(19)
(11)EP 3 164 823 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.05.2019 Bulletin 2019/21

(21)Application number: 15733510.0

(22)Date of filing:  29.06.2015
(51)International Patent Classification (IPC): 
A61B 5/00(2006.01)
A61B 5/024(2006.01)
A61B 5/22(2006.01)
A63B 24/00(2006.01)
G16H 20/30(2018.01)
A63B 71/06(2006.01)
A63B 22/06(2006.01)
A63B 21/012(2006.01)
(86)International application number:
PCT/GB2015/051887
(87)International publication number:
WO 2016/001637 (07.01.2016 Gazette  2016/01)

(54)

IMPROVEMENTS TO EXERCISE EQUIPMENT

VERBESSERUNGEN AN TRAININGSAUSRÜSTUNG

AMÉLIORATIONS APPORTÉES À UN ÉQUIPEMENT D'EXERCICE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.07.2014 GB 201411976

(43)Date of publication of application:
10.05.2017 Bulletin 2017/19

(73)Proprietor: Integrated Health Partners Limited
London SW1X 9AQ (GB)

(72)Inventors:
  • DEMPFLE, Ulrich
    London SW1X 9AQ (GB)
  • SINGH, Ratna
    London SW1X 9AQ (GB)
  • BERNATH, Oliver
    London SW1X 9AQ (GB)

(74)Representative: Carpmaels & Ransford LLP 
One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
US-A1- 2009 258 758
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field



    [0001] The invention generally relates to exercise apparatus and control systems thereof, and more particular to exercise equipment which facilitate the optimisation of exercise protocols performed on exercise apparatus.

    Background



    [0002] High Intensity Training (HIT) is a form of exercise that has been proven in clinical trials to deliver the same, if not superior, benefits as traditional aerobic endurance exercise (such as jogging, walking, running, cycling) but in a shorter time. Some of the health benefits of HIT are improved cardiovascular fitness and improved sugar metabolism (better response to insulin and reduced risk of diabetes). The improved responsiveness of body cells to insulin also helps mobilising the body's fat stores when trying to lose weight.

    [0003] HIT involves doing a small number of short intervals of exercise at very high intensity, which go beyond an individual's capacity to transport and use oxygen during exercise (i.e., VO2max). For example, one HIT protocol consists of 3 minutes light warm-up cycling on an exercise bike at low resistance; followed by a 20 seconds sprint at high resistance for the exerciser to achieve maximal power output during the sprint; followed by a 3 minutes recovery period of slow cycling at low resistance; followed by a second high-intensity 20 seconds sprint at high resistance; followed by a 3 minutes cool-down period of slow cycling at low resistance. This protocol of under 10 minutes per exercise session performed 3 times per week has been scientifically proven under laboratory conditions to deliver the same benefits in terms of cardiovascular fitness (VO2max) and sugar metabolism (insulin sensitivity) as four runs of 45 minutes each per week. Of course, the protocol may be varied in the number and duration of low resistance periods, and in the number and duration of peak performance protocols.

    [0004] HIT is a well-established training method that has been known for some time. If the HIT exercise is carried our correctly, it represents a very effective and convenient workout in which users do not or only minimally sweat, which would allow the exercise to be carried out for, for example, at work without the need for changing clothes or having a shower.

    [0005] However, there are currently no pieces of exercise apparatus on the market that have been specifically designed for HIT. For example, existing exercise bicycles are general purpose for multiple different kinds of exercise, and resistance levels thus need to be manually adjusted by the user, distracting the user from the focussed nature of the HIT workout. A range of different types of exercise apparatus are available for use in dedicated gyms, or at home, and some have been developed to include sophisticated control systems. For example, many gyms offer upright and reclining bikes, which are used for comparatively low intensity exercise. Many such bikes include pre-set programs, which a user may select to adjust resistance of the exercise over a period of time. These exercise bikes are not adapted to provide HIT exercise. If a user were to attempt to perform an HIT workout on existing bikes, they would have to input the resistance values for the workout themselves, with no guidance as to a correct value to choose.

    [0006] To correctly carry out an HIT protocol, the user must exercise at very high intensity when required, and recover when required by exercising at low intensity. This is unfamiliar to many users, so, without apparatus specifically designed for HIT, it is likely that the user will not follow the HIT protocol correctly and not experience the full benefit of this form of exercise.

    [0007] A user should be working at or near their maximum power output to correctly perform an HIT protocol; however it is known that maximum power output is not necessarily achieved at maximum resistance. In this regard, one significant problem which arises using standard exercise bikes is that many users perform the HIT protocol with too high or too low resistance levels, or with too high or too low cadence. Cadence is the rate of revolutions of the crank, i.e. the rate at which the cyclist is turning the pedals. It is particularly inconvenient for a user to adjust the resistance level manually, as this interrupts the user's exercise. It is also not advisable for the user to set their resistance level themselves, as this gives an additional distraction to the user. Furthermore, the user does not know what resistance level to choose, how to optimise their resistance level, and whether or not their resistance level should be changed depending on their performance. This uncertainty makes it difficult for a user to correctly carry out an HIT protocol on current exercise apparatus.

    [0008] Another problem particularly associated with the difficult and intense nature of an HIT protocol is the motivation of the user. Enthusiasm and willpower are required to work at or near maximum intensity and power output. If the user is given the option to set their own resistance level they may start with too high a resistance, and then give up, or lower the level too far to give an easier workout, and thus not follow the protocol correctly. This is another reason to prevent the user from adjusting their resistance level.

    [0009] Accordingly, there is a need for exercise apparatus that is specifically designed to make it easier for a user to correctly carry out an HIT protocol. This should involve minimal input from the user, and automatically optimise resistance levels such that the user is working at the correct intensity. If the input of the user at the start of each HIT protocol is minimised, the user will be more focussed on the protocol, and will therefore be more able to meet its particular exacting requirements, and thus see the full benefit of this form of exercise.

    [0010] In addition, a problem associated with standard exercise apparatus is that it is unsuitable for use in public, or private areas other than gyms, such as office buildings, retail outlets, hotels, and so on. If conventional exercise apparatus was placed in public areas without supervision, there would be a significant risk of unauthorised and inappropriate use, which may put the user at risk of injury due to incorrect operation, overexertion, and so on. Furthermore, users may feel uncomfortable exercising on conventional bikes in public areas, particularly at peak performance levels, because they would feed exposed and would lack a minimum required level of privacy.

    [0011] Health clubs and gyms normally offer a range of exercise bikes to conduct aerobic fitness exercises. However, this means that the exercise bikes are occupied by one individual user for a relatively long period of time. This makes it necessary to provide a greater number of pieces of expensive apparatus that occupy a larger floor space. Moreover, exercise bikes and other pieces of exercise equipment found in gyms are not specifically designed for HIT, and thus suffer the problems described above.

    [0012] US 2009/258758 A1 discloses an exercise and health system which includes computerised exercise and/or health equipment (the "local system") that can provide feedback and encouragement to the user, i.e. can serve as a "virtual personal trainer." These local systems often include a local server to service multiple exercise devices. In addition, the system includes a remote system communicating over a bi-directional data channel (preferably the Internet) with the exercise and health equipment. This remote system can include remote servers communicating with the local system, and remote work stations used by trainers and users to interact with the remote servers and local systems.

    Summary of the Invention



    [0013] The invention is defined by the claims. Accordingly, in a first aspect as defined by claim 1, the present invention provides a control system for controlling one or more of a plurality of exercise apparatuses across a network, each of the plurality of exercise apparatuses comprising a brake for applying resistance and being configured to transmit a user identifier and a performance parameter of a user, the control system comprising:

    a processor;

    a communication subsystem configured to communicate with the plurality of exercise apparatuses across the network; and

    a memory for storing information about one or more users, the information comprising, for each user:

    identity information, including a user identifier; weight; and

    a resistance level indicator;

    wherein upon receipt of a user identifier from one of the one or more of the plurality of exercise apparatuses in the network, the processor is configured to identify a resistance level indicator stored in the memory corresponding to the user identifier;

    wherein, if the user is using the one or more of the plurality of exercise apparatuses for the first time, the processor is configured to set the resistance level indicator appropriate for the user based on the user's weight;

    wherein the processor is configured to cause the communication subsystem to transmit the resistance level indicator for that user to the one of the one or more of the plurality of exercise apparatuses in order that a resistance is applied by a brake of the one of the one or more of the plurality of exercise apparatuses according to the resistance level indicator, wherein the resistance applied by the brake during exercise is controllable only by the resistance level indicator stored in the memory, and wherein the resistance applied by the brake during exercise is not adjustable by the user during exercise;

    wherein upon receipt of a performance parameter of the user measured on the one of the one or more of the plurality of exercise apparatuses during the user's exercise in the network, the processor is configured to determine, based on the received performance parameter, whether or not to modify the resistance level indicator of that user stored in the memory;

    wherein, if the determination is positive, the processor is configured to modify the resistance level indicator stored in the memory, wherein the modified resistance level indicator will be used to set a resistance applied by a brake of one of the one or more of the plurality of exercise apparatuses for a next exercise.



    [0014] The invention allows users to carry out a training session on a piece of exercise apparatus (such as an exercise bike) and follow a scientifically proven HIT protocol which is algorithmically optimised based on a measured performance parameter of the user. For the purposes of this description, a HIT protocol is a programme of activity defined by one or more periods in which the user exercises at high intensity against a particular resistance for a particular duration. The HIT protocol is chosen by the processing means based on biometric user information which is entered by or gleaned from the user, and is algorithmically optimised based on a measured performance parameter of the user performing the HIT protocol.
    Further, this invention enables a piece of exercise apparatus (such as an exercise bike) to be situated outside of the conventional gym environment, such as in a public or private area (e.g., office buildings, retail outlets, gyms, or at home) and also to be operated safely unsupervised.

    [0015] The control system allows for the provision of a plurality of apparatuses distributed across a building, town or country which are centrally controlled such that a user can use the apparatus at his or her convenience. The system associates a resistance level indicator with a user identifier, such that upon receipt of a user identifier (for example, when a user provides a unique access key or username and password specific to the user), the system is able to return the resistance level associated with that user. This can take place on any apparatus in the distributed network which is capable of communicating with the control system.

    [0016] The resistance level indicator is used to set the resistance level of the apparatus used by the user. During exercise at that resistance level, the apparatus provides a performance parameter to the control system. This performance parameter reflects the performance of the user exercising at that resistance level. Upon receipt of the performance parameter, the control system determines whether or not to adjust the resistance level indicator of that user. If the performance parameter indicates that the user is performing the protocol too easily at a given resistance, the control system may determine that the resistance level indicator should be increased, and vice versa. Thus, the resistance level will be optimised for each individual user.

    [0017] In a second aspect of the invention as defined by claim 15, the present invention provides an exercise apparatus and a control system, wherein the exercise apparatus is controlled by the control system, wherein the control system is as defined in any one of claims 1 to 13, wherein the exercise apparatus is configured to communicate with the control system across a network, the remote server being configured to transmit a resistance level indicator indicative of a resistance level to be applied by the exercise apparatus, the exercise apparatus comprising:

    a processor;

    a communications subsystem configured to communicate with the control system across the network;

    an identification subsystem configured to receive a user identifier from a user;

    a load for use in exercise and a brake for applying resistance to the load; and

    a measurement subsystem configured to measure a performance parameter of the user on the apparatus;

    wherein upon receipt of a user identifier from a user, the processor is configured to cause the communication subsystem to transmit the user identifier to the control system across the network;

    wherein upon receipt of a resistance level indicator from the control system, the processor is configured to cause the brake to apply a corresponding resistance to the load, wherein the resistance applied by the brake during exercise is not adjustable by the user and wherein the resistance applied by the brake during exercise is controllable only by the received resistance level indicator; and

    wherein upon measurement of a performance parameter of the user on the apparatus, the processor is configured to cause the communication subsystem to transmit to the control system the performance parameter of that user.



    [0018] For instance, one or more pieces of exercise apparatus according to the second aspect of the invention may be usable with the control system of the first in a distributed network.

    [0019] It will be appreciated that the apparatus is able to receive a user identifier (such as a unique access key or username and password specific to the user) from the user, and transmit that identifier to the control system for use in retrieving the associated resistance level indication. The apparatus also provides a load movable by the user carrying out the exercise, and a brake which prevents the load from being moved, thereby offering resistance against the user's exercise. The resistance applied by the brake is dependent on the resistance level indicator received from the control system.

    [0020] In particular, in a third aspect of the invention as defined by claim 14, there is provided a method for controlling one or more of a plurality of exercise apparatuses across a network, each of the plurality of exercise apparatuses comprising a brake for applying resistance, the method comprising:

    receiving a user identifier of a user from one of the one or more of the plurality of exercise apparatuses;

    retrieving a resistance level indicator corresponding to the user identifier from a memory;

    if the user is using the one or more of the plurality of exercise apparatuses for the first time, setting the resistance level indicator appropriate for the user based on the user's weight;

    transmitting the resistance level indicator to the one of the one or more of the plurality of exercise apparatuses in order that a resistance is applied by a brake of the one of the one or more of the plurality of exercise apparatuses according to the resistance level indicator, wherein the resistance applied by the brake during exercise is controllable only by the resistance level indicator, and wherein the resistance applied by the brake during exercise is not adjustable by the user during exercise;

    receiving a performance parameter of the user measured on the one of the one or more of the plurality of exercise apparatuses;

    determining, based on the received performance parameter, whether or not to modify the resistance level indicator; and, if the determination is positive:
    modifying the resistance level indicator corresponding to the user identifier in the memory, wherein the modified resistance level indicator will be used to set a resistance applied by a brake of one of the one or more of the plurality of exercise apparatuses for a next exercise.



    [0021] Optional features of the first and second aspects are described below.

    [0022] Preferably the processor of the system or bike sets the resistance level indicator of the user based on the user's weight according to a look-up table. This is a convenient and accurate way of associating a resistance level indicator to particular weight.

    [0023] Preferably, the information about one or more users further comprises, for each user, a counter indicative of the number of exercises completed by the user. This enables the system or bike to keep track of how many exercises have been performed previously so as to judge (for example) whether or not to set a resistance level indicator based on weight, or to determine whether or not modify an existing resistance level indicator based on a performance parameter.

    [0024] For instance, the processor may be configured to set the resistance level indicator of the user based on the user's weight only when the counter is equal to or below a threshold value, such as 2. In that case, the processor will set the resistance level indicator based on a weight for the first three exercises (when the counter is at 0, 1 and 2), but not afterwards. It may be possible to reset the counter if, for example, the user has not exercised for a predetermined period of time.

    [0025] Optionally, the processor may be configured to apply a multiplier to the weight according to the value of the counter. This enables the resistance level indicator to be set as a proportion of its look-up table value, which is helpful in certain circumstances. For instance, whist the user is getting used to the exercise, it is helpful to provide 'ramp up rides' to build the user up to the final look-up table value.

    [0026] For instance, the processor may be configured to: apply a multiplier of 0.6 to the weight when the counter is equal to 0; and/or apply a multiplier of 0.8 to the weight when the counter is equal to 1; and/or apply a multiplier of 1 to the weight when the counter is equal to 2.

    [0027] The system or bike need not only transmit and receive a resistance level indicator. For instance, the processor may be further configured to transmit to the exercise apparatus (or receive from the control system) instructions for implementing an exercise protocol. An exercise protocol is a well understood fitness programme to be carried out on a piece of equipment. The protocol comprises a plurality of periods of a certain duration, during which different qualities of exercise are implemented. For instance, the protocol may include first and second sprint periods, during which the user should sprint. Other qualities of exercise include gradients, speeds, weight, and so on.

    [0028] The protocol preferably comprises applying at least two different resistance levels during the plurality of periods. Optionally, the resistance level remains constant throughout any period.

    [0029] An exemplary protocol consists of: a warm up period, followed by a first sprint period, followed by a first recovery period, followed by a second sprint period, followed by a second recovery period.

    [0030] Preferably in such a protocol, the duration of the warm-up period is 180 seconds; the duration of the first sprint period is 20 seconds; the duration of the first recovery period is 180 seconds; the duration of the second sprint period is 20 seconds; and the duration of the second recovery period is 180 seconds.

    [0031] In a particularly preferred embodiment, the resistance level applied during the first and/or second sprint periods is based on the resistance level indicator. In other words, the resistance which is set by the resistance level indicator stored by the control system or the bike is used only during one or both 'sprint' periods, where the user is working hardest during the whole exercise.

    [0032] For instance, a first resistance level is applied during the warm up period; a second resistance level is applied during the first sprint period; the first resistance level is applied during the first recovery period; the second resistance level is applied during the second sprint period; and the first resistance level is applied during the second recovery period.

    [0033] The first resistance level may be zero, or may be a non-zero level which is the lowest resistance setting of the exercise apparatus.

    [0034] The performance parameter is preferably a ratio of a first performance measurement to a second performance measurement, wherein the first and second performance measurements are taken at different times during an exercise. In this way, the performance parameter acts as a measurement of how quickly and by how much a user's performance worsens over time (i.e. how much harder a user is finding the exercise at different stages). Thus, the first performance measurement is preferably taken before the second performance measurement.

    [0035] Preferably, the first and second performance measurements are taken during the second sprint period, which is the optimal time for the user's performance to be measured, since the user is most likely to exhibit his or her most significant worsening of performance during this period.

    [0036] Preferably the first performance measurement is taken 5 seconds into the second sprint period, and more preferably the second performance measurement is taken 15 seconds into the second sprint period. Hence, where the second sprint period is 20 seconds long, the user's performance is measured 5 seconds into the sprint (when the user would be performing comparatively well) and 5 seconds from the end of the spring (when the user would be performing comparatively poorly).

    [0037] The processor is preferably configured to compare the received performance parameter with one or more threshold values to determine whether or not to modify the resistance level indicator; optionally wherein the processor is further configured to compare the received performance parameter with an upper threshold value, and to increase the resistance level indicator if the received performance parameter exceeds the upper threshold values; and/or wherein the processor is further configured to compare the received performance parameter with a lower threshold value, and to decrease the resistance level indicator if the received performance parameter is below the lower threshold value; and/ or wherein the processor is further configured to compare the received performance parameter with an upper threshold value and a lower threshold value, and to maintain the resistance level indicator if the received performance parameter is between the upper and lower threshold values.

    [0038] Upon reaching a determination to modify the resistance level indicator, the processor may be configured to modify the resistance level indicator by a predetermined amount.

    [0039] Preferably, the exercise apparatus is an exercise bike, in which case performance parameter is preferably revolutions per minute RPM. Exercise bikes are particularly convenient for practising HIT, and RPM can be used to calculate power, which is the best measure for optimising performance.

    Brief Description of the Drawings



    [0040] Embodiments of the invention will now be described in detail, with reference to the accompanying drawings, in which:

    Figure 1 shows a schematic of a control system according to an embodiment of the first aspect of the invention in communication with a plurality of bikes according to the second aspect of the invention;

    Figure 2 shows a schematic of one of the exercise apparatuses shown in figure 1;

    Figures 3A to 3J show screenshots of a display of the exercise apparatus shown in figure 2 during an exercise;

    Figure 4 shows a flow diagram of a method of operating the control system and exercise equipment shown in figure 1;

    Figure 5 shows a schematic of an exercise apparatuses according to a third aspect of the invention;

    Figure 6 shows a flow diagram of a method of operating the exercise equipment shown in figure 5;

    Figure 7 shows the exercise apparatus shown in figure 6 partially enclosed by a screen.


    Detailed description of the invention



    [0041] The embodiments below are exercise bikes, which are found to be particularly effective at delivering HIT. It will be understood, however, that the invention is not limited only to exercise bikes, and may be applied to alternative forms of exercise apparatus, such as rowing machines, elliptical machines or X trainers, climbing machines, stair machines, or any apparatus where a resistance is applied and can be varied, and where performance is measurable.

    [0042] Figure 1 shows a schematic of a control system 101 of the first aspect of the invention. The control system comprises a processor 103, a communication subsystem 105, and a memory 107.

    [0043] The control system 101 is in communication with a plurality of exercise bikes 200a - 200c across a network 109, via the communication subsystem 105. The network is a wide area network (WAN) wherein the plurality of exercise bikes 200a - 200c communicate with the control system 101 wirelessly, but the network could be a local area network (LAN), and each of bikes 200a - 200c may be wired to the control system 101 or communicate with the control system 101 wirelessly, and may use any known communication protocol such as email, http, ftp, over any transmission medium including Bluetooth, GPRS, 3G or 4G.

    [0044] The memory 107 is a hard disk, but may be any suitable memory for storing data. The memory 107 is configured to store user data, including information about a plurality of users of the exercise equipment. This information includes, for each user, identity information including a user identifier which is unique to the user to enable the user to be identified. The identity information may also include name, address, gender, age, and any other information which is desirable to record about the user. The information further includes, for each user, biometric information including the weight of the user. The biometric information may also include muscle mass, percentage of fat, water content, height, body mass index (BMI), and any other biometric information which is desirable to record about the user. The information further includes, for each user a resistance level indicator which sets the resistance level to be applied by the exercise bikes for that user (as described below). The information may further include additional details of exercise protocols to be implemented by the exercise bikes, depending on the preferred implementation.

    [0045] Figure 2 shows a schematic of one of the exercise bikes 200 shown in figure 1, and according to the second aspect of the invention.

    [0046] The exercise bike may be a commercially available exercise bike suitable for sprint training (such as the X-1000 bike manufacture by Trixter™, or the Spinner™ NXT bike manufactured by StarTrac™, for example), but any suitably modified conventional exercise bike will suffice. A skilled person is familiar with the arrangements of such readily available exercise bikes and so no further description is required here.

    [0047] In other embodiments, the exercise bike may be designed specifically for HIT protocols. Such a bike may have a number of bespoke components. For instance, the bike frame structure may be engineered to withstand high intensity exercises reaching power outputs of 1,500 watts and above. Conventional frames are designed for maximum power outputs of 800 watts. The bike may be provided with a magnetic brake system with motor controlled magnet position. Such a system allows resistance to be increased rapidly - within 1 second, for example, which is beneficial for HIT exercise protocols. Conventional motor-driven magnetic brake systems are not able to adjust brake resistance so rapidly. The bike may be provided with a toothed belt, which avoids the risk of slippage of transmission from crank pulley to flywheel at high power outputs. Conventional belt-driven exercise bikes use poly-V belts, which would slip at power output levels of about 1,000 watts and above when resistance is applied suddenly.

    [0048] The exercise bike comprises computing means 210 in the form of a tablet computer (although other means are possible). The tablet comprises a processor 201, a communication subsystem 203, an identification subsystem 205 and a display 207.

    [0049] The exercise bike further comprises a load 209 in the form of a flywheel, which the user rotates by applying force to pedals, as is well-understood. The exercise bike further comprises a brake 211 for applying resistance to the flywheel to varying the force which the user must apply to the pedals to rotate the flywheel. The brake 211 acts on the flywheel 209 to increase the effort required for a user to rotate the flywheel 209. The brake is configured to apply resistance ranging from no resistance to a maximum resistance such that the flywheel is locked from rotation. The brake physically contacts the flywheel to impart resistance, but any other suitable arrangement may be provided, such as hydraulic or magnetic braking systems. Where the exercise equipment is not a bike, a skilled person will understand that equivalent loads and brakes for applying resistance to the load can be implemented.

    [0050] The exercise bike further comprises a measurement subsystem 213 configured to measure a performance parameter of the user on the apparatus, in this case the revolutions of the flywheel or pedals per minute (RPM). Measurement of other performance parameters (such as force applied to the pedals, heart rate, etc.) is also possible.

    [0051] Coupled to the computing means 210 of the bike 200 is a biometric scale 215. The user's biometric information may be obtained using the scale, which may be sent to the computing means. A suitable biometric scale which is available commercially is the Tanita SC-240 body composition analyser, although any suitable scale may be used. Any other suitable means for receiving, measuring, or otherwise gleaning biometric information from the user may be used in addition to or in replacement of the biometric scale. Preferably, the scale or other means is able to obtain one or more of the following pieces of biometric data: weight, muscle mass, percentage of fat, water content, height, body mass index (BMI).

    [0052] The identification subsystem comprises a dock 217 for receiving a key fob inserted by a user containing that user's user identifier in the form of an alphanumeric code stored on the fob. It will be appreciated that the user identifier could take other forms. For instance, the tablet computer may be adapted to permit a user to provide the user identifier to log-in to the exercise bike system to begin an exercise. Users may be prompted to identify themselves by inputting a username and/or password; by the use of an RFID chip; a smartphone app; a fingerprint; a removable memory device; or any other variety of standard methods of such, as will be well understood by the skilled person.

    [0053] However the user identifier is received, the processor 201 causes the communication subsystem 203 to transmit the user identifier to the control system 101 across the network 109. The user identifier corresponds to a user identifier stored in memory 107, and the control system is thus able to access the information associated with that user.

    [0054] The processor 201 is coupled to the brake 211 to cause the brake 211 to apply a resistance to the flywheel 209. With the exception of safety controls such as an emergency stop, the user is unable to manually adjust the resistance applied by the brake 211 to the flywheel 209 manually or to control the processor so as to cause it to adjust the resistance. Additionally, the processor is configured to apply a resistance to prevent the bike from being operated (i.e. to prevent the flywheel from rotating) without a registered user being logged in to the system.

    [0055] The processor is coupled to the measurement subsystem 213, which includes at least one sensor (not shown) for sensing RPM. For example, one or more sensors may be positioned on the frame adjacent the flywheel to sense flywheel rotation speed; one or more sensors may be positioned on the frame adjacent the pedals to sense cadence. All such sensors could be arranged by a skilled person as necessary to determine performance of the user during an exercise.

    [0056] In preferred implementations, the processor may be adapted to measure or receive, compute and display cadence, power, pedal pressure, heart rate, and timing during an exercise. The heart rate may be measured via one or more electrodes located at the handle bar, or wirelessly via a wrist or chest strap capable of measuring heat rate. The processor may cause the display 207 to show the measured performance parameters, and also to show instructions to users during the HIT exercise, as explained in more detail below with reference to figures 3A to 3J.

    [0057] In use (and with reference to the process illustrated in figure 4), the control system 101 and exercise bike 200 operate as follows. A user mounts the bike (step 410) and provides the exercise bike 200 with his or her user identifier (step 403) in the form of a key fob (not shown) inserted into the dock 217. The bike processor 201 interrogates the fob and receives the user identifier (step 405), and then causes the communication subsystem 203 to transmit the user identifier to the control system 101 across the network 109 (step 407).

    [0058] The user identifier is received at the communication subsystem 105 of the control system 101 (step 409) and the control system processor 103 processes the received user identifier (step 411), and interrogates the memory 107 (step 413) to retrieve information about the user corresponding to the user identifier (step 415). This information includes, at least, a resistance level indicator (step 417).

    [0059] The control system processor 103 then processes the resistance level indicator (step 417) and causes the communication subsystem 105 to transmit the resistance level indicator associated with that user to the bike from which the corresponding user identifier was received (step 419).

    [0060] The resistance level indicator is received at the communication subsystem 203 of the bike 200 (step 423) and, at some point during the user's exercise, the bike processor 210 causes the brake 211 to apply a level of resistance to the flywheel according to the resistance level indicator (as explained in more detail below).

    [0061] During the user's exercise, the bike processor 210 causes the measurement subsystem to measure a performance parameter of the user, including at least the RPM. The bike processor 210 then causes the communication subsystem to transmit the performance parameter to the control system 101 across the network 109 (step 425).

    [0062] The performance parameter is received at the communication subsystem 105 of the control system 101 and the control system processor 103 carries out a computation (described in more detail below) to determine whether or not to modify the resistance level indicator based on the received performance parameter. If the determination is positive, the processor modifies the resistance level indicator stored in memory (step 427).

    [0063] Determination of whether to modify the resistance level indicator takes place once per exercise, and not continuously during the exercise. Thus, where the resistance level indicator stored in memory is modified based on the performance parameter measured during one exercise, the modified resistance level indicator will be used to set the resistance applied by the brake for the next exercise.

    [0064] The control system 101 and bike 200 are configured such that a user's exercise is performed according to an exercise protocol. Either the protocol can be entirely configured by the control system 101 and transmitted to the bike 200 along with the resistance level indicator, or the protocol can be preconfigured to some extent such that certain invariable aspects are stored on the bike, whilst variable aspects (including the resistance level indicator) are transmitted from the control system 101 to the bike.

    [0065] A protocol is defined by a plurality of periods of a certain duration, during which different qualities of exercise are implemented. For instance, the protocol may include first and second sprint periods, during which the user should sprint. Other qualities of exercise include gradients, speeds, weight, and so on. A preferred protocol is as follows:
    1. 1. a warm up period of 180 seconds where a first resistance level is applied; followed by
    2. 2. a first sprint period of 20 seconds where a second resistance level is applied, the second resistance level being based on the resistance level indicator associated with the user; followed by
    3. 3. a first recovery period of 180 seconds where the first resistance level is applied again; followed by
    4. 4. a second sprint period of 20 seconds where the second resistance level is applied again; followed by
    5. 5. a second recovery period where the first resistance level is applied for the final time.


    [0066] In this case, the exercise bike 200 is preconfigured to implement the five different periods of the specified duration, and is furthermore preconfigured to apply the first resistance level (of low or zero resistance) during the warm up, and first and second recovery periods. The only information not preconfigured on the exercise bike 200 is the second resistance level that is based on the resistance level indicator associated with the user, which is received from the control system 101. However, other embodiments may use different preconfigurations on the exercise bike 200, and configure the control system 101 to transmit any information not so preconfigured.

    [0067] The above protocol is an example of a preferred protocol, where the resistance level indicator defines the second resistance level (i.e. the resistance level used during the high intensity sprint sections of the HIT protocol). It will be understood that other protocols may be used. For example, the number and duration of the sprint and recovery periods may be changed; different resistance levels may be used for different sprints; a constant resistance level may be used for the whole protocol; or other such variations. Another option would be to have a protocol comprising three 20-second sprints, or to have a protocol comprising 30-second sprints. The first resistance level may be the lowest resistance setting of the exercise apparatus, or some other low value such that it does not cause undue exertion to the user.

    [0068] The HIT protocols may differ depending on the weight of the user (or other biometric user information such as muscle mass, BMI, height, etc.). Alternatively, the same format of HIT protocol (i.e. with the same timings of the high and lower intensity sections of the protocol), may be suitable for all users.

    [0069] If multiple HIT protocols are stored, the tablet may automatically select the appropriate HIT protocol for an individual user based on biometric user data. This could be the user's weight or alternatively other biometric information such as the user's muscle mass, BMI, height, etc.

    [0070] The control system and bike according to the invention optimise the resistance level indicator for each individual user. Thus, for the exemplary HIT protocol given above, the resistance level used during the high intensity sprint sections is optimised for each user. This is based on a measured performance parameter of the user when performing the HIT protocol.

    [0071] Whilst the user carries out the HIT protocol (whatever form it takes), and the exercise bike 200 measures a performance parameter (in the exemplary case, RPM) of the user. This parameter is then transmitted to the control system 101 and used to determine whether or not to modify the resistance level indicator of that user stored in the memory, as described above.

    [0072] A particularly preferred performance parameter is a ratio of two performance measurements taken at different times during the exercise. In the present case, the bike measures the RPM at two points in the second sprint and calculates a ratio of the second measurement to the first to provide a measure of the decrease in performance in that second sprint period. The first measurement (RPM5) is taken 5 seconds in to the second sprint period (i.e. 385 seconds in to the exercise according to the above protocol) and the second measurement (RPM15) is taken 15 seconds in to the second sprint period (i.e. 395 seconds in to the exercise according to the above protocol). Based upon the two measurements the ratio RPM15:RPM5 is calculated.

    [0073] Either the exercise bike 200 can transmit both performance measurements (RPM5 and RPM15) to the control system 101, or the exercise bike 200 can calculate the aforementioned ratio and transmit that.

    [0074] Upon receipt of the performance parameter (either the ratio or performance measurements), the processor 103 of the control system 101 determines whether or not to adjust the resistance level indicator stored in memory 107 for that user by comparing the ratio to threshold values and adjusting the resistance level indicators accordingly.

    [0075] For instance, in the present case, the processor 103 applies the following logic statements to the performance parameter:
    • if [RPM15/RPM5 > X] then increase the resistance level indicator by Z; else
    • if [RPM15/RPM5 < Y] then reduce resistance level indicator by Z; else
    • do not adjust the resistance level indicator


    [0076] In the exemplary case, X is 0.75 and Y is 0.5, but these values may be adjusted or other values may be used instead.

    [0077] In the exemplary case, the resistance level indicator takes values from 0-255 and Z is 1, but these values may be adjusted or other values may be used instead. For instance, Z may be a percentage of the current resistance level indicator.

    [0078] According to the algorithm above, if the user's performance during the second sprint decreases by less than 25% between 5 seconds and 15 seconds (i.e. the resistance is too low such that the user does not have to work hard enough to maintain their RPM to perform the exercise adequately), then the resistance level indicator will be increased. On the other hand, if the user's performance during the second sprint decreases by more than 50% between 5 seconds and 15 seconds (i.e. the resistance is too high for the user to maintain their RPM to perform the exercise adequately), then the resistance level indicator will be decreased.

    [0079] If the ratio falls between the values X and Y, then the resistance level indicator is already optimised and remains unchanged. The values X, Y, and Z may be varied by the administrator of the exercise protocols and apparatus.

    [0080] It will be understood that by applying the algorithm above, the resistance level of the exercise apparatus may be optimised for a user based on the performance of the user. Algorithms alternative to the one described above may be used without departing from this inventive principle.

    [0081] For example, the ratio of sprint RPMs may be calculated for the first sprint, or at different times during the sprints. More than one ratio may be taken, and compared to more than one value, or to a parameter. The absolute change in resistance may be increased or decreased depending on which value or parameter is met by which ratio.

    [0082] It will be appreciated that in certain circumstances, it will not be possible or appropriate for the control system 101 to rely on the resistance level indicator stored in the memory 107 for a particular user. This could be, for instance, that the user is new to the equipment, in particular using the equipment for the first time. Alternatively this could be because the user has not used the equipment for a prolonged period of time, such as more than a month. In such cases, the control system calculates a resistance level indicator appropriate for the user, based on the user's weight.

    [0083] The user may provide their biometric information in any conventional manner, such as entering it via the computing means 210 on the bike 200. Alternatively, the user may utilise biometric scales 215 to provide the data.

    [0084] In the exemplary case, the weight of the user is required to establish the resistance level indicator. This is read from a look-up table that lists resistance levels by given user weight. In an example, where the apparatus is an exercise bike with resistance levels from 0-255, a suitable look-up table is:
    User Body Weight (kg)Bike Resistance (0-255)User Body Weight (kg)Bike Resistance (0-255)User Body Weight (kg)Bike Resistance (0-255)
    20 66 55 72 90 150
    21 66 56 73 91 153
    22 66 57 74 92 155
    23 66 58 75 93 158
    24 66 59 76 94 160
    25 66 60 77 95 163
    26 66 61 78 96 165
    27 66 62 80 97 168
    28 66 63 83 98 170
    29 66 64 85 99 170
    30 66 65 88 100 170
    31 66 66 90 101 170
    32 66 67 93 102 170
    33 66 68 95 103 170
    34 66 69 98 104 170
    35 66 70 100 105 170
    36 66 71 103 106 170
    37 66 72 105 107 170
    38 66 73 108 108 170
    39 66 74 110 109 170
    40 66 75 113 110 170
    41 66 76 115 111 170
    42 66 77 118 112 170
    43 66 78 120 113 170
    44 66 79 123 114 170
    45 66 80 125 115 170
    46 66 81 128 116 170
    47 66 82 130 117 170
    48 66 83 133 118 170
    49 66 84 135 119 170
    50 67 85 138 120 170
    51 68 86 140 121 170
    52 69 87 143 122 170
    53 70 88 145 123 170
    54 71 89 148 124 170
            125 170


    [0085] Further biometric information may be used to establish the resistance level indicator, depending on the preferred implementation.

    [0086] Give the intensity of HIT, it is preferable to provide a user who is new to the apparatus a number of initial "ramp-up" HIT protocols, to familiarise the user with the apparatus and the exercise regime without over-exerting the user. The resistance level indicator for these protocols may be lower than would ordinarily be the case according to the circumstance described above, and increased stepwise until a desired level is reached.

    [0087] For instance, the processor may apply a multiplier of less than 1 to the biometric information (e.g. weight) for the first few rides, such that a user is exposed to a lower resistance level than his or her body weight would ordinarily justify. In the preferred example given below, the user's body weight is multiplied by 0.6 for the purposes of looking up the resistance level indicator from the look-up table for the first ride, and multiplied by 0.8 for the purposes of looking up the resistance level indicator from the look-up table for the second ride.
    • Ramp-up Ride 1:
      ∘ Resistance level indicator from look-up table as per (Body Weight × 0.6)
    • Ramp-up Ride 2:
      ∘ Resistance level indicator from look-up table as per (Body Weight × 0.8)
    • Ramp-up Ride 3:
      ∘ Resistance level indicator from look-up table as per (Body Weight × 1.0)
    • Ride 4 (first ride after ramp-up)
      ∘ Resistance level indicator from look-up table as per Body Weight


    [0088] Following the ramp-up rides, the resistance level indicator is then algorithmically optimised after subsequent iterations of the HIT protocol, as described below.

    [0089] For instance, following the system described above, a person weighing 80kg would initially start with a resistance level indicator of 48 for the first ride, followed by a resistance level indicator of 85 for the second ride, followed by a resistance level indicator of 125 for the third and fourth rides, followed by a resistance level indicator adjusted according to the user's performance.

    [0090] Since the exercise bikes 200 are intended for use without supervision, it is desirable to implement sophisticated safety monitoring routines. The exercise bike 200 and/or control system 101 according to the present invention may therefore also include real-time monitoring of the heart rate of the user during the HIT protocol. Heart rate monitoring could be performed using a chest strap or heart rate sensors build in to the equipment, as is known. Monitoring of the heart rate could take place on the exercise bike 200, or heart rate data could be transmitted from the bike 200 to the control system 101 such that monitoring can take place there.

    [0091] Based on the heart rate data, the exercise apparatus 200 may stop the protocol if the heart rate falls outside predetermined thresholds, either by making such a determination itself or upon receipt of an instruction to that effect from the control system 101.

    [0092] Preferably, if the starting heart rate before the first sprint, heart rate after the first sprint, or heart rate on recovery between the first and second sprints, exceeds various pre-set values described below, then the protocol is stopped. Information on the stopped protocol is also sent to the administrator of the exercise protocols and apparatus, and the user may be prevented from accessing the HIT apparatus until the administrator has allowed access.

    [0093] Preferably a heart rate value is obtained once per second during the exercise.

    [0094] In the exemplary protocol described above, the safety routine may operate to stop the protocol if any of the following conditions are met:
    • Rule 1: Staring heart rate too high
      ∘ If within the 3-minutes warm-up phase (seconds 1 - 180) there is at least one period of sustained heart rate of 110 or above for at least 30 seconds
    • Rule 2: Heart rate too high after 1st sprint
      ∘ If the highest heart rate value during and after the first sprint (i.e. within first sprint and the first 30 seconds of the first recovery phase: seconds 181-230) is greater than 110% of the user's maximum heart rate for at least one period of 30 seconds
    • Rule 3: Heart rate recovery after 1st sprint too poor
      ∘ If heart rate toward the end of the first recovery period (e.g. at second 370) is greater than 85% of the highest heart rate value in seconds 181-230 (i.e. within first sprint and the first 30 seconds of the first recovery phase)


    [0095] Rule 3 only applies if the heart rate in the first recovery phase (i.e. up to 10 seconds before the second sprint starts: seconds 181 to 370) reaches 80% of the user's maximum heart rate.

    [0096] For the purposes of the safety routines, the user maximum heart rate is calculated as 220 less the user's age. This may be stored in the memory 107.

    [0097] Heart rate monitoring of the user may be imperfect due to the user breaking contact with the heart rate monitoring device. Therefore there may be some short gaps (a "no-val" cell), or longer gaps (a "hands-off period", or HOP), or outlier values recorded. The apparatus and methods of the invention may still function despite such breaks in heart-rate data, as heart rate values can be interpolated or approximated for these gaps. Furthermore, the heart rate may be smoothed during the protocol.

    [0098] For instance, outlier values may be removed, the heart rate at a certain time may be expressed as a five-second moving average, short gaps may be filled by writing forward the value preceding the noval cell, and HOPs may be overcome by linear interpolation using the points before and after the HOP. It is important to manage the imperfect monitoring of the heart rate so that the user can be shown their heart rate without any gaps that may alarm the user. Furthermore, according to the invention, a metric may be calculated using the heart rate.

    [0099] An example of a smoothing and interpolation algorithm is as follows (where 'HR(secX)' is the adjusted heart rate value at second 'X' and 'RawValueHR(secX)' is the measured heart rate value at second 'X':
    • Step 1: Set the first value for second 1 to 80
    • Step 2: Remove values which are deemed too low or too high:

      ∘ During the warm-up phase (seconds 1-180): keep only those heart rate values between 30 < RawValueHR(secX) < 120

      ∘ During sprint 1 and recovery phases (seconds 181-380): keep only those heart rate values between 50 < RawValueHR(secX) < 200

      ∘ During sprint 2 and cooldown phases (seconds 381-580): keep only those heart rate values between 50 < RawValueHR(secX) < 200

    • Step 3: Set HR(secX) according to a 5 seconds moving average:
      ∘ HR(secX) = (RawValueHR(secX) + 5*HR(sec(X-1)))/6
    • Step 4: Fill in short data gaps (including "no-val" cells)

      ∘ For data gaps shorter than a predefined Hands-Off Period (HOP) write forward last valid HR value

      ∘ HR(secX) = HR(sec(X-1) if no valid RawValueHR(secX) available

    • Step 5: Hands-Off Periods (HOP)
      ∘ Set HR(secX) to 'null' if X is within a designated HOP


    [0100] Figures 3A to 3J are screen shots showing exemplary screens visible to a user on the display 207 of the exercise bike 200 during exercise. Figure 3A shows a log-in screen where a user is able to provide a user identifier. In conjunction with the processor, the display 207 may be further adapted to permit a user to register their details (name, email, password, age, gender etc.); administer a questionnaire to a user to determine their health status; provide instructions to users operate the apparatus, including instructions to enable a user's biometric data to be obtained (for example to weigh themselves on the biometric scale), and to receive, display, and store on the users' biometric data, either on the tablet computer or on the server to which the tablet computer is connected.

    [0101] The tablet may be adapted to provide visual information on the HIT protocol being performed and the performance of the user. Such information is familiar to the skilled person, and may comprise one or a combination of: a start screen; the user's identification; a description of the different sections of the protocol; a countdown of the time left in a particular section of the protocol; a prompt to increase or decrease intensity; the user's measured heart rate; the user's measured performance parameter; and a summary upon completion of the protocol. Examples of such information are given in figures 3B - 3J.

    [0102] As shown in figures 3H and 3I, for instance, the display may be show a summary of performance data during or after the HIT exercise. The performance data may include peak heart rate, % of peak heart rate versus maximum heart rate (for example, calculated as 220 minus the user's age), maximum power output in Watts, a diagram with power output over the course of the HIT exercise, a % time the user has exercised at 90-100% of his peak power output (i.e. performance zone). Furthermore, the tablet may display a single metric designed to aid the user in comparing their performance from one iteration of an exercise protocol to another, and/or to allow users to compare themselves with each other.

    [0103] The display may show a summary of performance data of all HIT exercises conducted by the user over time. The performance data may include a diagram of peak power outputs, a diagram of % time spent in performance zone, diagrams of biometric data (fat mass, muscle mass, etc).

    [0104] As shown in figure 3J the display may show feedback questions for obtaining information relating to the user's state of tiredness, for example, and store the answers either on the tablet or on the server.

    [0105] Each of the aforementioned displays may be shown sequentially (in any order) to the user, once the HIT protocol has finished.

    [0106] The tablet or other computing means 210 may be adapted to provide auditory affirmations and binaural sounds via headphones to help the user relax during low intensity intervals (meditative state) and/or provide voice instructions during the HIT exercise.

    [0107] Figure 5 shows a schematic of an exercise bike 500 according to the third aspect of the invention. The exercise bike of figure 5 is identical to the exercise bike of figure 2, except that it is capable of implementing the invention without communicating with a server.

    [0108] The exercise bike comprises computing means 510 in the form of a tablet computer (although other means are possible). The tablet comprises a processor 501, a data interrogation subsystem 505 and a display 507.

    [0109] As described previously with reference to the exercise bike of figure 2, the exercise bike of figure 5 further comprises a load 509 in the form of a flywheel, and a brake 511 for applying resistance to the flywheel to varying the force which the user must apply to the pedals to rotate the flywheel. The brake physically contacts the flywheel to impart resistance, but any other suitable arrangement may be provided, such as hydraulic or magnetic braking systems. Where the exercise equipment is not a bike, a skilled person will understand that equivalent loads and brakes for applying resistance to the load can be implemented.

    [0110] As described previously with reference to the exercise bike of figure 2, the exercise bike of figure 5 further comprises a measurement subsystem 513 configured to measure a performance parameter of the user on the apparatus, in this case the revolutions of the flywheel or pedals per minute (RPM). Measurement of other performance parameters (such as force applied to the pedals, heart rate, etc.) is also possible.

    [0111] Coupled to the computing means 510 of the bike 500 is a biometric scale 515. As described previously with reference to figure 2, the user's biometric information may be obtained using the scale, which may be sent to the computing means.

    [0112] The data interrogation means 505 comprises a dock 517 for receiving a key fob inserted by a user with a memory containing that user's resistance level indicator. However, it will be appreciated that the resistance level indicator could take other forms. For instance, the tablet computer may be adapted to provide their resistance level indicator by the use of an RFID chip; a mobile app; a removable memory device; or any other variety of standard methods of such, as will be well understood by the skilled person.

    [0113] Alternatively, the computing means itself may further comprises a memory (not shown) which stores resistance level indicators for a plurality of users in much the same way as control system 101 shown in figure 1. In this case, the computing means will further comprise an identification subsystem (not shown) which is configured to permit a user to provide a user identifier to log-in to the exercise bike system to begin an exercise. Users may be prompted to identify themselves by inputting a username and/or password; by the use of an RFID chip; a smartphone app; a fingerprint; a removable memory device; or any other variety of standard methods of such, as will be well understood by the skilled person and described in detail in connection with the embodiment of figures 1 and 2.

    [0114] As described previously with reference to the exercise bike of figure 2, the processor 501 of the exercise bike of figure 5 is coupled to the brake 511 to cause the brake 511 to apply a resistance to the flywheel 509. With the exception of safety controls such as an emergency stop, the user is unable to manually adjust the resistance applied by the brake 511 to the flywheel 509 manually or to control the processor so as to cause it to adjust the resistance. Additionally, the processor is configured to apply a resistance to prevent the bike from being operated (i.e. to prevent the flywheel from rotating) without a registered user being logged in to the system.

    [0115] As described previously with reference to the exercise bike of figure 2, the processor 501 of the exercise bike of figure 5 is coupled to the measurement subsystem 513, which includes at least one sensor (not shown) for sensing RPM. For example, one or more sensors may be positioned on the frame adjacent the flywheel to sense flywheel rotation speed; one or more sensors may be positioned on the frame adjacent the pedals to sense cadence. All such sensors could be arranged by a skilled person as necessary to determine performance of the user during an exercise.

    [0116] In use (and with reference to the process illustrated in figure 6), the exercise bike 500 operates as follows. A user mounts the bike (step 601) and provides the exercise bike 600 with his or her user identifier (step 603) in the form of a key fob (not shown) inserted into the dock 517. It will be appreciated that this step is optional, however, and the user could instead simply provide a key fob (or equivalent) containing the resistance level indicator. Where a user identifier is provided, the processor 501 interrogates the fob and receives the user identifier (step 605), and then interrogates the memory (step 607) to retrieve information about the user corresponding to the user identifier. This information includes, at least, a resistance level indicator (step 609).

    [0117] At some point during the user's exercise (step 611), the bike processor 501 causes the brake 511 to apply a level of resistance to the flywheel according to the resistance level indicator (as explained in more detail above in connection with the exercise bike of figure 2).

    [0118] At some point during the user's exercise, the bike processor 501 causes the measurement subsystem to measure a performance parameter of the user, including at least the RPM (step 613).

    [0119] The bike processor 501 carries out a computation (described in more detail above in connection with the exercise bike of figure 2) to determine whether or not to modify the resistance level indicator based on the received performance parameter. If the determination is positive, the processor modifies the resistance level indicator stored in memory (step 615), irrespective of whether the memory is within the exercise bike (and accessed using a user identifier) or provided by the user in the form of a key fob, for example.

    [0120] Determination of whether to modify the resistance level indicator takes place once per exercise, and not continuously during the exercise.. Thus, where the resistance level indicator stored in memory is modified based on the performance parameter measured during one exercise, the modified resistance level indicator will be used to set the resistance applied by the brake for the next exercise.

    [0121] In all other respects (in particular with reference to the protocols and algorithms for determining whether or not to modify the resistance level indicator), the exercise bike of figure 5 operates the same as the control system and exercise bike of figures 1 and 2, except that all processing takes place at the bike, rather than across a distributed network.

    [0122] Figure 7 shows an exercise bike 200 further comprising a screen 601 at least partially enclosing the bike. HIT requires users to exercise at their peak performance levels. The screen 601 enables HIT to be much more accessible and convenient for a broad range of users. In particular, the screen 601 enables exercise bikes to be placed in lobbies and cafeterias of office buildings, for example, or in public areas in retail outlets and shopping centres, for example, or other similarly public places.

    [0123] The screen 601 comprises a plurality of slats 602 interconnected to form a free-standing structure which mostly (i.e. at least partially) surrounds the exercise bike 200. At least some of the slats are oriented at an angle to the horizontal, so as to at least partially block a bystanders view of the user and exercise apparatus. However, in other examples the screen may be any structure capable of at least partially concealing a user and the exercise apparatus.

    [0124] The screen 601 provides users with a minimum level of privacy, and which has been specifically designed to minimise the space requirement/footprint of the system. The screen 601 may be equipped with a number of additional features, such as an integrated ventilation and cooling system, an integrated biometric scale, integrated user interfaces such as a display (as an alternative to the display attached to the exercise bike directly), a smartcard or keyfob reader, a surveillance and alarm system, which together with the flywheel locking mechanism, all of which are described above. The screen would thus give our system multiple-user capabilities for unsupervised use in public areas.

    [0125] Accordingly to the above, this invention provides for exercise apparatus and control systems thereof that are specifically designed to make it easier for a user to correctly carry out an HIT protocol. The user only has to identify themselves, and then focus on performing the HIT protocol correctly. The resistance level for the individual user during the high intensity sections of the HIT protocol is optimised such that the user is working at the correct intensity, enabling the user to see the full benefit of this form of exercise. This is achieved by algorithmically optimising the resistance level over time, using the measured performance parameter of the user as the input. This mean that the user is working at or near their maximum power output, and the resistance level will self-adjust as the fitness level of the user changes.


    Claims

    1. A control system (101) for controlling one or more of a plurality of exercise apparatuses (200a - 200c) across a network (109), each of the plurality of exercise apparatuses (200a - 200c) comprising a brake (211) for applying resistance and being configured to transmit a user identifier and a performance parameter of a user, the control system (101) comprising:

    a processor (103);

    a communication subsystem (105) configured to communicate with the plurality of exercise apparatuses (200a - 200c) across the network (109); and

    a memory (107) for storing information about one or more users, the information comprising, for each user:

    identity information, including a user identifier;

    weight; and

    a resistance level indicator;

    wherein upon receipt of a user identifier from one of the one or more of the plurality of exercise apparatuses (200a - 200c) in the network (109), the processor (103) is configured to identify a resistance level indicator stored in the memory (107) corresponding to the user identifier;

    wherein, if the user is using the one or more of the plurality of exercise apparatuses (200a - 200c) for the first time, the processor (103) is configured to set the resistance level indicator appropriate for the user based on the user's weight;

    wherein the processor (103) is configured to cause the communication subsystem (105) to transmit the resistance level indicator for that user to the one of the one or more of the plurality of exercise apparatuses (200a - 200c) in order that a resistance is applied by a brake (211) of the one of the one or more of the plurality of exercise apparatuses (200a - 200c) according to the resistance level indicator, wherein the resistance applied by the brake (211) during exercise is controllable only by the resistance level indicator stored in the memory (107), and wherein the resistance applied by the brake (211) during exercise is not adjustable by the user during exercise;

    wherein upon receipt of a performance parameter of the user measured on the one of the one or more of the plurality of exercise apparatuses (200a - 200c) during the user's exercise in the network (109), the processor (103) is configured to determine, based on the received performance parameter, whether or not to modify the resistance level indicator of that user stored in the memory (107);

    wherein, if the determination is positive, the processor (103) is configured to modify the resistance level indicator stored in the memory (107), wherein the modified resistance level indicator will be used to set a resistance applied by a brake (211) of one of the one or more of the plurality of exercise apparatuses (200a - 200c) for a next exercise.


     
    2. The control system (101) of claim 1, wherein the processor (103) is further configured to set the resistance level indicator of the user based on the user's weight according to a look-up table.
     
    3. The control system (101) of claim 1 or claim 2, wherein the information about one or more users further comprises, for each user, a counter indicative of the number of exercises completed by the user; optionally
    wherein the processor (103) is configured to set the resistance level indicator of the user based on the user's weight only when the counter is equal to or below a threshold value; optionally wherein the threshold value is 2.
     
    4. The control system (101) of claim 3, wherein the processor (103) is configured to apply a multiplier to the weight according to the value of the counter, optionally
    wherein the processor (103) is configured to:

    apply a multiplier of 0.6 to the weight when the counter is equal to 0; and/or

    apply a multiplier of 0.8 to the weight when the counter is equal to 1; and/or

    apply a multiplier of 1 to the weight when the counter is equal to 2.


     
    5. The control system (101) of claims 1 to 4, wherein the processor (103) is further configured to transmit to the one of the one or more of the plurality of exercise apparatuses (200a - 200c) instructions for implementing an exercise protocol, wherein the protocol comprises a plurality of periods including first and second sprint periods; optionally
    wherein the protocol comprises applying at least two different resistance levels during the plurality of periods.
     
    6. The control system (101) of claim 5, wherein the protocol consists of:

    a warm up period, followed by

    a first sprint period, followed by

    a first recovery period, followed by

    a second sprint period, followed by

    a second recovery period; optionally

    wherein:

    the duration of the warm-up period is 180 seconds;

    the duration of the first sprint period is 20 seconds;

    the duration of the first recovery period is 180 seconds;

    the duration of the second sprint period is 20 seconds; and

    the duration of the second recovery period is 180 seconds; and/or

    wherein the resistance level applied during the first and/or second sprint periods is based on the resistance level indicator.
     
    7. The control system (101) of claim 6, wherein:

    a first resistance level is applied during the warm up period;

    a second resistance level is applied during the first sprint period;

    the first resistance level is applied during the first recovery period;

    the second resistance level is applied during the second sprint period; and

    the first resistance level is applied during the second recovery period; optionally

    wherein the first resistance level is the lowest resistance setting of the one of the one or more of the plurality of exercise apparatuses (200a - 200c).
     
    8. The control system (101) of any preceding claim, wherein the performance parameter is a ratio of a first performance measurement to a second performance measurement, wherein the first and second performance measurements are taken at different times during an exercise.
     
    9. The control system (101) of claim 8, wherein the first performance measurement is taken before the second performance measurement.
     
    10. The control system (101) of claim 9, when dependent on claim 6 or 7, wherein the first and second performance measurements are taken during the second sprint period; optionally
    wherein the first performance measurement is taken 5 seconds into the second sprint period; and/or
    wherein the second performance measurement is taken 15 seconds into the second sprint period.
     
    11. The control system (101) of any preceding claim, wherein the processor (103) is further configured to compare the received performance parameter with one or more threshold values to determine whether or not to modify the resistance level indicator; optionally
    wherein the processor (103) is further configured to compare the received performance parameter with an upper threshold value, and to increase the resistance level indicator if the received performance parameter exceeds the upper threshold values; and/or
    wherein the processor (103) is further configured to compare the received performance parameter with a lower threshold value, and to decrease the resistance level indicator if the received performance parameter is below the lower threshold value; and/or
    wherein the processor (103) is further configured to compare the received performance parameter with an upper threshold value and a lower threshold value, and to maintain the resistance level indicator if the received performance parameter is between the upper and lower threshold values.
     
    12. The control system (101) of claims 1 to 11, wherein upon reaching the determination to modify the resistance level indicator, the processor (103) is configured to modify the resistance level indicator by a predetermined amount.
     
    13. The control system (101) of any preceding claim, wherein the one of the one or more of the plurality of exercise apparatuses (200a - 200c) is an exercise bike (200), and wherein the performance parameter is revolutions per minute RPM.
     
    14. A method for controlling one or more of a plurality of exercise apparatuses (200a - 200c) across a network (109), each of the plurality of exercise apparatuses (200a - 200c) comprising a brake (211) for applying resistance, the method comprising:

    receiving a user identifier of a user from one of the one or more of the plurality of exercise apparatuses (200a - 200c);

    retrieving a resistance level indicator corresponding to the user identifier from a memory (107);

    if the user is using the one or more of the plurality of exercise apparatuses (200a - 200c) for the first time, setting the resistance level indicator appropriate for the user based on the user's weight;

    transmitting the resistance level indicator to the one of the one or more of the plurality of exercise apparatuses (200a - 200c) in order that a resistance is applied by a brake (211) of the one of the one or more of the plurality of exercise apparatuses (200a - 200c) according to the resistance level indicator, wherein the resistance applied by the brake (211) during exercise is controllable only by the resistance level indicator, and wherein the resistance applied by the brake (211) during exercise is not adjustable by the user during exercise;

    receiving a performance parameter of the user measured on the one of the one or more of the plurality of exercise apparatuses (200a - 200c);

    determining, based on the received performance parameter, whether or not to modify the resistance level indicator; and, if the determination is positive:
    modifying the resistance level indicator corresponding to the user identifier in the memory (107), wherein the modified resistance level indicator will be used to set a resistance applied by a brake (211) of one of the one or more of the plurality of exercise apparatuses (200a - 200c) for a next exercise.


     
    15. An exercise apparatus (200) and a control system (101), wherein the exercise apparatus (200) is controlled by the control system (101), wherein the control system (101) is as defined in any one of claims 1 to 13, wherein the exercise apparatus (200) is configured to communicate with the control system (101) across a network (109), the control system (101) being configured to transmit a resistance level indicator indicative of a resistance level to be applied by the exercise apparatus (200), the exercise apparatus (200) comprising:

    a processor (201);

    a communications subsystem (203) configured to communicate with the control system (101) across the network (109);

    an identification subsystem (205) configured to receive a user identifier from a user;

    a load (209) for use in exercise and a brake (211) for applying resistance to the load (209); and

    a measurement subsystem (213) configured to measure a performance parameter of the user on the apparatus (200);

    wherein upon receipt of a user identifier from a user, the processor (201) is configured to cause the communication subsystem (203) to transmit the user identifier to the control system (101) across the network (109);

    wherein upon receipt of a resistance level indicator from the control system (101), the processor (201) is configured to cause the brake (211) to apply a corresponding resistance to the load (209), wherein the resistance applied by the brake (211) during exercise is not adjustable by the user and wherein the resistance applied by the brake (211) during exercise is controllable only by the received resistance level indicator; and

    wherein upon measurement of a performance parameter of the user on the apparatus (200), the processor (201) is configured to cause the communication subsystem (203) to transmit to the control system (101) the performance parameter of that user.


     


    Ansprüche

    1. Steuersystem (101) zum Steuern einer oder mehrerer von mehreren Übungsvorrichtungen (200a-200c) über ein Netz (109), wobei jede der mehreren Übungsvorrichtungen (200a-200c) eine Bremse (211) zum Ausüben eines Widerstands umfasst und konfiguriert ist, eine Anwenderkennung und einen Leistungsparameter eines Anwenders zu senden, wobei das Steuersystem (101) Folgendes umfasst:

    einen Prozessor (103);

    ein Kommunikationsteilsystem (105), das konfiguriert ist, mit den mehreren Übungsvorrichtungen (200a-200c) über das Netz (109) zu kommunizieren; und

    einen Speicher (107) zum Speichern von Informationen über einen oder mehrere Anwender, wobei die Informationen für jeden Anwender Folgendes umfassen:

    Identitätsinformationen einschließlich einer Anwenderkennung;

    ein Gewicht; und

    einen Widerstandsniveauindikator;

    wobei beim Empfang einer Anwenderkennung von einer der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) in dem Netz (109) der Prozessor (103) konfiguriert ist, einen im Speicher (107) gespeicherten Widerstandsniveauindikator, der der Anwenderkennung entspricht, zu identifizieren;

    wobei, falls der Anwender die eine oder die mehreren der mehreren Übungsvorrichtungen (200a-200c) zum ersten Mal verwendet, der Prozessor (103) konfiguriert ist, den Widerstandsniveauindikator basierend auf dem Gewicht des Anwenders für den Anwender geeignet festzulegen;

    wobei der Prozessor (103) konfiguriert ist, das Kommunikationsteilsystem (105) zu veranlassen, den Widerstandsniveauindikator für diesen Anwender an die eine der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) zu senden, damit ein Widerstand durch eine Bremse (211) der einen der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) gemäß dem Widerstandsniveauindikator ausgeübt wird, wobei der durch die Bremse (211) während der Übung ausgeübte Widerstand nur durch den in dem Speicher (107) gespeicherten Widerstandsniveauindikator steuerbar ist und wobei der durch die Bremse (211) während der Übung ausgeübte Widerstand während der Übung nicht durch den Anwender einstellbar ist;

    wobei der Prozessor (103) beim Empfang eines Leistungsparameters des Anwenders, der an der einen der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) während der Übung des Anwenders gemessen wird, in dem Netz (109) konfiguriert ist, basierend auf dem empfangenen Leistungsparameter zu bestimmen, ob der in dem Speicher (107) gespeicherte Widerstandsniveauindikator dieses Anwenders zu modifizieren ist oder nicht;

    wobei, falls die Bestimmung positiv ist, der Prozessor (103) konfiguriert ist, den in dem Speicher (107) gespeicherten Widerstandsniveauindikator zu modifizieren, wobei der modifizierte Widerstandsniveauindikator verwendet wird, um einen durch die Bremse (211) einer der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) für eine nächste Übung ausgeübten Widerstand festzulegen.


     
    2. Steuersystem (101) nach Anspruch 1, wobei der Prozessor (103) ferner konfiguriert ist, den Widerstandsniveauindikator des Anwenders gemäß einer Nachschlagtabelle basierend auf dem Gewicht des Anwenders festzulegen.
     
    3. Steuersystem (101) nach Anspruch 1 oder Anspruch 2, wobei die Informationen über einen oder mehrere Anwender ferner für jeden Anwender einen Zähler, der die Anzahl der durch den Anwender abgeschlossenen Übungen angibt, umfasst; optional
    wobei der Prozessor (103) konfiguriert ist, den Widerstandsniveauindikator des Anwenders nur basierend auf dem Gewicht des Anwenders festzulegen, wenn der Zähler gleich einem oder kleiner als ein Schwellenwert ist; optional
    wobei der Schwellenwert 2 ist.
     
    4. Steuersystem (101) nach Anspruch 3, wobei der Prozessor (103) konfiguriert ist, gemäß dem Wert des Zählers einen Multiplikator auf das Gewicht anzuwenden, optional
    wobei der Prozessor (103) konfiguriert ist:

    einen Multiplikator von 0,6 auf das Gewicht anzuwenden, wenn der Zähler gleich 0 ist; und/oder

    einen Multiplikator von 0,8 auf das Gewicht anzuwenden, wenn der Zähler gleich 1 ist; und/oder

    einen Multiplikator von 1 auf das Gewicht anzuwenden, wenn der Zähler gleich 2 ist.


     
    5. Steuersystem (101) nach den Ansprüchen 1 bis 4, wobei der Prozessor (103) ferner konfiguriert ist, Anweisungen zum Implementieren eines Übungsprotokolls an die eine der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) zu senden, wobei das Protokoll mehrere Perioden einschließlich einer ersten und einer zweiten Sprintperiode umfasst; optional
    wobei das Protokoll das Anwenden von wenigstens zwei unterschiedlichen Widerstandsniveaus während der mehreren Perioden umfasst.
     
    6. Steuersystem (101) nach Anspruch 5, wobei das Protokoll aus Folgendem besteht:

    einer Aufwärmperiode, gefolgt von einer ersten Sprintperiode, gefolgt von einer ersten Erholungsperiode, gefolgt von einer zweiten Sprintperiode, gefolgt von

    einer zweiten Erholungsperiode; optional wobei:

    die Dauer der Aufwärmperiode 180 Sekunden beträgt;

    die Dauer der ersten Sprintperiode 20 Sekunden beträgt;

    die Dauer der ersten Erholungsperiode 180 Sekunden beträgt;

    die Dauer der zweiten Sprintperiode 20 Sekunden beträgt; und

    die Dauer der zweiten Erholungsperiode 180 Sekunden beträgt; und/oder

    wobei das während der ersten und/oder der zweiten Sprintperiode ausgeübte Widerstandsniveau auf dem Widerstandsniveauindikator basiert.


     
    7. Steuersystem (101) nach Anspruch 6, wobei:

    ein erstes Widerstandsniveau während der Aufwärmperiode ausgeübt wird;

    ein zweites Widerstandsniveau während der ersten Sprintperiode ausgeübt wird;

    das erste Widerstandsniveau während der ersten Erholungsperiode ausgeübt wird;

    das zweite Widerstandsniveau während der zweiten Sprintperiode ausgeübt wird; und

    das erste Widerstandsniveau während der zweiten Erholungsperiode ausgeübt wird; optional

    wobei das erste Widerstandsniveau die tiefste Widerstandseinstellung der einen der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) ist.
     
    8. Steuersystem (101) nach einem vorhergehenden Anspruch, wobei der Leistungsparameter ein Verhältnis eines ersten Leistungsmesswerts zu einem zweiten Leistungsmesswert ist, wobei der erste und der zweite Leistungsmesswert während einer Übung zu unterschiedlichen Zeitpunkten ermittelt werden.
     
    9. Steuersystem (101) nach Anspruch 8, wobei der erste Leistungsmesswert vor dem zweiten Leistungsmesswert ermittelt wird.
     
    10. Steuersystem (101) nach Anspruch 9, wenn abhängig vom Anspruch 6 oder 7, wobei der erste und der zweite Leistungsmesswert während der zweiten Sprintperiode ermittelt werden; optional
    wobei der erste Leistungsmesswert 5 Sekunden in der zweiten Sprintperiode ermittelt wird; und/oder
    wobei der zweite Leistungsmesswert 15 Sekunden in der zweiten Sprintperiode ermittelt wird.
     
    11. Steuersystem (101) nach einem vorhergehenden Anspruch, wobei der Prozessor (103) ferner konfiguriert ist, den empfangenen Leistungsparameter mit einem oder mehreren Schwellenwerten zu vergleichen, um zu bestimmen, ob der Widerstandsniveauindikator zu modifizieren ist oder nicht; optional
    wobei der Prozessor (103) ferner konfiguriert ist, den empfangenen Leistungsparameter mit einem oberen Schwellenwert zu vergleichen und den Widerstandsniveauindikator zu vergrößern, falls der empfangene Leistungsparameter die oberen Schwellenwerte übersteigt; und/oder
    wobei der Prozessor (103) ferner konfiguriert ist, den empfangenen Leistungsparameter mit einem unteren Schwellenwert zu vergleichen und den Widerstandsniveauindikator zu verkleinern, falls der empfangene Leistungsparameter sich unter dem unteren Schwellenwert befindet; und/oder
    wobei der Prozessor (103) ferner konfiguriert ist, den empfangenen Leistungsparameter mit einem oberen Schwellenwert und einem unteren Schwellenwert zu vergleichen und den Widerstandsniveauindikator aufrechtzuerhalten, falls sich der empfangene Leistungsparameter zwischen dem oberen und dem unteren Schwellenwert befindet.
     
    12. Steuersystem (101) nach den Ansprüchen 1 bis 11, wobei beim Erreichen der Bestimmung, den Widerstandsniveauindikator zu modifizieren, der Prozessor (103) konfiguriert ist, den Widerstandsniveauindikator um einen vorgegebenen Betrag zu modifizieren.
     
    13. Steuersystem (101) nach einem vorhergehenden Anspruch, wobei die eine der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) ein Übungsfahrrad (200) ist und wobei der Leistungsparameter die Umdrehungen pro Minute min-1 ist.
     
    14. Verfahren zum Steuern einer oder mehrerer von mehreren Übungsvorrichtungen (200a-200c) über ein Netz (109), wobei jede der mehreren Übungsvorrichtungen (200a-200c) eine Bremse (211) zum Ausüben eines Widerstands umfasst, wobei das Verfahren Folgendes umfasst:

    Empfangen einer Anwenderkennung eines Anwenders von einer der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c);

    Wiedergewinnen eines Widerstandsniveauindikators, der der Anwenderkennung entspricht, aus einem Speicher (107) ;

    falls der Anwender die eine oder die mehreren der mehreren Übungsvorrichtungen (200a-200c) zum ersten Mal verwendet, Festlegen des Widerstandsniveauindikators basierend auf dem Gewicht des Anwenders für den Anwender geeignet;

    Senden des Widerstandsniveauindikators an die eine der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c), damit gemäß dem Widerstandsniveauindikator ein Widerstand durch eine Bremse (211) der einen der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) ausgeübt wird, wobei der durch die Bremse (211) während der Übung ausgeübte Widerstand nur durch den Widerstandsniveauindikator steuerbar ist und wobei der durch die Bremse (211) während der Übung ausgeübte Widerstand während der Übung nicht durch den Anwender einstellbar ist;

    Empfangen eines Leistungsparameters des Anwenders, der an der einen der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) gemessen wird;

    Bestimmen basierend auf dem empfangenen Leistungsparameter, ob der Widerstandsniveauindikator zu modifizieren ist oder nicht; und, falls die Bestimmung positiv ist:
    Modifizieren des Widerstandsniveauindikators, der der Anwenderkennung entspricht, in dem Speicher (107), wobei der modifizierte Widerstandsniveauindikator verwendet wird, um einen durch eine Bremse (211) einer der einen oder der mehreren der mehreren Übungsvorrichtungen (200a-200c) für eine nächste Übung ausgeübten Widerstand festzulegen.


     
    15. Übungsvorrichtung (200) und Steuersystem (101), wobei die Übungsvorrichtung (200) durch das Steuersystem (101) gesteuert ist, wobei das Steuersystem (101) so ist, wie es in einem der Ansprüche 1 bis 13 definiert ist, wobei die Übungsvorrichtung (200) konfiguriert ist, mit dem Steuersystem (101) über ein Netz (109) zu kommunizieren, wobei das Steuersystem (101) konfiguriert ist, einen Widerstandsniveauindikator, der ein durch die Übungsvorrichtung (200) auszuübendes Widerstandsniveau angibt, zu senden, wobei die Übungsvorrichtung (200) Folgendes umfasst:

    einen Prozessor (201);

    ein Kommunikationsteilsystem (203), das konfiguriert ist, über das Netz (109) mit dem Steuersystem (101) zu kommunizieren;

    ein Identifikationsteilsystem (205), das konfiguriert ist, eine Anwenderkennung von einem Anwender zu empfangen;

    eine Last (209) zur Verwendung in einer Übung und eine Bremse (211) zum Ausüben eines Widerstands auf die Last (209); und

    ein Messteilsystem (213), das konfiguriert ist, einen Leistungsparameter des Anwenders an der Vorrichtung (200) zu messen,

    wobei beim Empfang einer Anwenderkennung von einem Anwender der Prozessor (201) konfiguriert ist, das Kommunikationsteilsystem (203) zu veranlassen, die Anwenderkennung über das Netz (109) an das Steuersystem (101) zu senden;

    wobei beim Empfang eines Widerstandsniveauindikators von dem Steuersystem (101) der Prozessor (201) konfiguriert ist, die Bremse (211) zu veranlassen, einen entsprechenden Widerstand auf die Last (209) auszuüben, wobei der durch die Bremse (211) während der Übung ausgeübte Widerstand nicht durch den Anwender einstellbar ist und wobei der durch die Bremse (211) während der Übung ausgeübte Widerstand nur durch den empfangenen Widerstandsniveauindikator steuerbar ist; und

    wobei bei der Messung eines Leistungsparameters des Anwenders an der Vorrichtung (200) der Prozessor (201) konfiguriert ist, das Kommunikationsteilsystem (203) zu veranlassen, den Leistungsparameter dieses Anwenders an das Steuersystem (101) zu senden.


     


    Revendications

    1. Système de contrôle (101) pour contrôler un ou plusieurs appareils d'exercice d'une pluralité d'appareils d'exercice (200a-200c) sur un réseau (109), chaque appareil d'exercice de la pluralité d'appareils d'exercice (200a-200c) comprenant un frein (211) pour appliquer une résistance et étant configuré pour émettre un identifiant d'utilisateur et un paramètre de performance d'un utilisateur, le système de contrôle (101) comprenant :

    un processeur (103) ;

    un sous-système de communication (105), configuré pour communiquer avec la pluralité d'appareils d'exercice (200a-200c) sur le réseau (109) ; et

    une mémoire (107) pour stocker des informations sur un ou plusieurs utilisateurs, les informations comprenant, pour chaque utilisateur :

    une information d'identité, incluant un identifiant d'utilisateur ;

    un poids ; et

    un indicateur de niveau de résistance ;

    le processeur (103) étant configuré pour, à la réception d'un identifiant d'utilisateur en provenance du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) sur le réseau (109), identifier un indicateur de niveau de résistance, stocké dans la mémoire (107), correspondant à l'identifiant d'utilisateur ;

    le processeur (103) étant configuré pour, si l'utilisateur utilise le ou les appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) pour la première fois, régler l'indicateur de niveau de résistance convenant à l'utilisateur sur la base du poids de l'utilisateur ;

    le processeur (103) étant configuré pour amener le sous-système de communication (105) à émettre l'indicateur de niveau de résistance de cet utilisateur vers le ou les appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) afin qu'une résistance soit appliquée par un frein (211) du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) selon l'indicateur de niveau de résistance, la résistance appliquée par le frein (211) pendant un exercice étant contrôlable uniquement par l'indicateur de niveau de résistance stocké dans la mémoire (107), et la résistance appliquée par le frein (211) pendant l'exercice n'étant pas réglable par l'utilisateur pendant l'exercice ;

    le processeur (103) étant configuré pour, à la réception d'un paramètre de performance de l'utilisateur, mesuré sur ledit appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) pendant l'exercice de l'utilisateur sur le réseau (109), déterminer, sur la base du paramètre de performance reçu, s'il faut modifier ou non l'indicateur de niveau de résistance de cet utilisateur, stocké dans la mémoire (107) ;

    le processeur (103) étant configuré pour, si la détermination est positive, modifier l'indicateur de niveau de résistance stocké dans la mémoire (107), l'indicateur de niveau de résistance modifié étant utilisé pour régler une résistance appliquée par un frein (211) d'un appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) pour un prochain exercice.


     
    2. Système de contrôle (101) selon la revendication 1, dans lequel le processeur (103) est en outre configuré pour régler l'indicateur de niveau de résistance de l'utilisateur sur la base du poids de l'utilisateur selon une table de référence.
     
    3. Système de contrôle (101) selon la revendication 1 ou 2, dans lequel les informations sur le ou les utilisateurs comprennent en outre, pour chaque utilisateur, un compteur représentatif du nombre d'exercices réalisés par l'utilisateur ;
    éventuellement dans lequel le processeur (103) est configuré pour régler l'indicateur de niveau de résistance de l'utilisateur sur la base du poids de l'utilisateur uniquement quand le compteur est inférieur ou égal à une valeur-seuil ;
    la valeur-seuil est égale à 2.
     
    4. Système de contrôle (101) selon la revendication 3, dans lequel le processeur (103) est configuré pour appliquer un multiplicateur au poids selon la valeur du compteur,
    éventuellement dans lequel le processeur (103) est configuré pour :

    appliquer un multiplicateur de 0,6 au poids quand le compteur est égal à 0 ; et/ou

    appliquer un multiplicateur de 0,8 au poids quand le compteur est égal à 1 ; et/ou

    appliquer un multiplicateur de 1 au poids quand le compteur est égal à 2.


     
    5. Système de contrôle (101) selon les revendications 1 à 4, dans lequel le processeur (103) est en outre configuré pour émettre vers ledit appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) des instructions pour mettre en oeuvre un protocole d'exercice, le protocole comprenant une pluralité de périodes incluant des première et seconde périodes de sprint ;
    éventuellement dans lequel le protocole consiste à appliquer au moins deux niveaux de résistance différents pendant la pluralité de périodes.
     
    6. Système de contrôle (101) selon la revendication 5, dans lequel le protocole consiste en :

    une période d'échauffement, suivie de

    une première période de sprint, suivie de

    une première période de récupération, suivie de

    une seconde période de sprint, suivie de

    une seconde période de récupération ;

    éventuellement dans lequel :

    la durée de la période d'échauffement est de 180 secondes ;

    la durée de la première période de sprint est de 20 secondes ;

    la durée de la première période de récupération est de 180 secondes ;

    la durée de la seconde période de sprint est de 20 secondes ; et

    la durée de la seconde période de récupération est de 180 secondes ; et/ou

    dans lequel le niveau de résistance appliqué pendant les première et/ou seconde périodes de sprint est basé sur l'indicateur de niveau de résistance.


     
    7. Système de contrôle (101) selon la revendication 6, dans lequel :

    un premier niveau de résistance est appliqué pendant la période d'échauffement ;

    un second niveau de résistance est appliqué pendant la première période de sprint ;

    le premier niveau de résistance est appliqué pendant la première période de récupération ;

    le second niveau de résistance est appliqué pendant la seconde période de sprint ; et

    le premier niveau de résistance est appliqué pendant la seconde période de récupération ;

    éventuellement dans lequel le premier niveau de résistance est le réglage de résistance minimum dudit appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c).


     
    8. Système de contrôle (101) selon l'une quelconque des revendications précédentes, dans lequel le paramètre de performance est un rapport entre une première mesure de performance et une seconde mesure de performance, les première et seconde mesures de performance étant prises à différents moments pendant un exercice.
     
    9. Système de contrôle (101) selon la revendication 8, dans lequel la première mesure de performance est prise avant la seconde mesure de performance.
     
    10. Système de contrôle (101) selon la revendication 9, en dépendance de la revendication 6 ou 7, dans lequel les première et seconde mesures de performance sont prises pendant la seconde période de sprint ;
    éventuellement dans lequel la première mesure de performance est prise pendant 5 secondes pendant la seconde période de sprint ; et/ou
    dans lequel la seconde mesure de performance est prise pendant 15 secondes pendant la seconde période de sprint.
     
    11. Système de contrôle (101) selon l'une quelconque des revendications précédentes, dans lequel le processeur (103) est en outre configuré pour comparer le paramètre de performance reçu à une ou plusieurs valeurs-seuil pour déterminer s'il faut modifier ou non l'indicateur de niveau de résistance ;
    éventuellement dans lequel le processeur (103) est en outre configuré pour comparer le paramètre de performance reçu à une valeur-seuil supérieure, et pour augmenter l'indicateur de niveau de résistance si le paramètre de performance reçu dépasse les valeurs-seuil supérieures ; et/ou
    dans lequel le processeur (103) est en outre configuré pour comparer le paramètre de performance reçu à une valeur-seuil inférieure, et pour diminuer l'indicateur de niveau de résistance si le paramètre de performance reçu est inférieur à la valeur-seuil inférieure ; et/ou
    dans lequel le processeur (103) est en outre configuré pour comparer le paramètre de performance reçu à une valeur-seuil supérieure et à une valeur-seuil inférieure, et pour maintenir l'indicateur de niveau de résistance si le paramètre de performance reçu est entre les valeurs-seuil supérieure et inférieure.
     
    12. Système de contrôle (101) selon les revendications 1 à 11, dans lequel, quand il est déterminé qu'il faut modifier l'indicateur de niveau de résistance, le processeur (103) est configuré pour modifier l'indicateur de niveau de résistance d'une valeur prédéterminée.
     
    13. Système de contrôle (101) selon l'une quelconque des revendications précédentes, dans lequel ledit appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) est un vélo d'exercice (200), et dans lequel le paramètre de performance est un nombre de tours par minute (RPM).
     
    14. Procédé de contrôle d'un ou plusieurs appareils d'exercice d'une pluralité d'appareils d'exercice (200a-200c) sur un réseau (109), chaque appareil d'exercice de la pluralité d'appareils d'exercice (200a-200c) comprenant un frein (211) pour appliquer une résistance, le procédé consistant à :

    recevoir un identifiant d'utilisateur en provenance du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) ;

    récupérer dans une mémoire (107) un indicateur de niveau de résistance correspondant à l'identifiant d'utilisateur ;

    si l'utilisateur utilise le ou les appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) pour la première fois, régler l'indicateur de niveau de résistance convenant à l'utilisateur sur la base du poids de l'utilisateur ;

    émettre l'indicateur de niveau de résistance vers le ou les appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) afin qu'une résistance soit appliquée par un frein (211) du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) selon l'indicateur de niveau de résistance, la résistance appliquée par le frein (211) pendant un exercice étant contrôlable uniquement par l'indicateur de niveau de résistance, et la résistance appliquée par le frein (211) pendant l'exercice n'étant pas réglable par l'utilisateur pendant l'exercice ;

    recevoir un paramètre de performance de l'utilisateur, mesuré sur ledit appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) ;

    déterminer, sur la base du paramètre de performance reçu, s'il faut modifier ou non l'indicateur de niveau de résistance ; et, si la détermination est positive :
    modifier l'indicateur de niveau de résistance correspondant à l'identifiant d'utilisateur dans la mémoire (107), l'indicateur de niveau de résistance modifié étant utilisé pour régler une résistance appliquée par un frein (211) d'un appareil d'exercice du ou des appareils d'exercice de la pluralité d'appareils d'exercice (200a-200c) pour un prochain exercice.


     
    15. Appareil d'exercice (200) et système de contrôle (101), l'appareil d'exercice (200) étant contrôlé par le système de contrôle (101), le système de contrôle (101) étant défini selon l'une quelconque des revendications 1 à 13, l'appareil d'exercice (200) étant configuré pour communiquer avec le système de contrôle (101) sur un réseau (109), le système de contrôle (101) étant configuré pour émettre un indicateur de niveau de résistance représentatif d'un niveau de résistance que doit appliquer l'appareil d'exercice (200), l'appareil d'exercice (200) comprenant :

    un processeur (201) ;

    un sous-système de communication (203), configuré pour communiquer avec le système de contrôle (101) sur le réseau (109) ;

    un sous-système d'identification (205), configuré pour recevoir un identifiant d'utilisateur en provenance d'un utilisateur ;

    une charge (209) destinée à être utilisée dans un exercice, et un frein (211) pour appliquer une résistance à la charge (209) ; et

    un sous-système de mesure (213), configuré pour mesurer un paramètre de performance de l'utilisateur sur l'appareil (200) ;

    le processeur (201) étant configuré pour, à la réception d'un identifiant d'utilisateur en provenance d'un utilisateur, amener le sous-système de communication (203) à émettre l'identifiant d'utilisateur vers le système de contrôle (101) sur le réseau (109) ;

    le processeur (201) étant configuré pour, à la réception d'un indicateur de niveau de résistance en provenance du système de contrôle (101), amener le frein (211) à appliquer une résistance correspondante à la charge (209), la résistance appliquée par le frein (211) pendant un exercice n'étant pas réglable par l'utilisateur, et la résistance appliquée par le frein (211) pendant l'exercice étant contrôlable uniquement par l'indicateur de niveau de résistance reçu ; et

    le processeur (201) étant configuré pour, à la réception d'une mesure d'un paramètre de performance de l'utilisateur sur l'appareil (200), amener le sous-système de communication (203) à émettre le paramètre de performance de cet utilisateur vers le système de contrôle (101).


     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description