(19)
(11)EP 3 165 439 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 16002234.9

(22)Date of filing:  25.09.2013
(51)Int. Cl.: 
B62M 25/08  (2006.01)
B62M 9/122  (2010.01)

(54)

POWER SUPPLY FOR A BICYCLE DERAILLEUR

ENERGIEVERSORGUNG FÜR EINE KETTENSCHALTUNG

SOURCE DE ALIMENTATION POUR DÉRAILLEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.09.2012 US 201261706357 P
30.11.2012 US 201213691391

(43)Date of publication of application:
10.05.2017 Bulletin 2017/19

(62)Application number of the earlier application in accordance with Art. 76 EPC:
15002360.4 / 2982593
13004657.6 / 2712799

(73)Proprietor: SRAM, LLC
Chicago, IL 60607 (US)

(72)Inventors:
  • Shipman, Christopher
    Chicago, IL 60640 (US)
  • Jordan, Brian
    Highland Park, IL 60035 (US)

(74)Representative: Thum, Bernhard 
Wuesthoff & Wuesthoff Patentanwälte PartG mbB Schweigerstraße 2
81541 München
81541 München (DE)


(56)References cited: : 
EP-A1- 0 647 558
EP-A2- 1 818 253
US-A- 4 894 046
EP-A2- 1 752 373
JP-A- 2002 053 089
US-A- 5 480 356
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background of the invention



    [0001] The invention relates to bicycle derailleurs. In particular, the invention is directed to electromechanical rear derailleurs.

    [0002] EP 1 752 373 discloses a front derailleur. The front derailleur includes a mounting member mounted to a frame mounting base by a fixing bolt. The mounting member of the front derailleur has a semicircular mounting portion mounted to the semicircular mounting surface of derailleur mounting portion of frame mounting base. A power supply supplies electric power to front and rear derailleurs. The power supply unit comprises a mounting bracket and a power supply, wherein the mounting bracket is structured to be mounted to mounting member of front derailleur, and power supply is structured to be detachably mounted to mounting bracket. A connector is mounted to mounting bracket for providing electrical connection to power supply and to the other electrical components in the system. Mounting bracket comprises a bracket main body that may be formed by bending and cutting a plate member. The bracket main body includes a power supply mounting portion on which power supply is mounted, a connector supporting portion on which the connector is supported, a bracket mounting portion disposed between the power supply mounting portion and the connector mounting portion and structured to be mounted to the top of mounting member by a fixing bolt, an intermediate portion that connects power supply mounting portion and connector mounting portion, and a connector mounting portion for attaching connector.

    Summary of the invention



    [0003] The present invention relates to a bicycle electronic gear changing system comprising the features recited in claim 1. The preferred embodiments of the invention are defined in the remaining dependent claims 2 to 11. Other embodiments and examples not claimed, are further also described. One aspect is an electronic rear derailleur for a bicycle, including a base member for attachment to a frame member of the bicycle. The derailleur includes a movable member, a linkage coupling the movable member to the base member and operative to permit movement of the movable member relative to the base member. A power source is removably connected to one of the base member and the movable member. A motor is positioned at the other of the base member and the movable member and an electrical conductor connects the power source to the motor. The electronic rear derailleur may further provide that the power source is removably connected to the base member and the motor is positioned at the movable member.

    [0004] The electronic rear derailleur may further provide that the linkage includes an outer link and an inner link.

    [0005] The electronic rear derailleur may further comprise a first pin that pivotally connects the outer link to the base member, a second pin that pivotally connects the inner link to the base member, a third pin that pivotally connects the outer link to the movable member, and a fourth pin that pivotally connects the inner link to the movable member.

    [0006] The electronic rear derailleur may further provide that the movable member includes a gear housing.

    [0007] The electronic rear derailleur may further comprise a transmission positioned in the gear housing, the transmission operated by the motor.

    [0008] The electronic rear derailleur may further provide that the motor is positioned in the gear housing.

    [0009] The electronic rear derailleur may further provide that the motor includes an output shaft with a worm disposed thereon.

    [0010] The electronic rear derailleur may further provide that the worm operates the transmission to operate an output gear of the transmission.

    [0011] The electronic rear derailleur may further provide that the output gear is coupled to the inner link to move the movable member.

    [0012] The electronic rear derailleur may further provide that the transmission includes at least one gear connecting the worm to the output gear.

    [0013] The electronic rear derailleur may further provide that the output gear is arranged on the fourth pin.

    [0014] The electronic rear derailleur may further provide that the output gear is arranged about the fourth pin.

    [0015] The electronic rear derailleur may further provide that the output gear is rotatably arranged about the fourth pin.

    [0016] The electronic rear derailleur may further comprise a drive arm coupled to the output gear, the drive arm acting on the inner link to move the moveable member.

    [0017] The electronic rear may further provide that the drive arm contacts a projection of the inner link on a first side of the drive arm.

    [0018] The electronic rear derailleur may further comprise a clutch spring disposed on the second pin, the clutch spring biasably contacting the drive arm.

    [0019] The electronic rear derailleur may further provide that the clutch spring includes a free end extending toward the movable member and contacting the drive arm on a second side of the drive arm, wherein the second side is opposite the first side of the drive arm.

    [0020] The electronic rear derailleur may further comprise an encoder gear meshed with the output gear.

    [0021] The electronic rear derailleur may further comprise a magnet holder disposed within the gear housing, the magnet holder provided with a magnet responsive to motion of the encoder gear, and a sensor positioned to sense the angular position of the encoder gear by way of the position of the magnet.

    [0022] Another aspect is a power supply for a bicycle derailleur, including a housing sized and shaped to be removably mounted to and interchangeable between a front derailleur and a rear derailleur. A battery is disposed in the housing. A terminal is located on the outside of the housing and is in electrical communication with the battery. A securing mechanism is on each of a base member of the front derailleur and a base member of the rear derailleur for releasably retaining the housing thereon.

    [0023] The power supply may further be configured to be interchangeably mountable to a rear derailleur and a front derailleur.

    [0024] The power supply may further comprise a mounting plate onnected to a base member of each of the rear and front derailleurs, the mounting plate sized and shaped to receive the power supply.

    [0025] The power supply may further provide that the mounting plate includes a pair of contacts positioned to align with the terminal when the power supply is connected to the mounting plate.

    [0026] The power supply may further provide that the mounting plate includes a seal disposed about at least one of the pair of contacts and positioned to seal with the housing when the power supply is connected thereto.

    [0027] The power supply may further comprise an engagement member positioned on a base member of each of the rear and front derailleurs and movable between an engaged position to thereby secure the housing to the base member and an unengaged position for removal of the housing from the base member.

    [0028] The power supply may further comprise a biasing member arranged to bias the engagement member to the engaged position.

    [0029] The power supply may further provide that the housing includes a catch shaped to be engaged by the engagement member.

    [0030] The power supply may further provide that the engagement member is a latch.

    [0031] The power supply may further provide that the housing includes one or more protrusions that are captured in corresponding receiving features formed in the base member.

    [0032] The power supply may further provide that the catch and the one or more protrusions are positioned at opposite ends of the housing.

    [0033] The power supply may further provide that the housing is laterally compressed.

    [0034] Yet another aspect is an electronic rear derailleur for a bicycle, including a base member for attachment to a frame member of the bicycle, a movable member, a linkage coupling the movable member to the base member and operative to permit movement of the movable member relative to the base member. A motor is located at the movable member, the motor operative to move the movable member relative to the base member, the motor being wirelessly controllable, and a button is positioned on the movable member for accessing one or more operating parameter of the derailleur.

    [0035] The electronic rear derailleur may further provide that the power source is removably connected to the base member.

    [0036] The electronic rear derailleur may further provide that the linkage includes an outer link and an inner link.

    [0037] The electronic rear derailleur may further comprise a first pin that pivotally connects the outer link to the base member, a second pin that pivotally connects the inner link to the base member, a third pin that pivotally connects the outer link to the movable member, and a fourth pin that pivotally connects the inner link to the movable member.

    [0038] The electronic rear derailleur may further provide that the movable member includes a gear housing.

    [0039] The electronic rear derailleur may further comprise a transmission positioned in the gear housing, the transmission operated by the motor.

    [0040] The electronic rear derailleur may further provide that the motor is positioned in the gear housing.

    [0041] The electronic rear derailleur may further provide that the motor includes an output shaft with a worm disposed thereon.

    [0042] The electronic rear derailleur may further provide that the worm operates the transmission to operate an output gear of the transmission.

    [0043] The electronic rear derailleur may further provide that the output gear is coupled to the inner link to move the movable member.

    [0044] The electronic rear derailleur may further provide that the transmission includes at least one gear connecting the worm to the output gear.

    [0045] The electronic rear derailleur may further provide that the output gear is arranged on the fourth pin.

    [0046] The electronic rear derailleur may further provide that the output gear is arranged about the fourth pin.

    [0047] The electronic rear derailleur may further provide that the output gear is rotatably arranged about the fourth pin.

    [0048] The electronic rear derailleur may further comprise a drive arm coupled to the output gear, the drive arm acting on the inner link to move the moveable member.

    [0049] The electronic rear derailleur may further provide that the drive arm contacts a projection of the inner link on a first side of the drive arm.

    [0050] The electronic rear derailleur may further comprise a clutch spring disposed on the second pin, the clutch spring contacting the drive arm.

    [0051] The electronic rear derailleur may further provide that the clutch spring includes a free end extending toward the movable member and contacting the drive arm on a second side of the drive arm, wherein the second side is opposite the first side of the drive arm.

    [0052] The electronic rear derailleur may further comprise an encoder gear meshed with the output gear.

    [0053] The electronic rear derailleur may further comprise a magnet holder disposed within the gear housing, the magnet holder provided with a magnet responsive to motion of the encoder gear, and a sensor positioned to sense the angular position of the encoder gear by way of the position of the magnet.

    [0054] The electronic rear derailleur may further provide that the parameter is a pairing function.

    [0055] Yet another aspect is an electronic rear derailleur for a bicycle, including a base member for attachment to a frame member of the bicycle, a movable member, a linkage coupling the movable member to the base member and operative to permit movement of the movable member relative to the base member. A transmission is optionally positioned at the movable member operative to move the movable member relative to the base member, the transmission including a plurality of gears in a load path and an encoder gear independent of the load path and receiving rotational input from one of the plurality of gears of the transmission. A motor is optionally positioned at the movable member to operate the transmission. The electronic rear derailleur may further comprise an absolute encoder positioned to sense the position of the encoder gear.

    [0056] The electronic rear derailleur may further provide that the transmission includes an output gear and the encoder gear is meshed with the output gear.

    [0057] The electronic rear derailleur may further provide that the output gear operates over an angular range.

    [0058] The electronic rear derailleur may further provide that the encoder gear is sized to rotate an amount approaching but not exceeding 360 degrees over the operating range of the output gear.

    [0059] The electronic rear derailleur may further provide that the output gear operates over a range of about 90 degrees and the encoder gear is about ¼ the diameter of the output gear.

    [0060] According to the preferred embodiment of the invention is a power supply arrangement for a bicycle electronic gear changing system, comprising: a front derailleur including a base member mounted to the bicycle; a first power supply removably mounted on the base member of the front derailleur; a rear derailleur including a base member mounted to the bicycle; and a second power supply removably mounted on the base member of the rear derailleur. Wherein each of the first and second power supply for a bicycle derailleur comprising; a housing sized and shaped to be removably mounted to a bicycle derailleur; a battery disposed in the housing; a terminal on the outside of the housing and in electrical communication with the battery; and a securing mechanism on the bicycle derailleur for releasably retaining the housing thereon. The power supplies configured to be interchangeably mountable to a rear derailleur and a front derailleur.

    Brief description of the drawings



    [0061] 
    Fig. 1
    is a rear derailleur assembly installed on a bicycle.
    Fig. 2
    is a rear view of the rear derailleur assembly.
    Fig. 3
    is a view from E-E of the derailleur assembly of Fig. 2.
    Fig. 4
    is the rear derailleur assembly positioned with a cage assembly of the derailleur in an extreme inboard position.
    Fig. 5
    is a section view along F-F of Fig. 3, with some parts omitted for clarity.
    Fig. 6
    is a section view along G-G of Fig. 3, with some parts omitted for clarity.
    Figs. 7a-d
    are side, front, bottom and isometric views of a power source for the derailleur, respectively.
    Figs. 8a, 8b
    are two views showing the battery both installed and removed from the rear derailleur assembly, with the cage assembly omitted for clarity.
    Fig. 9
    is a section view along A-A of Fig. 2.
    Figs. 10 and 11
    are side views of the battery, respectively, partially attached and fully detached from the rear derailleur assembly.
    Fig. 12
    is a perspective view of a flexible cable assembly.
    Fig. 13
    is a section view along H-H of Fig. 3.
    Fig. 14
    is a view of the moveable assembly with the cover removed to show the motor and transmission.
    Fig. 15
    is a section view along C-C of Fig. 2, with some parts omitted for clarity.
    Fig. 16
    is a section view along K-K of Fig. 14, with some parts omitted for clarity.
    Fig. 17
    is a section view along J-J of Fig. 14, with some parts omitted for clarity.
    Fig. 18
    is a section view along B-B of Fig. 2, with cage assembly omitted for clarity.
    Fig. 18a
    is the same view as Fig. 18, except that a clutch spring is shown in a partially actuated state.
    Fig. 19
    is the same view as Fig. 18, except that the clutch spring is shown in a fully actuated state.
    Figs. 20 and 21
    are section views along D-D of Fig. 2 showing operation of the travel limit assembly.
    Fig. 22
    is an exploded view of the moveable assembly, with some parts omitted for clarity.
    Fig. 23
    is an oblique view of the rear derailleur assembly.
    Fig. 24
    is a side view of a front derailleur assembly.

    Detailed description of the invention



    [0062] Embodiments of the invention will herein be described with reference to the drawings. It will be understood that the drawings and descriptions set out herein are provided for illustration only and do not limit the invention as defined by the claims appended hereto and any and all their equivalents. For example, the terms "first" and "second," "front" and "rear," or "left" and "right" are used for the sake of clarity and not as terms of limitation. Moreover, the terms refer to bicycle mechanisms conventionally mounted to a bicycle and with the bicycle oriented and used in a standard fashion unless otherwise indicated.

    [0063] Referring to Figs. 1, 3, and 4, the basic structure of derailleur assembly 10 is generally similar to that of a conventional rear derailleur. The basic structure of the derailleur 10, generally shown in Fig.1, which may be a rear derailleur and more particularly may be an electromechanical rear derailleur or gear changer includes a base member 1, which may be attached to bicycle frame 13 in a conventional manner, an outer link 3 and an inner link 4 pivotally attached to the base member, and a moveable member or assembly 5 pivotally connected to the outer and inner links at an opposite end thereof to permit displacement of the moveable assembly. The outer link 3 and inner link 4 taken together may be considered components of a linkage or link mechanism 92, for example a parallelogram-type link mechanism. Base member 1 is also known as a b-knuckle and the moveable member 5 is also known as a p-knuckle. Cage assembly 8 may be pivotally connected to moveable assembly 5 in a conventional manner. Bicycle chain 12 is engaged with cog assembly 11 and cage assembly 8 in a conventional manner and is shifted from cog to cog by the movement of moveable assembly 5 and cage assembly 8 relative to base member 1.

    [0064] Referring to Figs. 1- 6, the link mechanism 92, referring first to Fig. 5, interconnects the base member 1 and movable member 5 and is mounted therebetween via a plurality of pivots or link pins as is well known. The linkage 92, in this embodiment, includes a first link pin 15 with a threaded portion 15a that is threadably engaged with base member 1 in a blind hole. First link pin inner bushing 17 is received in a first hole in outer link 3, and first link pin outer bushing 18 is received in a second hole in outer link 3. First link pin inner bushing 17 and first link pin outer bushing 18 pivotally receive first link pin 15. Thus, outer link 3 is pivotally connected to base member 1.

    [0065] Second link pin inner bushing 19 is received in a second hole in base member 1. Second link pin outer bushing 20 is received in a third hole in base member 1. Second link pin 16 is received in a first hole in an inner wall 4b of inner link 4 and is also received in a second hole in an outer wall 4c of inner link 4. Second link pin 16 is pivotally received in second link pin inner bushing 19 and second link pin outer bushing 20. Second link pin retaining ring 21 engages a groove in second link pin 16 to retain the second link pin in position. Thus, inner link 4 is pivotally connected to base member 1.

    [0066] Referring now to Fig. 6, third link pin inner bushing 28 and third link pin outer bushing 29 are received in holes in outer link 3. Third link pin 26 is received in a hole in gear housing 6, and is pivotally received in third link pin inner bushing 28 and third link pin outer bushing 29. Third link pin retaining ring 30 is engaged in a groove in third link pin 26. Thus, gear housing 6 is pivotally connected to outer link 3.

    [0067] Referring to Figs. 3, 6, and 17, cover 7 is fixed to gear housing 6 by five screws 83, or any other suitable fasteners, which pass through clearance holes in cover 7 and are threadably engaged with gear housing 6.

    [0068] Referring to Fig. 6, output gear inner bearing 33 is received in a counter bore in gear housing 6, and output gear outer bearing 34 is received in a counter bore in cover 7. Output gear inner O-ring 37 is received in a hole in gear housing 6 and output gear outer O-ring 38 is received in a hole in cover 7. Output gear 32 has a first tubular portion 32b that extends through output gear inner bearing 33 and output gear inner O-ring 37, and a second tubular portion 32c that extends through output gear outer bearing 34 and output gear outer O-ring 38. Output gear 32 is located between an inner wall 4b and an outer wall 4c of inner link 4 and disposed about fourth link pin 27. Fourth link pin 27 is received in a third hole in inner wall 4b of inner link 4 and is also received in a fourth hole in outer wall 4c of inner link 4. Thus, gear housing 6 and cover 7 are pivotally connected to inner link 4. Specifically, gear housing 6, cover 7, output gear inner bearing 33 and output gear outer bearing 34 are rotatable together as a unit relative to output gear 32, inner link 4, and fourth link pin 27. Although output gear 32 and fourth link pin 27 are formed as two separate members, they may alternatively be formed together as one unitary member in a single piece. A fourth link pin retaining ring 31 is engaged in a groove in fourth link pin 27. Inner thrust bearing 35 is coaxially located with first tubular portion 32b and is adjacent to an exterior surface of gear housing 6. Outer thrust bearing 36 is coaxially located with second tubular portion 32c and is adjacent to an exterior surface of cover 7. Referring to Figs. 6 and 18, projections 9a of a drive arm 9 engage castellations 32a located at a distal end of first tubular portion 32b of output gear 32. Thus, drive arm 9 is rotatably fixed to output gear 32.

    [0069] It will be understood that the linkage 92 may be held to the base member 1 and movable member 5 with pivots and retaining means of other kinds and made pivotable by other than bearings and/or bushings as detailed in the instant example.

    [0070] Referring to Figs. 6 and 14, gearbox gasket 25 is disposed in a groove in gear housing 6, and forms a water-tight seal between gear housing and cover 7.

    [0071] Referring to Figs. 7a-d, electrical power source 2, which may include a rechargeable battery and may be of the lithium-polymer variety, is housed within a battery housing 2d. Terminals 2c are provided on and recessed slightly below a front surface of battery housing 2d, and may be co-molded into the battery housing. A barb or catch 2a is located on a top surface of battery housing 2d, and one or more projections 2b are located on a bottom surface of the battery housing. Because of the construction (including the size and shape) of the housing 2d, including barb 2a and projections 2b, the battery housing may be removably attached to a derailleur and may be interchangeable between a front and rear derailleur. In this respect, a swappable battery 2 is a substantial improvement over a single wired battery (powering two derailleurs) should the one battery become discharged. When a pair of batteries 2 is used, with one battery installed in each of a front and a rear derailleur, the charged battery could be installed in the rear derailleur and the rear derailleur would still be functional. Also, a battery could be installed in an emergency or shared with a riding partner. In particular, the housing 2d may have a gross morphology that could be described as "laterally compressed" and which permits it to be installed on both front as well as rear derailleurs at least because the shape of the battery housing does not interfere with the user.

    [0072] Referring to Figs. 9-12, cable assembly 48 includes a flexible cable 47, which may be a two conductor cable sheathed in silicone, for example, like those manufactured by Cicoil® part number 969M101-28-2. A first end of flexible cable 47 terminates inside a boss on battery contact mounting plate 44. Two battery contacts 42, which may be made of phosphor bronze, are each secured to battery contact mounting plate 44 with a screw 43, for example, that passes through a hole in each battery contact and may be threadably engaged with the battery contact mounting plate. Battery contacts 42 may be made of or plated with a corrosion resistant material such as gold. A first conductor 47a of flexible cable 47 is electrically connected by soldering or other appropriate means to an end of one battery contact 42, and a second conductor (not shown) of flexible cable is similarly connected to an end of the other battery contact. A battery seal 41 is mounted on battery contact mounting plate 44, and may be made of silicone rubber, for example. A second end of flexible cable 47 terminates inside contact housing 50. Contact housing 50 houses a connector 49, which may be a coaxial element. Connector 49 may have two concentric conductors that are spring loaded, for example, like those manufactured by TE Connectivity®, part number 1658260-1. The two conductors 47a, 47b of flexible cable 47 are electrically connected to the two conductors of connector 49, respectively. An O-ring 51 is located in an O-ring gland in contact housing 50.

    [0073] Referring to Fig. 8b and Fig. 9, battery seal 41 together with battery contact mounting plate 44 are located in a recess in base member 1. A screw 45 or other suitable fastener passes through a hole in battery contact mounting plate 44 and threadably engages base member 1, thereby fixedly connecting battery contact mounting plate 44 to base member 1. The battery mounting plate 44 may be a separate part connectable to the base member 1 as described or unitary (one-piece) with the base member.

    [0074] Referring to Fig. 8a and Fig. 9, battery latch pin 40 is received by the base member 1. Battery latch 39 has a corresponding thru-hole that rotatably receives battery latch pin 40. Latch spring 46 is received in a blind hole in base member 1 and urges battery latch 39 counterclockwise around battery latch pin 40 as shown in Fig. 9. Battery latch 39 has a hooked end that engages barb 2a of battery housing 2d, and the urging force of latch spring 46 urges the hooked end of battery latch against the surface of the battery housing. The latch 39 may be any suitable mechanism, catch device, engagement member, securing member and so on, to retain and release the battery housing 2d.

    [0075] Referring to Fig. 8b and Fig. 9, base member 1 has two battery engaging holes 1a. Referring to Fig. 9, projections 2b of battery housing 2d are engaged in corresponding battery engaging holes 1a in base member 1. Battery housing 2d is held in an installed position that forces battery seal 41 to deform slightly, forming a water-tight seal against the front surface of the battery housing. The deformation of battery seal 41 also causes the battery seal to exert an urging force against the front surface of battery housing 2d, urging the surface to the left in Fig. 9. This urging force, in turn, causes barb 2a of battery housing 2d to be urged to the left, against the hook of battery latch 39, and causes projections 2b of the battery housing to be urged to the left, against battery engaging holes 1a. In this manner, any play between battery housing 2d and base member 1 is eliminated and the battery is positively retained on rear derailleur assembly 10. The installed position of battery housing 2d also forces battery contacts 42 to flex slightly against battery terminals 2c, creating a pressure contact between the battery contacts and the battery terminals that is conducive to the flow of electricity.

    [0076] Figs. 10 and 11 show the process by which the user can easily remove battery 2 from rear derailleur assembly 10. Referring to Fig. 10, the user presses the right end of latch 39 downwards causing the latch to rotate clockwise around latch pin 40 against the urging force of latch spring 46, which in turn causes the hooked end of the latch to rotate out of engagement with barb 2a of battery housing 2d. The user then pivots battery housing 2d counterclockwise around the engagement point of projections 2b and battery engaging holes 1a. Referring now to Fig. 11, when battery housing 2d has been rotated sufficiently counterclockwise, the user is able to lift the battery in a generally upwards motion, causing projections 2a of the battery housing to disengage from battery engaging holes 1a of base member 1. In this manner, battery housing 2d is removed from rear derailleur assembly 10. By reversing this process, the user is able to easily reinstall battery 2 in rear derailleur assembly 10.

    [0077] Referring to Fig. 18, flexible cable assembly 48 passes through a hole in base member 1 and extends between outer link 3 and inner link 4. Referring to Figs. 13, 18, and 23, contact housing 50 of flexible cable assembly 48 is engaged in a complementary recess in gear housing 6. Two screws 88 pass through holes in contact housing 50 and are threadably engaged in holes in gear housing 6, thereby fixedly connecting the contact housing to the gear housing. Referring to Fig. 13, O-ring 51 is received in a bore in gear housing 6, and forms a water-tight seal between contact housing 50 and the gear housing.

    [0078] Referring to Figs. 13, 14, and 17, PC board assembly 52 is fixed to an inner surface of gear housing 6, such as with a screw 56. The PC board assembly includes the various electronic elements and circuitry to control the various functions of the derailleur 10. Additional locating features may be provided (not shown) in gear housing 6 to ensure that PC board assembly 52 is accurately located in the gear housing. Referring to Figs. 13 and 17, PC board assembly 52 and contact housing 50 are positioned close enough to each other to force spring loaded connector 49 to compress, creating a pressure contact between the connector 49 and the PC board assembly that is conducive to the conduction of electricity. In this manner, flexible cable assembly 48 is in electrical communication with PC board assembly 52.

    [0079] Referring to Fig. 13, motor 54 is preferably a DC motor and may be electrically connected to PC board assembly 52 by a flexible cable 53. Motor 54 could instead be electrically connected to PC board assembly 52 by other means, such as jumper wires or a flexible portion of the PC board, for example. Referring to Fig. 22, motor mounting bracket 55 is fixed to gear housing 6 by three screws 87, or other suitable fasteners. Referring to Figs. 13, 14, 15, and 22, ball bearing 71 is received in a bore in motor mounting bracket 55 and a distal end of the output shaft of motor 54 is received by the ball bearing to be rotatably supported thereby. Two screws 72, or other suitable fasteners, pass through holes in motor mounting bracket 55 and connect to motor 54, thereby securing the motor to the motor mounting bracket. The motor 54 powers a transmission 90, which effects movement of the movable member 5 relative to the base member 1 to effect positional changes of the derailleur 10.

    [0080] The transmission 90 conveys the motion of the motor 54 into movement of the derailleur 10 and may include a worm 70 fixed to the output shaft of the motor by a press fit or by an adhesive, for example. Referring to Figs. 15, 16, and 22, first pinion gear 58 and worm wheel 57 may be press fit together in a conventional manner that is well known in the gear making industry, and are located in a cavity in motor mounting bracket 55 such that the worm wheel is meshed with worm 70. A thru-hole extends through both side walls of the cavity, concentric with the thru-hole in first pinion gear 58. A first pinion axle 73 is received in the thru-hole in the cavity and is rotatably received in the thru-hole in first pinion gear 58. A distal end of first pinion axle 73 extends into a blind hole in gear housing 6. One end of second pinion axle 74 is received in a blind hole in gear housing 6 and a second end of the second pinion axle is received in a hole in motor mounting block 55. Second pinion gear 60 and first spur gear 59 may be fixed together by a press fit and are rotatably received on second pinion axle 74. First spur gear 59 is meshed with first pinion gear 58. Referring to Fig. 16, a third pinion axle bearing 76 is pressed into a blind hole in gear housing 6 and another third pinion axle bearing 76 is pressed into a blind hole in cover 7. The ends of third pinion axle 75 are received in the third pinion axle bearings 76, respectively. Third pinion gear 62 and second spur gear 61 are fixed together by a press fit and are rotatably received on third pinion axle 75. Second spur gear 61 is meshed with second pinion gear 60 and third pinion gear 62 is meshed with output gear 32. It will be understood that the transmission 90 and elements thereof may be in other forms, wherein operation of the motor 54 through the transmission 90 results in movement of the derailleur 10.

    [0081] Referring to Figs. 14, 15 and 17, encoder gear axle 81 is received in a blind hole in cover 7. Magnet holder 80 and encoder gear 63 are fixed together by a press fit or may be injection molded as a single, unitary member. Magnet 78 is fixed to magnet holder 80 by a press fit or by an adhesive and magnet spacer 79 is fixed to the magnet by a press fit or by an adhesive. Encoder gear 63 is meshed with output gear 32 and is rotatably connected to encoder gear axle 81. Thus, encoder gear 63, magnet holder 80, magnet 78, and magnet spacer 79 are all rotatable together as a unit around encoder gear axle 81. The encoder gear 63 is part of the transmission 90 that is not in the load path between the motor 54 and the output gear 32.

    [0082] Moreover, it is an aspect of an embodiment to size the encoder gear 63 such that the encoder gear revolves nearly 360 degrees in the full range of rotation performed by the output gear 32. In other words, if the output gear 32 rotates about 90 degrees in its full range of motion, the encoder gear can be sized to rotate about four times that of the output gear, or about ¼ the diameter of the output gear if directly attached thereto, and thus the encoder gear rotates an amount approaching, but not exceeding about 360 degrees. This provides a high amount of resolution.

    [0083] Referring to Fig. 17, encoder chip 77 may be a magnetic rotary encoder with Hall Effect sensors, for example, the component manufactured by Austria Microsystems® part number AS5050, and is a component of PC board assembly 52. The center of encoder chip 77 is substantially coaxial with magnet 78. Thus the encoder may be an absolute encoder.

    [0084] Again referring to Figs. 14, 15 and 17, biasing gear axle 82 is received in a blind hole in cover 7. Biasing gear 64 is rotatably connected to biasing gear axle 82 and is meshed with encoder gear 63. A first end of biasing gear spring 65 is connected to biasing gear 64 and a second end of the biasing gear spring is connected to a support feature (not shown) in cover 7. Biasing gear spring 65 urges biasing gear 64 counterclockwise in Fig. 14 and the biasing gear in turn urges encoder gear 63 clockwise in Fig. 14, eliminating any play or backlash between encoder gear 63 and output gear 32.

    [0085] Referring to Fig. 18, clutch spring 22 includes clutch spring sleeve 23 disposed on the second link pin 16. The coil parts of clutch spring 22 are formed around clutch spring sleeve 23. A first leg 22a of clutch spring 22 biases drive arm 9 against projection 4a of inner link 4. Referring to Fig. 20, a second leg 22b of clutch spring 22 engages a surface of inner link 4.

    [0086] Again referring to Fig. 18, the coils of biasing spring 24 are disposed around first link pin 15 and a first leg of the biasing spring urges outer link 3 counterclockwise around the first link pin. A second leg (not shown) of biasing spring 24 engages a surface of base member 1. Because inner link 4 is operatively connected to outer link 3, the inner link is likewise urged counterclockwise around second link pin 16. Because drive arm 9 is biased against projection 4a of inner link 4, and the drive arm is non-rotatably engaged with output gear 32, the urging force of biasing spring 24 is transferred back through the drive gear train to worm 70, eliminating any play or backlash in the drive gear train.

    [0087] Referring to Figs. 14, 15, and 23, button 66 may be a momentary electrical switch or the like that is a component of PC board assembly 52. Button actuator 67 may be a body of revolution that is received in a thru-hole of gear housing 6. A seal member (not shown) is disposed in an O-ring gland (not shown) of button actuator 67 and forms a water-tight seal between the button actuator and gear housing 6. When button actuator 67 is pressed by the user, it moves axially until it actuates button 66, changing its switching state. When button actuator 67 is released by the user, button 66 urges the actuator axially away from the button and the button reverts to its original switching state.

    [0088] Button 66 may be used during the process of wirelessly pairing the rear derailleur assembly 10 with its corresponding user-operable shifters (not shown) and it may be used for other purposes in addition to this as well, such as fine tuning the position of cage assembly 8 relative to cog assembly 11. It will be understood that the button 66 may be used by the user to control a variety of operating parameters of the derailleur assembly 10.

    [0089] LED 68 is a light-emitting diode that is a component of PC board assembly 52. Lens 69 is substantially cylindrical in shape and is fixed in a thru-hole in gear housing 6 by either a press fit or an adhesive, for example, which provides a water-tight seal between the lens and the gear housing. Alternatively, a flexible seal could be provided between lens 69 and gear housing 6 in order to create a water-tight seal. The function of LED 68 is to emit a light that passes through lens 69 and is visible to the user in order to indicate a state of the rear derailleur assembly 10 to the user. LED 68 may be used during the process of wirelessly pairing rear derailleur assembly 10 with its corresponding shifters (not shown), and it may be used for other purposes in addition to this, such as indicating to the user that battery 2 is low on power. It will be understood that any configuration of the LED is contemplated whereby the LED is observable by a user.

    [0090] Referring to Figs. 20 and 21, a travel limit or travel adjust mechanism 14 includes a limit screw 84 with a threaded portion 84a that is rotatably received in a thru-hole in barrel 85 and is threadably engaged with a threaded hole in base member 1. Barrel 85 has a smooth, cylindrical outer surface and a non-round, e.g., square, inner surface 85b with a square cross section that is non-rotatably engaged with but axially moveable relative to a corresponding or square portion 84b of limit screw 84, which may have a complementary square cross section. Limit screw spring 86 is a compression spring disposed around threaded portion 84a that urges barrel 85 substantially to the right in Figs. 20 and 21, against a surface of base member 1. When the user rotates barrel 85 by hand, limit screw 84 also rotates and simultaneously moves axially relative to the barrel due its threaded engagement with base member 1. Multiple ramped recesses 85a in an end surface of barrel 85 engage complementary projections (not shown) on a surface of base member 1, creating a detenting action that retains the barrel in the position in which the user sets it.

    [0091] In both Figs. 20 and 21, inner link 4 is shown contacting the end of limit screw 84 and further clockwise rotation of the inner link around second link pin 16 is prevented by limit screw 84. The function of limit screw 84 is to limit the rotation of inner link 4 relative to base member 1 in order to ensure that cage assembly 8 does not collide with the spokes of the wheel of the bicycle on which rear derailleur assembly 10 is installed. Comparing Figs. 20 and 21, it can be seen that in Fig. 20 limit screw 84 is relatively retracted allowing a relatively large amount of rotation of inner link 4 relative to base member 1, while in Fig. 21 the limit screw protrudes more from the base member, limiting the rotation of the inner link to a greater degree. Whereas traditional derailleur limit screws are actuated with a tool such as a hex wrench that allows the user to apply a relatively large amount of torque to the limit screw, the smooth, cylindrical outer surface of barrel 85 limits the amount of torque that the user can apply since the smooth surface of the barrel will slip between the user's fingers at a relatively low torque threshold. The advantage of this arrangement compared to traditional limit screws is that it greatly limits the amount of force that the limit screw can exert on the parallelogram of the rear derailleur assembly 10 and therefore greatly limits the amount of force that is transferred to the transmission 90 minimizing the possibility of damage to gear teeth or other components.

    [0092] PC board assembly 52 includes a transceiver (not shown) wherein transceiver is a generic term describing a device that can both transmit and receive signals wirelessly. The transceiver periodically listens for wireless shift commands from shift controls, which may be actuated by actuators positioned on or in control hoods of a handlebar of the bicycle (not shown). When a wireless shift command is received by the transceiver, the transceiver forwards the shift command to a processor, and a PID control loop is used to manage a flow of electrical power from battery 2 through flexible cable assembly 48 and the PC board assembly to motor 54. The output shaft of motor 54 rotates either clockwise or counterclockwise depending on whether an upshift or a downshift is requested and causes the actuation of the transmission 90. The resulting rotation of worm 70 causes rotation of worm wheel 57, which rotates together with first pinion gear 58 to rotate first spur gear 59, which rotates together with second pinion gear 60 to rotate second spur gear 61, which rotates together with third pinion gear 62 to rotate output gear 32.

    [0093] In the case that a downshift i.e. a shift to a larger cog is desired, castellations 32a of output gear 32 rotate drive arm 9 clockwise around fourth link pin 27 in Fig. 18, which in turn drives projection 4a along with inner link 4 clockwise, causing moveable assembly 5 and cage assembly 8 to move inboard towards the larger cogs. As cage assembly 8 moves inboard, encoder chip 77 along with magnet 78 are used to monitor the angular position of encoder gear 63, and when the encoder gear position corresponding to the desired cog has been reached, power to the motor 54 is shut off, as cage assembly 8 is aligned with the desired cog. As previously described, biasing spring 24 eliminates any play or backlash in the drive gear train, ensuring that cage assembly 8 is accurately and repeatably positioned.

    [0094] In the case that an upshift i.e. a shift to a smaller cog is desired, castellations 32a of output gear 32 rotate drive arm 9 counterclockwise around fourth link pin 27 in Fig. 18, which in turn drives clutch spring 22 along with inner link 4 counterclockwise, causing moveable assembly 5 and cage assembly 8 to move outboard towards the smaller cogs. As cage assembly 8 moves outboard, encoder chip 77 along with magnet 78 are used to monitor the position of encoder gear 63, and when the encoder gear position corresponding to the desired cog has been reached, power to the motor is shut off, as cage assembly 8 is aligned with the desired cog. As previously described, biasing spring 24 eliminates any play or backlash in the drive gear train, ensuring that cage assembly 8 is accurately and repeatably positioned.

    [0095] Due to the presence of worm 70 in the drive train, the drive train is not reversible. In other words, although rotation of worm 70 can drive worm wheel 57, the worm wheel cannot drive the worm, due to friction. A consequence of this is that if an external force e.g. in the event of a crash or other impact is experienced by moveable assembly 5 or outer link 3, that force will be transferred through drive arm 9 to gears of the transmission 90 drive train, and one or more of the gears or associated components may break or be damaged. In order to prevent such breakage or damage from happening, the following system may be in place. When moveable assembly 5 or outer link 3 experiences an excessive external force e.g. from a crash directed in the inboard direction, drive arm 9 overcomes the preload of first leg 22a of clutch spring 22 and deflects the first leg as shown in Fig. 18a. Thus, the energy of the external force is absorbed by clutch spring 22, and moveable assembly 5 moves relative to base member 1 without any rotation of drive arm 9 relative to the moveable assembly. In this state, guard rails 9b on either side of first leg 22a of clutch spring 22 prevent the first leg from becoming disengaged from drive arm 9. When the external force is removed from rear derailleur assembly 10, the urging force of first leg 22a of clutch spring 22 moves drive arm 9 along with moveable assembly 5 back to the position shown in Fig. 18. In extreme cases of external force applied to moveable assembly 5 and outer link 3, drive arm 9 may cause first leg 22a of clutch spring 22 to deflect as far as is shown in Fig. 19. In this state, hard stop 9c of drive arm 9 abuts projection 4a of inner link 4. When the external force is removed from rear derailleur assembly 10, the urging force of first leg 22a of clutch spring 22 is not able to move drive arm 9 and moveable assembly 5 back to the position shown in Fig. 18, and the user must manually move the moveable assembly back to the position shown in Fig. 18a, at which point the first leg will be able to move the drive arm and the moveable assembly back to the position shown in Fig. 18.

    [0096] After a period of inactivity, i.e. no shift commands received, most of the electronic systems of PC board assembly 52 may shut down to conserve power. During this time the transceiver is shut down and cannot receive shift commands. A vibration sensor (not shown) is provided on PC board assembly 52 that, when it detects vibration, causes the electronic systems of PC board assembly, including the transceiver, to turn on again. The vibrations that naturally occur while riding the bicycle, which can be caused by the interaction of the road with the bicycle and by the interaction of the bicycle's various components with each other, are strong enough to activate the vibration sensor and prevent the electronic systems of PC board assembly 52 from shutting down. But when the bicycle is not being ridden, i.e. parked, the vibration sensor does not detect any vibration and most of the electronic systems of PC board assembly 52 shut down to conserve power. As soon as the rider makes contact with the bicycle, the resulting vibration activates the vibration sensor, turning the electronic systems on again. The vibration sensor may be, for example, a mems type 3 axis accelerometer, such as a Freescale® MMA7660FC or MMA845IQ, or an omnidirectional chatter-type sensor such as a Signal Quest SQ-MIN-200. It will be understood that the application to the system described above of the vibration sensor to be within the ability of an artisan of ordinary ability.

    [0097] Turning to Fig. 24, a front derailleur assembly 110 is shown including a battery 2 and battery housing 2d. The front derailleur assembly 110 includes a base member 101 to which the battery housing 2d is removably attached. A linkage 192 is movably attached to the base member 101. A cage assembly 199 is attached to the linkage 192. Because the battery housing 2d is shaped and sized to be attached to either a front or rear derailleur, the battery can be interchangeable therebetween. It will be understood that the base member 101 of the illustrated front derailleur assembly 110 will include a means for attaching the battery housing 2d and means for providing electrical connection that is similar or the same as that detailed with respect to the rear derailleur shown and discussed herein.


    Claims

    1. A bicycle electronic gear changing system comprising a rear derailleur (10), a front derailleur (110), a first power supply and a second power supply, each derailleur including a base member mounted to the bicycle, and each power supply removably mounted on the respective base member of the derailleur, wherein each of the first power supply and the second power supply include

    a housing (2d) sized and shaped to be removably mounted to the rear derailleur (10) and the front derailleur (110);

    a battery (2) disposed in the housing (2d);

    a terminal (2c) on the outside of the housing (2d) and in electrical communication with the battery (2),
    wherein each of the rear and front derailleurs (10, 110) includes a securing mechanism (1a, 39) configured to releasably retaining the housing (2d) of the power supply thereon, characterized in that

    the rear derailleur (10), the front derailleur (110) the first power supply and the second power supply are configured such that the first power supply and the second power supply are interchangeably mountable to the rear derailleur (10) and the front derailleur (110).


     
    2. The bicycle electronic gear changing system of claim 1, further comprising a mounting plate (44) connected to the base member (1) of each of the rear and front derailleurs (10, 110), the mounting plate (44) sized and shaped to receive the power supply.
     
    3. The bicycle electronic gear changing system of claim 2, wherein the mounting plate (44) includes a pair of contacts (42) positioned to align with the terminal (2c) when the power supply is connected to the mounting plate (44).
     
    4. The bicycle electronic gear changing system of claim 3, wherein the mounting plate (44) includes a seal (41) disposed about at least one of the pair of contacts (42) and positioned to seal with the housing (2d) when the power supply is connected thereto.
     
    5. The bicycle electronic gear changing system of claim 1, further comprising an engagement member (39) positioned on the base member (1) of each of the rear and front derailleurs (10, 110) and movable between an engaged position to thereby secure the housing (2d) to the base member (1) and an unengaged position for removal of the housing (2d) from the base member (1).
     
    6. The bicycle electronic gear changing system of claim 5, wherein the power supply comprises a biasing member (46) arranged to bias the engagement member (39) to the engaged position.
     
    7. The bicycle electronic gear changing system of claim 5 or 6, wherein the engagement member (39) is a latch.
     
    8. The bicycle electronic gear changing system of one of claims 5 to 7, wherein the housing (2d) includes a catch (2a) shaped to be engaged by the engagement member (39).
     
    9. The bicycle electronic gear changing system of one of claims 1 to 8, wherein the housing (2d) includes one or more protrusions (2b) that are captured in corresponding receiving features (1a) formed in the base member (1).
     
    10. The bicycle electronic gear changing system of claims 8 and 9, wherein the catch (2a) and the one or more protrusions (2b) are positioned at opposite ends of the housing (2d).
     
    11. The bicycle electronic gear changing system of claim 1, wherein the housing (2d) is laterally compressed.
     


    Ansprüche

    1. Elektronisches Fahrradschaltsystem, umfassend ein hinteres Schaltwerk (10), ein vorderes Schaltwerk (110), eine erste Energieversorgung und eine zweite Energieversorgung, wobei jedes Schaltwerk ein Basiselement umfasst, das an dem Fahrrad angebracht ist, und wobei jede Energieversorgung lösbar an dem jeweiligen Basiselement des Schaltwerks angebracht ist, wobei jede der ersten Energieversorgung und der zweiten Energieversorgung
    ein Gehäuse (2d), das derartig dimensioniert und geformt ist, dass es lösbar an dem hinteren Schaltwerk (10) und dem vorderen Schaltwerk (110) anbringbar ist;
    eine Batterie (2), die in dem Gehäuse (2d) angeordnet ist;
    einen Anschluss (2c) an der Außenseite des Gehäuses (2d) und in elektrischem Kontakt mit der Batterie (2) umfasst,
    wobei die hinteren und vorderen Schaltwerke (10, 110) jeweils einen Sicherungsmechanismus (1a, 39) umfassen, der dazu eingerichtet ist, das Gehäuse (2d) der Energieversorgung daran zu befestigen, dadurch gekennzeichnet, dass
    das hintere Schaltwerk (10), das vordere Schaltwerk (110), die erste Energieversorgung und die zweite Energieversorgung dazu eingerichtet sind, dass die erste Energieversorgung und die zweite Energieversorgung austauschbar an dem hinteren Schaltwerk (10) und dem vorderen Schaltwerk (110) anbringbar sind.
     
    2. Elektronisches Fahrradschaltsystem nach Anspruch 1, ferner umfassend eine Trägerplatte (44), die mit dem entsprechenden Basiselement (1) des hinteren und vorderen Schaltwerks (10; 110) verbunden ist, wobei die Trägerplatte (44) derart dimensioniert und geformt ist, dass sie die Energieversorgung aufnehmen kann.
     
    3. Elektronisches Fahrradschaltsystem nach Anspruch 2, wobei die Trägerplatte (44) ein Kontaktpaar (42) umfasst, das derart angeordnet ist, dass es mit dem Anschluss (2c) ausgerichtet ist, wenn die Energieversorgung mit der Trägerplatte (44) verbunden ist.
     
    4. Elektronisches Fahrradschaltsystem nach Anspruch 3, wobei die Trägerplatte (44) eine Dichtung (41) umfasst, die um wenigstens einen Kontakt des Kontaktpaars (42) angeordnet ist und derart positioniert ist, um mit dem Gehäuse (2d) abzudichten, wenn die Energieversorgung damit verbunden ist.
     
    5. Elektronisches Fahrradschaltsystem nach Anspruch 1, ferner umfassend ein Eingriffselement (39), das an dem entsprechenden Basiselement (1) des hinteren und vorderen Schaltwerks (10; 110) angeordnet ist und zwischen einer Eingriffsposition, in der das Gehäuse (2d) an dem Basiselement (1) befestigt ist, und einer Nichteingriffsposition zum Lösen des Gehäuses (2d) von dem Basiselement (1) bewegbar ist.
     
    6. Elektronisches Fahrradschaltsystem nach Anspruch 5, wobei die Energieversorgung ein Vorspannelement (46) umfasst, das dazu eingerichtet ist, das Eingriffselement (39) in die Eingriffsposition zu bringen.
     
    7. Elektronisches Fahrradschaltsystem nach Anspruch 5 oder 6, wobei das Eingriffselement (39) ein Verschluss ist.
     
    8. Elektronisches Fahrradschaltsystem nach einem der Ansprüche 5 bis 7, wobei das Gehäuse (2d) eine Nase (2a) umfasst, die derart geformt ist, dass sie mit dem Eingriffselement (39) in Eingriff bringbar ist.
     
    9. Elektronisches Fahrradschaltsystem nach einem der Ansprüche 1 bis 8, wobei das Gehäuse (2d) einen oder mehrere Vorsprünge (2b) umfasst, die in an dem Basiselement (1) ausgebildeten korrespondierenden Aufnahmeelementen (1a) aufgenommen sind.
     
    10. Elektronisches Fahrradschaltsystem nach Ansprüchen 8 und 9, wobei die Nase (2a) und der eine oder die mehreren Vorsprünge (2b) an entgegengesetzten Enden des Gehäuses (2d) angeordnet sind.
     
    11. Elektronisches Fahrradschaltsystem nach Anspruch 1, wobei das Gehäuse (2d) seitlich zusammengedrückt ist.
     


    Revendications

    1. Système électronique de changement de vitesse de bicyclette comprenant un dérailleur arrière (10), un dérailleur avant (110), une première alimentation électrique et une deuxième alimentation électrique, chaque dérailleur incluant un élément de base monté sur la bicyclette, et chaque alimentation électrique montée amovible sur l'élément de base respectif du dérailleur, dans lequel chacune de la première alimentation électrique et de la deuxième alimentation électrique inclut
    un boîtier (2d) dimensionné et formé pour être monté amovible sur le dérailleur arrière (10) et le dérailleur avant (110) ;
    une batterie (2) disposée dans le boîtier (2d) ;
    une borne (2c) sur l'extérieur du boîtier (2d) et en communication électrique avec la batterie (2),
    dans lequel chacun des dérailleurs arrière et avant (10, 110) inclut un mécanisme de fixation (1a, 39) configuré pour maintenir de façon libérable le boîtier (2d) de l'alimentation électrique sur celui-ci, caractérisé en ce que
    le dérailleur arrière (10), le dérailleur avant (110), la première alimentation électrique et la deuxième alimentation électrique sont configurés de telle manière que la première alimentation électrique et la deuxième alimentation électrique sont montables de façon interchangeable sur le dérailleur arrière (10) et le dérailleur avant (110).
     
    2. Système électronique de changement de vitesse de bicyclette selon la revendication 1, comprenant en outre une plaque de montage (44) connectée à l'élément de base (1) de chacun des dérailleurs arrière et avant (10, 110), la plaque de montage (44) dimensionnée et formée pour recevoir l'alimentation électrique.
     
    3. Système électronique de changement de vitesse de bicyclette selon la revendication 2, dans lequel la plaque de montage (44) inclut une paire de contacts (42) positionnés de façon à s'aligner avec la borne (2c) lorsque l'alimentation électrique est connectée à la plaque de montage (44).
     
    4. Système électronique de changement de vitesse de bicyclette selon la revendication 3, dans lequel la plaque de montage (44) inclut un joint d'étanchéité (41) disposé autour d'au moins un de la paire de contacts (42) et positionné pour assurer l'étanchéité avec le boîtier (2d) lorsque l'alimentation électrique est connectée à celui-ci.
     
    5. Système électronique de changement de vitesse de bicyclette selon la revendication 1, comprenant en outre un élément d'engagement (39) positionné sur l'élément de base (1) de chacun des dérailleurs arrière et avant (10, 110) et mobile entre une position engagée pour ainsi fixer le boîtier (2d) à l'élément de base (1) et une position désengagée pour dépose du boîtier (2d) de l'élément de base (1).
     
    6. Système électronique de changement de vitesse de bicyclette selon la revendication 5, dans lequel l'alimentation électrique comprend un élément de poussée (46) agencé pour pousser l'élément d'engagement (39) jusqu'à la position engagée.
     
    7. Système électronique de changement de vitesse de bicyclette selon la revendication 5 ou 6, dans lequel l'élément d'engagement (39) est un verrou.
     
    8. Système électronique de changement de vitesse de bicyclette selon l'une des revendications 5 à 7, dans lequel le boîtier (2d) inclut un cran (2a) formé pour être engagé par l'élément d'engagement (39).
     
    9. Système électronique de changement de vitesse de bicyclette selon l'une des revendications 1 à 8, dans lequel le boîtier (2d) inclut une ou plusieurs saillies (2b) qui sont capturées dans des caractéristiques de réception (1a) correspondantes formées dans l'élément de base (1).
     
    10. Système électronique de changement de vitesse de bicyclette selon les revendications 8 et 9, dans lequel le cran (2a) et les une ou plusieurs saillies (2b) sont positionnés à des extrémités opposées du boîtier (2d).
     
    11. Système électronique de changement de vitesse de bicyclette selon la revendication 1, dans lequel le boîtier (2d) est latéralement compressé.
     




    Drawing











































































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description