(19)
(11)EP 3 161 657 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 14895738.4

(22)Date of filing:  24.06.2014
(51)International Patent Classification (IPC): 
G06F 15/177(2006.01)
G06F 21/62(2013.01)
G06F 21/57(2013.01)
G06F 9/4401(2018.01)
(86)International application number:
PCT/CN2014/080587
(87)International publication number:
WO 2015/196347 (30.12.2015 Gazette  2015/52)

(54)

FIRMWARE SENSOR LAYER

FIRMWARE-SENSORSCHICHT

COUCHE DE CAPTEURS DE MICROLOGICIEL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
03.05.2017 Bulletin 2017/18

(73)Proprietor: Intel Corporation
Santa Clara, CA 95054 (US)

(72)Inventors:
  • HANEBUTTE, Ulf R.
    Gig Harbor, Washington 98335 (US)
  • YAO, Jiewen
    Shanghai 200135 (CN)
  • ZIMMER, Vincent J.
    Federal Way, Washington 98003 (US)

(74)Representative: Rummler, Felix 
Maucher Jenkins 26 Caxton Street
London SW1H 0RJ
London SW1H 0RJ (GB)


(56)References cited: : 
WO-A1-2011/103652
US-A1- 2008 046 546
US-B1- 8 271 202
WO-A1-2013/126411
US-A1- 2013 238 535
US-B2- 7 844 866
  
  • SRIVIDYA G KEDLAYA ET AL: "Design and Implementation of GPIO Enumeration Library and Application for UEFI-BIOS", INTERNATIONAL JOURNAL OF SCIENTIFIC ENGINEERING AND TECHNOLOGY, 1 May 2014 (2014-05-01), pages 524-528, XP055440271, ISSN: 2277-1581
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] Embodiments of the present disclosure are related to the field of computing devices, and in particular, to providing firmware sensor support for operating system-absent operation of the computing device.

BACKGROUND



[0002] The background description provided herein is for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.

[0003] Virtually all computing devices go through a booting (initialization) process during power on or reset. Typically, during the booting (initialization) process, a power-on self-test is performed, and then peripheral devices are located and initialized, ending with the loading and starting of an operating system. Modern computing platforms contain an abundance of sensors that may continuously collect sensor information. Under the current state of the art, however, the sensor information is accessible only through a sensor layer of an operating system of the computing device. As such, usage of sensor data during the boot process of a computing device, or on a computing device without an operating system, is not available.

[0004] SRIVIDYA G KEDLAYA ET AL, "Design and Implementation of GPIO Enumeration Library and Application for UEFI-BIOS", INTERNATIONAL JOURNAL OF SCIENTIFIC ENGINEERING AND TECHNOLOGY, (20140501), ISSN 2277-1581, pages 524 - 528, XP055440271 describes a General Purpose Input Output (GIPO) library to enumerate all GPIOs' configuration status and to create a stand-alone user application to help a user to configure GIPO pins without diving into BIOS firmware.

[0005] WO 2013/126411 A1 describes a method for thermally aware booting in a portable computing device (PCD).

[0006] US 2013/238535 describes a method to receive sensor data extracted from one or more physical sensors, use the extracted sensor data and a context model to perform a first level context determination, and examine the at least one condition.

BRIEF DESCRIPTION OF THE DRAWINGS



[0007] 

FIG. 1 depicts a schematic illustration of a computing environment having a firmware sensor layer, in accordance with various embodiments of the present disclosure.

FIG. 2 depicts an illustrative boot flow of a computing device, in accordance with various embodiments of the present disclosure.

FIG. 3 depicts an alternative view of the boot flow of FIG. 2, in accordance with various embodiments of the present disclosure.

FIG. 4 depicts an example usage process flow for sealing data, during the boot process, by a data security module, in accordance with various embodiments of the present disclosure.

FIG. 5 depicts an example usage process flow for unsealing data during the boot process, in accordance with various embodiments of the present disclosure.

FIG. 6 depicts an example computing device suitable to implement a firmware sensor layer or any of the sensor usage modules, in accordance with various embodiments of the present disclosure.

Figure 7 illustrates an example storage medium with instructions configured to enable a computing device to practice the present disclosure, in accordance with various embodiments.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS



[0008] Computing devices, methods, and storage media for a sensor layer and sensor usages in an operating system (OS)-absent environment are disclosed herein. In embodiments, a computing device may have a firmware sensor layer configured to receive sensor data produced by a variety of sensors, including during OS-absent operation, such as a boot process of the computing device or in an OS-absent operational mode. The firmware sensor layer may selectively provide the sensor data to one or more usage modules via an interface of the firmware sensor layer that abstracts the various sensors. In embodiments, the usage modules may be configured to act upon the sensor data in various ways, including, e.g., but not limited to, utilizing sensor data concerning environmental factors in deciding whether or not to terminate the boot process, utilizing the sensor data to seal data to the computing device, utilizing sensor data to verify the sensor or calibrate the sensor during the boot process.

[0009] In the following detailed description, reference is made to the accompanying drawings that form a part hereof wherein like numerals designate like parts throughout, and in which is shown, by way of illustration, embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims.

[0010] Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.

[0011] For the purposes of the present disclosure, the phrase "A and/or B" means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase "A, B, and/or C" means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B, and C). The description may use the phrases "in an embodiment," or "in embodiments," which may each refer to one or more of the same or different embodiments. Furthermore, the terms "comprising," "including," "having," and the like, as used with respect to embodiments of the present disclosure, are synonymous.

[0012] FIG. 1 depicts a schematic illustration of a computing environment having a firmware sensor layer 118, in accordance with various embodiments of the present disclosure. In embodiments, the computing environment may include hardware 100 and an operating system-absent (OS-absent) firmware environment 102. OS-absent firmware environment 102 may, in some embodiments, be divided into twosections: a driver stack 104and sensor layer and usages 106. Driver stack 104 may, in some embodiments, be configured to provide communication between firmware sensor layer (hereinafter, simply sensor layer) 118 and hardware 100.

[0013] Hardware 100 may include one or more sensors 108 coupled with host controller 110. Sensors 108 may include any number or type of sensor including, but not limited to, image sensor;audio sensor; touch sensors; global positioning system (GPS); accelerometer; gyroscope; altimeter;moisture sensors; humidity sensors; light sensors; pressure sensors; signal related sensors, such as infrared, Bluetooth, or Wi-Fi; or any combination thereof. Host controller 110 may be configured to controlvarious low-level data transmissions, including transmission of data packets to and from sensors 108, for example.

[0014] In embodiments, driver stack 104 may includeone or more host controller drivers 112, one or more bus drivers 114, and one or more class drivers 116, all of which are referred to singularly hereinafter. Host controller driver 112 may, in some embodiments, be communicatively coupled with host controller 110 and bus driver 114. Host controller driver 112 maybe configured to provide a generic interface between bus driver114 and host controller 110. Host controller driver112 may include any type of customary host controller driver such as, but not limited to,an enhanced host controller interface (EHCI) driver, an open host controller interface (OHCI) driver, a universal host controller interface (UHCI), driver, or any combination thereof.

[0015] Bus driver 114 may be communicatively coupled with host controller driver 112 and class driver 116and may be configured to interface between class driver 116 and host controller driver 112. Bus driver 114 may be configured to provide an array of services, such as, for example, handling connection of one or more pieces of hardware (e.g., sensor(s) 108) to the computing device as well as disconnection therefrom. Bus driver 114 may also provide basic initialization of the one or more pieces of hardware, driver selection for the one or more pieces of hardware, and/or higher-level management of communication channels with the one or more pieces of hardware. Communication bus driver 114 may be, for example, a universal serial bus (USB) driver, a Bluetooth driver, or any other suitable bus or communication driver.

[0016] Class driver 116 may be communicatively coupled with bus driver 114 and sensor layer 118 and may be configured to interface between sensor layer 118 and communication bus driver 114. Class driver 116 may be configured to implement an array of functionality utilizing a set of standardized protocols common to a class of hardware devices. Class driver 116 may, in some embodiments, provide sufficient functionality for the operation of hardware devices that fall within the class. In other embodiments, a separate driver that corresponds with a given hardware device may be utilized in place of, or in addition to, class driver 116. Class driver 116 may be any type of customary class driver, such as, for example, any of the USB class drivers, including, but not limited to, a human interface device (HID) class driver, physical interface device (PID) class driver, content security class driver, personal healthcare class driver, diagnostic device class driver, wireless controller class driver, etc.

[0017] Sensor layer 118 may be communicatively coupled with class driver 116 and one or more firmware usage modules(e.g., usage modules 120-126) and may be configured to interface between class driver 116and the one or more firmware usage modules. In embodiments, sensor layer 118 may be configured to receive and aggregate sensor data produced by any number of sensors (e.g., sensor(s) 108) coupled with the computing device and may be configured to provide the data to the firmware usage modules via an interface that abstracts the sensors to the one or more firmware usage modules. This abstraction may obfuscate sensor-specific information, allowing the firmware usage modules access to data produced by individual sensors without needing to be aware of the specifics of the sensor hardware. In some embodiments, while obfuscating sensor-specific information, sensor layer 118 may also be configured to provide sensor-specific information upon request, such as that discussed in reference to the example process flows of FIGs. 4 and 5. As depicted, sensor layer 118 may be configured to operate in an OS-absent firmware environment, such as, for example, during a boot process of the computing device, during recovery of the computing device, or in an OS-absent operational mode (e.g., during a unified extensible firmware interface (UEFI) shell runtime, such as that discussed below and depicted in FIGs. 2 or 3). As a result, sensor layer 118 may operate independent of an OS on the computing device and may provide sensor support to the computing device during the boot process of the computing device, or in other OS-absent contexts, such as when the computing device is in a low power state (e.g., when the computing device is in a sleep mode) or when the computing device is operating in an OS-absent operational mode. In some embodiments, sensor layer 118 may be composed of multiple sensor sub-layers, wherein each sensor sub-layer may communicate with a different class driver, bus driver, etc. For example, one sensor sub-layer may communicate with a sensor via USB, while another sensor sub-layer may communicate with sensors via Bluetooth.

[0018] As discussed above, sensor layer 118 may be configured to provide sensor data to one or more usage modules, such as provisioning module 120, environmental factor boot module 122, sensor calibration module 124, and data security module 126. Usage modules 120-126 are merely meant to be illustrative and should not be viewed as limiting of this disclosure. In embodiments, usage modules 120-126 may be implemented as firmware to be executed in OS-absent contexts, such as during the boot process of the computing device or in an OS-absent operational mode, (e.g., the UEFI shell runtime discussed elsewhere herein), and may be configured to act upon sensor data collected and provided to the individual usage modules by sensor layer 118.

[0019] Provisioning module 120 may, in some embodiments, be configured to receive requests for sensor data from one or more requesters that may not have direct access to sensor layer 118, and provisioning module 120 may be configured to provide data from sensor layer 118 to these requesters. In some embodiments, provisioning module 120 may only provide the requested data if one or more predefined conditions are met by the requester and/or the sensor data. In other embodiments, provisioning module 120 may be configured to enable or disable one or more features of the computing device if one or more predefined conditions are met. These conditions may be defined within provisioning module 120 or may be defined by another firmware module that may be accessible to provisioning module 120. The conditions may include any condition based upon sensor data provided to provisioning module 120 by sensor layer 118. As an example, if provisioning module 120 detects from the sensor data that the computing device is booting in a low light environment, then provisioning module 120 may provision a backlight for a keyboard attached to the computing device.

[0020] Environmental factor boot module 122 may, in some embodiments, be configured to receive sensor data from sensor layer 118 and apply one or more policies based at least in part on the sensor data. These policies may be defined within environmental factor boot module 122 or may be defined by another firmware module that may be accessible to environmental factor boot module 122. In embodiments, the sensor data may be associated with environmental factors defined by the one or more policies. These environmental factors may include, but are not limited to, data concerning temperature, moisture, humidity, altitude, sound pressure level, audio frequency, vibration, velocity, acceleration, and/or lighting.

[0021] In some embodiments, the one or more policies may include termination of the boot process based upon one or more environmental factors. For instance, environmental factor boot module 122 may be configured to terminate the boot process, or cause the boot process to be terminated, if one or more of sensors 108 indicate that the computing device is booting in an inhospitable environment for the computing device. As an example, if the computing device is booting in an environment that is too hot for the computing device to function properly, environmental factor boot module 122 may be configured to terminate the boot process or cause the boot process to terminate.

[0022] In other embodiments, environmental factor boot module 122 may be configured to selectively instantiate, or cause to be instantiated, one or more drivers based at least in part on one or more environmental factors associated with the sensor data. For instance, and merely as an example, one driver, or set of drivers, may be selected for instantiation in low light conditions while another driver or set of drivers may be selected for instantiation in other higher light conditions. Such lighting conditions may be determined utilizing sensor data from a light sensor of the environment in which the computing device is operated.

[0023] Sensor calibration module 124 may be configured to receive sensor data from sensor layer 118 and validate or calibrate at least a portion of the sensor data. To validate the portion of the sensor data, the sensor calibration module 124 may utilizeknown reference data to compare with sensor data received from sensor layer 118 and may validate the sensor data received against the reference value. In some embodiments, the reference value may be previously stored sensor data. In other embodiments, the reference value may be sensor data provided by a reference sensor. In still other embodiments, the reference value may be a reference value provided by the sensor through sensor layer 118. In some embodiments, the sensor calibration module 124 may then verify the validation to an operating system, upon initiation of the operating system, to attest to the accuracy of the validated sensor data.

[0024] To calibrate the portion of the sensor data, the sensor calibration module 124 may seek to validate the received sensor data against a reference value, as discussed above, and may seek to calibrate the sensor data in the event the validation fails. In some embodiments, sensor calibration module 124 may interact with sensor layer 118 to adjust the sensor that produced the received sensor data to cause data produced by the sensor to match the reference value. In other embodiments, sensor calibration module 124 may directly manipulate the received data to cause the data to match the reference value. In such an embodiment, manipulated data may then be provided to a requester or a measure of the manipulation may be reported to a requester. For instance, sensor calibration module 124 may provide a measure of the manipulation to an application that may utilize the measure of the manipulation to calibrate data provided to the application by sensor layer 118 or directly from the respective sensor.

[0025] Data security module 126 may be configured to secure, or seal, data to the computing device. In embodiments, data security module 126 may be configured to seal data to the computing device by encrypting the data utilizing local sensor information, which may then prevent the data from being decrypted without the local sensor information. The process for this is described in greater detail in reference to Figures 5 and 6, below.

[0026] FIG. 2 depicts an illustrative boot flow200 of a computing device, in accordance with various embodiments of the present disclosure.The stages of the boot flow are depicted along the right-hand side of FIG. 2. The SEC & PEI stage of the boot flow correspond with a Security phase and a Pre-Extensible Firmware Environment (PEI) phase of the boot flow, respectively. The DXE phase corresponds with the driver execution environment phase of the boot flow. The BDS phase corresponds with the Boot Device Selector phase of the boot flow. Finally, the TSL phase and the RT phase correspond with the transient system load phase and the runtime phase, respectively. Each of these phases is discussed in further detail in reference to FIG. 3, below. It will be appreciated that boot flow 200 represents a selected group of processes that may occur within an example boot flow; additional processes that are not applicable to this disclosure are not presented or discussed, as they will be readily understood in the art. In addition, it will be appreciated that the different processes of the boot flow, while delineated as occurring within specific phases of the boot flow, may actually span into an adjacent boot flow phase as necessary. Boot flow 200 may begin at block 202 where the computing device may be powered on or reset. After the computing device has powered on or reset, the process may enter an SEC and PEI phase, and proceed to block 204 where basic firmware may be initialized. This basic firmware may include firmware configured to initialize a motherboard, a chipset, a central processing unit (CPU), system memory, etc.

[0027] After initialization of the basic firmware, the process may proceed to block 206 where a UEFI phase may be initiated. The UEFI phase may initiate a driver execution environment (DXE) in which various processes may be performed, including the discovery of sensors at block 208. The sensors may be, for example, any type of sensor discussed herein. Once the sensors have been discovered, any usage modules may be loaded at block 210. These usage modules may include, for example, provisioning module 212, data security module 214, calibration module 216, and environmental factor boot module 218. Each of these usage modules may be configured to perform the functionality described elsewhere herein. The usage modules may be loaded by loading a set of instructions for implementing the individual usage modules into a memory of the computing device for execution thereof by a processor coupled with the memory.

[0028] The usage modules may also be initialized at block 210. This may include resetting any values associated with the individual usage modules that may not be persisted. For example, if a previous boot had triggered termination of the boot process by, or at the request of, environmental factor boot module 218, this may be carried out by a boot termination value, stored within environmental factor boot module 218 or within a memory accessible by environmental factor boot module 218, being set to a termination value, such as "1" to indicate that the termination value is true. In such a scenario, this termination value may be reset to a default value, such as "0" to indicate that the termination value is false.

[0029] After the usage modules have been loaded and initialized, the process may proceed to block 220 where it may be determined whether the computing device is within a sensor polling interval. If the computing device is within the sensor polling interval, the process may proceed to block 222 where a determination may be made as to whether any sensors are available. If there are no sensors available, the process may proceed to block 224 where a local report is generated and the process may loop back to block 220. If there are sensors available, the process may proceed to block 226 where the sensor data is collected and logged by a sensor layer, such as that described elsewhere herein. From block 226, the process may proceed to block 228 where the usage modules, e.g., usage modules 212-218 may be executed to perform any of the processes or functionalities described herein. Block 228 may be, for example, where the termination value, discussed above, is changed from false to true by environmental factor boot module 218 to cause the termination of the boot process based on one or more environmental factors. After block 228 is complete, the process may loop back to block 220 where this process may repeat.

[0030] If, at block 220, the computing device is not in a sensor polling interval, then the process may enter the BDS phase and proceed to block 230 where a determination may be made as to whether or not it is time to load and start the operating system (OS). If it is not time to initialize the OS, the process may proceed to block 224where a local report is generated and the process may then loop back to block 220. If it is time to initialize the OS at block 230, then the process may proceed to block 232 where a determination is made as to whether the conditions for initialization are satisfied. Block 232 is where a variable such as the termination value may be evaluated to determine whether the boot process should proceed or be terminated. If block 232 is resolved in the negative, then the process may proceed to block 234 where the boot process may be terminated. As an example, if the termination value discussed above is true, then the result of block 232 may be negative and the boot process may be terminated at block 234. If block 232 is resolved in the affirmative, then the process may proceed to block 236 where the sensor information may be passed to the OS. In embodiments, where calibration module 216 verifies the results of one or more sensors or calibrates the one or more sensors, this verification or the calibration information may be passed to the OS at block 236 as well. At block 238, the computing device may enter the OS runtime environment and the process may end.

[0031] In an alternate embodiment, such as, for example, where the computing device may be an internet of things (IOT) edge device, a full operating system may not be necessary for the proper functioning of the computing device and the computing device may operate in an OS-absent operational mode. In another embodiment OS-absent mode may include when the main OS is suspended, such as via the invocation of a system management interrupt (SMI) leading to passing control of the main CPU's into system management mode (SMM). In such embodiments, the functionality depicted within block 240 may be replaced with the functionality depicted in block 242. In such an embodiment, if the sensor polling interval is finished, then the process may proceed to block 244 where a determination may be made as to whether or not it is time to initialize the unified extensible firmware interface (UEFI) operating environment (e.g., a UEFI Shell runtime). If it is not time to initialize the UEFI shell operating environment, the process may proceed to block 224 where a local report is generated and the process may then loop back to block 220. If it is time to initialize the UEFI shell operating environment at block 244, then the process may proceed to block 246 where a determination is made as to whether the conditions for initialization of the UEFI shell operating environment are satisfied. Block 246 is where a variable such as the termination value may be evaluated to determine whether the boot process should proceed or be terminated. If block 246 is resolved in the negative, then the process may proceed to block 234, discussed above, where the boot process may be terminated. As an example, if the termination value discussed above is true, then the result of block 246 may be negative and the boot process may be terminated at block 234. If block 246 is resolved in the affirmative, then the process may proceed to block 248 where the UEFI shell operating environment may be initialized. In embodiments, where calibration module 216 verifies the results of one or more sensors or calibrates the one or more sensors, this verification or the calibration information may be passed to the UEFI shell operating environment at block 248 as well. At block 250, the computing device may enter the UEFIshell runtime and the process may end.

[0032] FIG. 3 depicts an alternative view of the boot flow of FIG. 2, in accordance with various embodiments of the present disclosure. Bootflow 300 may begin in a security (SEC) phase302where astartup process may execute at314. The startup process may perform a number of preliminary actions such as, for example, flushinga central processing unit (CPU) cache of the computing device, executing abasic input/output system (BIOS) reset vector of the computing device to initiate a BIOS of the computing device, and establishing a data area in the CPU cache to enable a stack based programming language to be used prior to initialization of system memory.

[0033] The SEC phase302 may hand off to a pre-extensible firmware interface (PEI) phase304. In the PEI phase 304, a PEI module may be executed, or caused to be executed, at 316 by the BIOS. The PEI module may initialize, or cause the initialization of, the CPU of the computing deviceat 318, a chipset of the computing deviceat 320, and a motherboard of the computing device at 322.The PEI phase 304 may prepare the computing device for the driver execution environment (DXE) phase 306. Boot services and runtime servicesalong with driver execution environment (DXE) dispatcher may be executed, or caused to executed, by the BIOS at326 and 324, respectively. PEI phase 304 may hand off to DXE phase 306.

[0034] During DXE phase 306, firmware may be executed, such as DXEdispatcher at324,which may be responsible for searching for and initializing drivers that provide device support during the boot process. As such, the DXE dispatchermay initialize a series of device, bus, and service drivers in blocks 328, such as drivers 112-116 of FIG. 1. Blocks 328 are where the sensor layer and any usage modules may also be loaded and initialized, such as firmware sensor layer 118 and firmware usage modules 120-126 of FIG. 1. The DXE dispatcher may execute, or cause initiation of execution of, boot dispatcher at 330, and then DXE phase 306 may hand off to the boot device selector (BDS) phase 308.

[0035] The boot dispatcher may implementa platform boot policy and may execute, or cause the execution of,transient OS boot loader at 332 and/or may execute, or cause the execution of,final OS boot loaderat 338 during transient tystem toad (TSL) phase 310. In one embodiment, during TSL phase 310, transient OS boot loaderat 332 may initiate execution of the UEFI shell at 334, which in turn may initiate execution of OS-absent application(s)at 336.The final OS boot loader may finalize the OS environmentat 342,at which point the BIOS may hand over control of the computing device to the OS of the computing device. During the runtime phase the finalized OS environment may execute OS-present application(s) at 340.

[0036] In other embodiments, process 300 may be carried out independent of an OS in an OS-absent environment. An OS-absent environment may be implemented, for example, on an internet of things (IOT) edge device or any other computing device that does not require the full functionality provided by an OS. In such an environment, TSL phase 310 and RT phase 312 may be omitted and replaced with UEFI shell runtime phase 346 depicted in block 344 which may cause the computing device to achieve a UEFI operational state. In such an embodiment, boot dispatcher 330 may implement a platform boot policy and may execute, or cause the execution of,UEFI shell boot loader 346. UEFI shell boot loader 346 may initiate execution of the UEFI Shell runtime at 350 which may in turn initiate execution of one or more UEFI shell applications at 352. As such, the UEFI shell may maintain control of the computing device. The above mentioned UEFI shell applications may include, for example, the firmware sensor layer and/or sensor usages discussed above. As an example, firmware, such as provisioning module 120 of FIG.1 may execute at 352 and may be configured to report sensor data provided by the firmware sensor layer to a remote server for aggregation of the sensor data with sensor data from other computing devices that may be similarly configured.

[0037] FIG. 4 depicts example sensor data usage process flow 400 for sealing data, in an OS-absent environment (e.g., during the boot process of a computing device or in an OS-absent operational state) by a data security module, such as data security module 126 of FIG. 1 or data security module 214 of FIG. 2, in accordance with various embodiments of the present disclosure. The process may begin at block 402 where a data seal command may be received during the boot process by the data security module along with data to be sealed from a requester. In some embodiments, the request may have been made by or initiated by a basic input/output system(BIOS) of a computing device.At block 404 the data security module may retrieve local sensor information via afirmware sensor layer (e.g., firmware sensor layer 118 of FIG. 1). The local sensor information may include sensor readings, sensor state information, and/or sensor calibration information. At block 406an encryption key may be generated by the data security module utilizing the local sensor information received from the firmware sensor layer and, at block 408, the data may be encrypted by the data security module utilizing the encryption key, such that the data may be sealed to the computing device via the local sensor information even during the boot process. At block 410, the sealed data may be output by the data security module to the requester and the local sensor information may be persisted as sealing, or encryption, information.

[0038] FIG. 5 depicts an illustrative example usage process flow 500for unsealing datain an OS-absent environment (e.g., during the boot process of a computing deviceor in an OS-absent operational state), in accordance with various embodiments of the present disclosure. The process may begin at block 502 where an unseal command and sealed data may be received by the data security module from a requester, such as a BIOS of the computing device, during a boot process of a computing device. At block 504, in some embodiments, sealing information associated with the sealed data may be retrieved by the data security module. The sealing information may be retrieved from a repository where the sealing information was persisted or may be retrieved from the request received at block 502. At block 506 local sensor information corresponding with the sealing information may be retrieved by the data security module via a firmware sensor layer (e.g., firmware sensor layer 118 of FIG. 1). At block 508, the data security module may make a determination as to whether the sealing information matches the local sensor information. If the sealing information does not match the local sensor information, then the process may proceed to block 510 where the data security module may return a security violation. If the sealing information does match the local sensor information, then the process may proceed to block 512 where the data security module may decrypt the sealed data utilizing the local sensor information, such that sealed data of the computing device may be unsealed via the local sensor information even during the boot process. At block 514 the data security module may send the decrypted data to the requester.

[0039] FIG. 6 depicts an example computing device suitable for having a firmware sensor layer, such as firmware sensor layer 118 of Fig. 1, or any of the sensor usage modules, such as those described previously herein, in accordance with various embodiments of the present disclosure. As shown, computing device 600 may include one or more processors or processor cores602, and system memory 604. In embodiments, multiple processor cores 602 may be disposed on one die. For the purpose of this application, including the claims, the terms "processor" and "processor cores" may be considered synonymous, unless the context clearly requires otherwise. Computing device600 may include firmware storage 606. Firmware storage 606 may take the form of non-volatile memory, including, but not limited to, read-only memory (ROM), erasable programmable read only memory (EPROM), and/or flash memory. Additionally, computing device 600 may include mass storage device(s) 608 (such as diskette, hard drive, compact disc read-only memory (CD-ROM), and so forth), input/output (I/O) device(s) 610 (such as display, keyboard, cursor control, and so forth), communication interfaces 612 (such as network interface cards, modems, and so forth), and sensor device(s) 614, which may include, but are not limited to, any of the sensors discussed herein. The elements may be coupled to each other via system bus 616, which may represent one or more buses. In the case of multiple buses, they may be bridged by one or more bus bridges (not shown).

[0040] Each of these elements may perform its conventional functions known in the art. In particular, system memory 604 and firmware storage606 may be employed to store a working copy and a permanent copy of programming instructions implementing the operations described earlier, e.g., but not limited to, operations associated with a firmware sensor layer and/or sensor usage modules, generally referred to as computational logic 622. The various operations may be implemented by assembler instructions supported by processor(s) 602 or high-level languages, such as, for example, C, that may be compiled into such instructions.

[0041] The permanent copy of the programming instructions may be placed intofirmware storage606 in the factory, or in the field, through, for example, a distribution medium (not shown), such as a compact disc (CD), or through communication interface 612 (from a distribution server (not shown)). That is, one or more distribution media having an implementation of a firmware sensor layer and/or one or more sensor usage modules may be employed to distribute the sensor layer and/or one or more sensor usage modules to various computing devices.

[0042] The number, capability, and/or capacity of these elements 610-614 may vary, depending on the intended use of example computing device 600, e.g., whether example computing device600 is a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant, an ultra-mobile personal computer, a mobile phone, a desktop computer, a server, an internet of things device, or a set-top box. The constitutions of these elements 610-614 are otherwise known, and accordingly will not be further described.

[0043] FIG. 7 depicts an illustrative non-transitory computer-readable storage medium having instructions configured to practice all or selected ones of the operations associated with the sensor layer and/or one or more sensor usage modules, earlier described, in accordance with various embodiments. As illustrated, non-transitory computer-readable storage medium 702 may include a number of programming instructions 704. Programming instructions 704 may be configured to enable a device, e.g., computing device 600, in response to execution of the programming instructions, to perform one or more operations of the processes described in reference to Figures 1-5. In alternate embodiments, programming instructions 704 may be disposed on multiple non-transitory computer-readable storage media 702 instead. In still other embodiments, programming instructions 704 may be encoded in transitory computer-readable signals.

[0044] Referring back to Figure 6, for one embodiment, at least one of processors 602 may be packaged together with computational logic 622 (in lieu of storing in memory 604 and/or firmware storage606) configured to perform one or more operations of the processes described with reference to Figures 1-5. For one embodiment, at least one of processors 602 may be packaged together with computational logic 622 configured to practice aspects of the methods described in reference to Figures 1-5 to form a System in Package (SiP). For one embodiment, at least one of processors 602 may be integrated on the same die with computational logic 622 configured to perform one or more operations of the processes described in reference to Figures 1-5. For one embodiment, at least one of processors 602 may be packaged together with computational logic 622 configured to perform one or more operations of the processes described in reference to Figures 1-5 to form a System on Chip (SoC). Such a SoC may be utilized in any suitable computing device.

[0045] For the purposes of this description, a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be volatile or non-volatile memory. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable storage medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk, and an optical disk. Current examples of optical disks include compact disk - read only memory (CD-ROM), compact disk - read/write (CD-R/W), and DVD.

[0046] Embodiments of the disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment containing both hardware and software elements. In various embodiments, software may include, but is not limited to, firmware, resident software, microcode, and the like. Furthermore, the disclosure can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system.

[0047] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described, without departing from the scope of the embodiments of the disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that the embodiments of the disclosure be limited only by the claims.


Claims

1. A method for computing, comprising:

instantiating, by an operating system, OS,-absent firmware environment (102) of a computing device, a sensor layer (118) arranged with an interface that provides an abstraction of a plurality of sensor devices (108, 614);

receiving, by the sensor layer in the OS-absent firmware environment, sensor data produced by the plurality of sensor devices;

aggregating, by the sensor layer in the OS-absent firmware environment, the sensor data;

selectively providing, by the sensor layer, the sensor data or aggregated sensor data to one or more firmware modules via the interface of the sensor layer; characterized in that the method further comprises

selectively instantiating, by an environmental factor boot module (122) in the OS-absent firmware environment, one or more drivers, based at least on one or more environmental factors associated with the sensor data or the aggregated sensor data.


 
2. The method of claim 1, wherein the OS-absent firmware environment (102) is part of a boot process to result in the instantiation of an operating system on the computing device, and wherein the firmware environment is independent of the operating system.
 
3. The method of claim 1, wherein the one or more firmware modules include an environmental factor boot module (122) and further comprising:

receiving, by the environmental factor boot module, a portion of sensor data from the sensor layer (118) through the interface of the sensor layer; and

applying, by the environmental factor boot module, one or more policies based at least in part on the portion of sensor data, wherein the portion of sensor data is associated with one or more environmental factors defined by the one or more policies, and wherein applying the one or more policies further includes:

determining whether the one or more policies are violated based at least in part on the portion of sensor data associated with the one or more environmental factors; and

terminating a boot process, of the computing device, based at least in part on a result of the determining.


 
4. The method of claim 3, wherein applying one or more policies further comprises selectively instantiating one or more drivers (112, 114, 116) based at least in part on the portion of sensor data associated with the environmental factors, and wherein the environmental factors include one or more of temperature, moisture, humidity, altitude, sound pressure level, audio frequency, vibration, velocity, acceleration, or lighting.
 
5. The method of claim 1, wherein the OS-absent firmware environment is a unified extensible firmware interface, UEFI, environment of a boot process of the computing device.
 
6. The method of claim 5, wherein the computing device is independent of an operating system and further comprising instantiating, by the firmware environment, an extensible firmware interface operating environment resulting in the computing device achieving an OS-absent operational state.
 
7. The method of claim 1, wherein one or more sensor devices of the plurality of sensor devices (108, 614) are disposed on the computing device, and operatively coupled with the processor via a bus interface.
 
8. The method of claim 1, wherein one or more sensor devices of the plurality of sensor devices (108, 614) are communicatively coupled with the computing device via a human interface device, HID, driver.
 
9. An apparatus (100) for computing, comprising:

a processor; and

firmware to be operated by the processor that includes one or more modules and a sensor layer to carry out the method of any one of claims 1-8, wherein the apparatus is the computing device.


 
10. The apparatus (100) of claim 9, wherein one or more sensor devices of the plurality of sensor devices (108, 614) are disposed on the computing device, and operatively coupled with the processor via at least one of a bus interface or a human interface device, HID, driver.
 
11. The apparatus (100) of claim 9, wherein the computing device is an internet of things edge device comprising the plurality of sensor devices or selected from the group consisting of laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant, an ultra-mobile personal computer, a mobile phone, a desktop computer, a server, an internet of things device, or a set-top box.
 
12. One or more computer-readable media having a plurality of instructions stored thereon, the plurality of instructions, when executed by a processor of a computing device, provide the computing device with a firmware environment to carry out the method of any one of claims 1-8.
 


Ansprüche

1. Verfahren zur Datenverarbeitung, umfassend:

Instantiieren einer Sensorschicht (118), die mit einer Schnittstelle angeordnet ist, die eine Abstraktion einer Vielzahl von Sensorvorrichtungen (108, 614) bereitstellt, durch eine Betriebssystem-, BS, freie Firmware-Umgebung (102) einer Datenverarbeitungsvorrichtung;

Empfangen von durch die Sensorschicht in der BS-freien Firmware-Umgebung erzeugten Sensordaten, die durch die Vielzahl von Sensorvorrichtungen erzeugt werden;

Aggregieren der Sensordaten durch die Sensorschicht in der BS-freien Firmware-Umgebung;

selektives Bereitstellen der Sensordaten oder aggregierten Sensordaten durch die Sensorschicht an ein oder mehrere Firmware-Module über die Schnittstelle der Sensorschicht;

dadurch gekennzeichnet, dass das Verfahren ferner umfasst:
selektives Instantiieren eines oder mehrerer Treiber durch ein Umgebungsfaktor-Bootmodul (122) in der BS-freien Firmware-Umgebung, basierend auf mindestens einem oder mehreren Umgebungsfaktoren, die mit den Sensordaten oder den aggregierten Sensordaten verknüpft sind.


 
2. Verfahren nach Anspruch 1, wobei die BS-freie Firmware-Umgebung (102) Bestandteil eines Bootvorgangs ist, der zur Instantiierung eines Betriebssystems auf der Datenverarbeitungsvorrichtung führt, und wobei die Firmware-Umgebung unabhängig vom Betriebssystem ist.
 
3. Verfahren nach Anspruch 1, wobei das eine oder die mehreren Firmware-Module ein Umgebungsfaktor-Bootmodul (122) enthalten, und ferner umfassend:

Empfangen eines Teils der Sensordaten aus der Sensorschicht (118) durch das Umgebungsfaktor-Bootmodul über die Schnittstelle der Sensorschicht; und

Anwenden einer oder mehrerer Richtlinien durch das Umgebungsfaktor-Bootmodul mindestens teilweise basierend auf dem Abschnitt der Sensordaten, wobei der Abschnitt der Sensordaten mit einem oder mehreren Umgebungsfaktoren verknüpft ist, die durch die eine oder die mehreren Richtlinien definiert sind, und wobei das Anwenden der einen oder der mehreren Richtlinien ferner umfasst:

Bestimmen, ob gegen die eine oder mehreren Richtlinien verstoßen wird, mindestens teilweise basierend auf dem Abschnitt der Sensordaten, der mit dem einen oder den mehreren Umgebungsfaktoren verknüpft ist; und

Beenden eines Bootvorgangs der Datenverarbeitungsvorrichtung, mindestens teilweise basierend auf einem Ergebnis des Bestimmens.


 
4. Verfahren nach Anspruch 3, wobei das Anwenden einer oder mehrerer Richtlinien ferner das selektive Instantiieren eines oder mehrerer Treiber (112, 114, 116) mindestens teilweise basierend auf dem mit den Umgebungsfaktoren verknüpften Abschnitt der Sensordaten umfasst, und wobei die Umgebungsfaktoren einen oder mehrere der Faktoren Temperatur, Feuchtigkeit, Luftfeuchtigkeit, Höhe, Schalldruckpegel, Tonfrequenz, Vibration, Geschwindigkeit, Beschleunigung oder Beleuchtung umfassen.
 
5. Verfahren nach Anspruch 1, wobei die BS-freie Firmware-Umgebung eine unifizierte, erweiterbare Firmware-Schnittstellen-, UEFI, Umgebung eines Bootvorgangs der Datenverarbeitungsvorrichtung ist.
 
6. Verfahren nach Anspruch 5, wobei die Datenverarbeitungsvorrichtung unabhängig von einem Betriebssystem ist, und ferner umfassend das Instantiieren einer erweiterbaren Firmware-Schnittstellenbetriebsumgebung durch die Firmware-Umgebung, was dazu führt, dass die Datenverarbeitungsvorrichtung einen BS-freien Betriebszustand erreicht.
 
7. Verfahren nach Anspruch 1, wobei eine oder mehrere Sensorvorrichtungen der Vielzahl von Sensorvorrichtungen (108, 614) auf der Datenverarbeitungsvorrichtung angeordnet und über eine Busschnittstelle betriebsfähig mit dem Prozessor gekoppelt sind.
 
8. Verfahren nach Anspruch 1, wobei eine oder mehrere Sensorvorrichtungen der Vielzahl von Sensorvorrichtungen (108, 614) über einen Benutzereingabe-, HID, Treiber mit der Datenverarbeitungsvorrichtung kommunikativ gekoppelt sind.
 
9. Vorrichtung (100) zur Datenverarbeitung, umfassend:

einen Prozessor; und

Firmware, die durch den Prozessor zu betreiben ist, die ein oder mehrere Module und eine Sensorschicht zum Durchführen des Verfahrens nach einem der Ansprüche 1-8 enthält, wobei die Vorrichtung die Datenverarbeitungsvorrichtung ist.


 
10. Vorrichtung (100) nach Anspruch 9, wobei eine oder mehrere Sensorvorrichtungen der Vielzahl von Sensorvorrichtungen (108, 614) auf der Datenverarbeitungsvorrichtung angeordnet sind und betriebsfähig mit dem Prozessor über mindestens eine Busschnittstelle oder einen Benutzereingabe-, HID, Treiber gekoppelt sind.
 
11. Vorrichtung (100) nach Anspruch 9, wobei die Datenverarbeitungsvorrichtung eine Internet-der-Dinge-Edgevorrichtung ist, die die Vielzahl von Sensorvorrichtungen umfasst oder aus der Gruppe ausgewählt ist, die aus Laptop, Netbook, Notebook, Ultrabook, Smartphone, Tablet, persönlichem digitalen Assistenten, ultramobilem Personalcomputer, Mobiltelefon, Desktop-Computer, Server, Internet-der-Dinge-Vorrichtung oder Set-Top-Box besteht.
 
12. Ein oder mehrere computerlesbare Medien, auf denen eine Vielzahl von Anweisungen gespeichert ist, wobei die Vielzahl von Anweisungen beim Ausführen durch einen Prozessor einer Datenverarbeitungsvorrichtung die Datenverarbeitungsvorrichtung mit einer Firmware-Umgebung zum Durchführen des Verfahrens nach einem der Ansprüche 1-8 ausstatten.
 


Revendications

1. Procédé d'informatique, comprenant :

l'instanciation, par un environnement de microprogramme sans système d'exploitation, noté OS, (102) d'un dispositif informatique, d'une couche capteurs (118) pourvue d'une interface qui fournit une abstraction d'une pluralité de dispositifs capteurs (108, 614) ;

la réception, par la couche capteurs dans l'environnement de microprogramme sans OS, de données de capteurs produites par la pluralité de dispositifs capteurs ;

l'agrégation, par la couche capteurs dans l'environnement de microprogramme sans OS, des données de capteurs ;

la fourniture sélective, par la couche capteurs, des données de capteurs ou de données de capteurs agrégées à un ou plusieurs modules de microprogramme via l'interface de la couche capteurs ;

le procédé étant caractérisé en ce qu'il comprend en outre

l'instanciation sélective, par un module d'amorçage par facteurs ambiants (122) dans l'environnement de microprogramme sans OS, d'un ou de plusieurs pilotes sur la base d'un ou de plusieurs facteurs ambiants associés aux données de capteurs ou aux données de capteurs agrégées.


 
2. Procédé selon la revendication 1, dans lequel l'environnement de microprogramme sans OS (102) fait partie d'un processus d'amorçage conduisant à l'instanciation d'un système d'exploitation sur le dispositif informatique, et dans lequel l'environnement de microprogramme est indépendant du système d'exploitation.
 
3. Procédé selon la revendication 1, dans lequel les un ou plusieurs modules de microprogramme comportent un module d'amorçage par facteurs ambiants (122), et comprenant en outre :

la réception, par le module d'amorçage par facteurs ambiants, d'une fraction de données de capteurs depuis la couche capteurs (118) par le biais de l'interface de la couche capteurs ; et

l'application, par le module d'amorçage par facteurs ambiants, d'une ou de plusieurs politiques basées au moins en partie sur la fraction de données de capteurs, la fraction de données de capteurs étant associée à un ou plusieurs facteurs ambiants définis par les une ou plusieurs politiques, et l'application des une ou plusieurs politiques comportant en outre :

la détermination si les une ou plusieurs politiques sont enfreintes ou non sur la base au moins en partie de la fraction de données de capteurs associée aux un ou plusieurs facteurs ambiants ; et

l'arrêt d'un processus d'amorçage du dispositif informatique sur la base au moins en partie d'un résultat de la détermination.


 
4. Procédé selon la revendication 3, dans lequel l'application d'une ou de plusieurs politiques comprend en outre l'instanciation sélective d'un ou de plusieurs pilotes (112, 114, 116) sur la base au moins en partie de la fraction de données de capteurs associée aux facteurs ambiants, et dans lequel les facteurs ambiants comportent un ou plusieurs facteurs parmi la température, la teneur en eau, l'humidité, l'altitude, le niveau de pression sonore, la fréquence audio, la vibration, la vitesse, l'accélération ou l'éclairage.
 
5. Procédé selon la revendication 1, dans lequel l'environnement de microprogramme sans OS consiste en un environnement d'interface de microprogramme extensible unifiée, notée UEFI, d'un processus d'amorçage du dispositif informatique.
 
6. Procédé selon la revendication 5, dans lequel le dispositif informatique est indépendant d'un système d'exploitation, et comprenant en outre l'instanciation, par l'environnement de microprogramme, d'un environnement d'exploitation par interface de microprogramme extensible permettant au dispositif informatique d'adopter un état de fonctionnement sans OS.
 
7. Procédé selon la revendication 1, dans lequel un ou plusieurs dispositifs capteurs de la pluralité de dispositifs capteurs (108, 614) sont placés sur le dispositif informatique et couplés fonctionnellement au processeur via une interface de bus.
 
8. Procédé selon la revendication 1, dans lequel un ou plusieurs dispositifs capteurs de la pluralité de dispositifs capteurs (108, 614) sont couplés en communication au dispositif informatique via un pilote de périphérique d'interface humaine, noté HID.
 
9. Appareil (100) d'informatique, comprenant :

un processeur ; et

un microprogramme destiné à être exploité par le processeur comportant un ou plusieurs modules et une couche capteurs pour mettre en œuvre le procédé selon l'une quelconque des revendications 1 à 8, l'appareil étant le dispositif informatique.


 
10. Appareil (100) selon la revendication 9, dans lequel un ou plusieurs dispositifs capteurs de la pluralité de dispositifs capteurs (108, 614) sont placés sur le dispositif informatique, et couplés fonctionnellement au dispositif informatique via une interface de bus et/ou un pilote de périphérique d'interface humaine, noté HID.
 
11. Appareil (100) selon la revendication 9, dans lequel le dispositif informatique est un dispositif de bord de l'Internet des objets comprenant la pluralité de dispositifs capteurs ou sélectionné dans le groupe constitué par un ordinateur portable, un ordinateur de type netbook, un ordinateur de type notebook, un ordinateur de type ultrabook, un smartphone, une tablette, un assistant numérique personnel, un ordinateur personnel ultramobile, un téléphone mobile, un ordinateur de bureau, un serveur, un dispositif de l'Internet des objets ou un boîtier décodeur.
 
12. Support(s) lisible(s) par ordinateur sur le(s)quel(s) sont enregistrées une pluralité d'instructions, la pluralité d'instructions, lorsqu'elles sont exécutées par un processeur d'un dispositif informatique, dotant le dispositif informatique d'un environnement de microprogramme pour mettre en œuvre le procédé selon l'une quelconque des revendications 1 à 8.
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description