrat obtenu après la formation d'une couche de FC (20) sur celui-ci ;

    la pulvérisation de la solution de résine photosensible sur le côté du substrat muni de la couche de FC (20) par un procédé à solution via un masque ; et

    le séchage du substrat pulvérisé avec la solution de résine photosensible pour obtenir la matrice noire (10).


     
    10. Le procédé de fabrication selon la revendication 9, dans lequel l'étape de formation de la solution de résine photosensible comprend :

    la dispersion du matériau de protection contre la lumière dans le solvant organique pour former une solution mélangée ; et

    la dispersion de la résine dans la solution mélangée pour former la solution de résine photosensible.


     
    11. Le procédé de fabrication selon la revendication 9, dans laquelle le procédé à solution comprend un procédé de revêtement par pulvérisation, un procédé d'impression par jet d'encre ou un procédé de sérigraphie.
     
    12. Un substrat (01) de filtre coloré (FC), caractérisé en ce qu'il comprend la matrice noire (10) formée par le procédé de fabrication selon l'une quelconque des revendications 9 à 11.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description