(19)
(11)EP 3 170 675 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.03.2021 Bulletin 2021/11

(21)Application number: 14897873.7

(22)Date of filing:  14.07.2014
(51)Int. Cl.: 
B41M 5/337  (2006.01)
B41M 5/44  (2006.01)
B41M 5/42  (2006.01)
(86)International application number:
PCT/JP2014/003726
(87)International publication number:
WO 2016/009462 (21.01.2016 Gazette  2016/03)

(54)

THERMOSENSITIVE RECORDING BODY

WÄRMEEMPFINDLICHER AUFZEICHNUNGSKÖRPER

CORPS D'ENREGISTREMENT THERMOSENSIBLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
24.05.2017 Bulletin 2017/21

(73)Proprietor: Osaka Sealing Printing Co., Ltd.
Osaka-shi, Osaka 543-0028 (JP)

(72)Inventors:
  • KIMURA, Takayuki
    Osaka-shi Osaka 543-0028 (JP)
  • YOSHIDA, Masahiko
    Osaka-shi Osaka 543-0028 (JP)

(74)Representative: Ter Meer Steinmeister & Partner 
Patentanwälte mbB Artur-Ladebeck-Strasse 51
33617 Bielefeld
33617 Bielefeld (DE)


(56)References cited: : 
EP-A1- 2 554 392
EP-A1- 3 069 894
JP-A- H08 156 406
JP-A- 2010 023 252
EP-A1- 3 026 089
WO-A1-2011/027752
JP-A- 2005 040 989
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This invention relates to a thermosensitive recording body, more particularly to a thermosensitive recording body that may excel in transparency.

    BACKGROUND ART



    [0002] Thermosensitive recording bodies are for use in image recording by having their colors developed through chemical reactions initiated by heating a thermal head. The thermosensitive recording bodies are used in a broad range of applications. For example, they may be used as recording media for facsimile machines, vending machines, and scientific instrumentation devices, and may also be used as thermosensitive recording labels for POS systems in retail stores (for example, patent literature 1).

    LITERATURE OF RELATED ART


    PATENT LITERATURE



    [0003] Patent Literature 1:Japanese Unexamined Patent Publication No. 2002-362027

    [0004] JP H08 156406 A discloses a thermal recording material wherein a thermal color forming layer containing an electron donating leuco dye and an electron acceptive coupler is provided on a support, paraffin wax of which the melting start temperature of a heat absorption peak obtained by differential thermal analysis 60°C or higher and metal stearate with an average particle size of 2-10 µm are added to the thermal color forming layer.

    [0005] JP 2005 040989 A discloses a thermal recording material having at least a thermal recording layer containing at least a polyvinyl alcohol, an intermediate layer containing gelatine and a protecting layer containing polyvinyl alcohol, laminated in that order, on one surface of the support.

    [0006] JP 2010 023252 A discloses a thermal sensitive recording body comprising a thermosensitive layer containing at least a leuco dye and color developing agent, a middle layer, and a protection layer, which are all sequentially laminated on the support body thereof, containing aqueous UV-absorbing polymer in the middle layer at 1 to 60 percent by mass of the total dissolved solid thereof, containing aqueous acrylic polymer and polyvinyl alcohol in total at 30 to 90 percent by mass of the total dissolved solid of the middle layer as adhesive for the middle layer, a polyvinyl alcohol characteristically being at 30 to 99 percent by mass of the total dissolved solid of the aqueous acrylic polymer.

    [0007] WO 2011/027752 A1 discloses a thermosensitive recording label having a thermosensitive recording layer comprising colorless or pale colored electron donating leuco dye and an electron accepting color developing agent on a transparent film substrate and a tackifier layer containing a tackifier on a thermosensitive recording layer, wherein the tackifier is not tacky at ambient temperature.

    [0008] EP 3 069 894 A1 discloses a thermal recording sheet, including a substrate layer, a recording layer formed on a front surface side of the substrate layer and containing a color developing material that develops color by heating, a protective layer formed on the further front surface side of the recording layer, and a printed layer formed on the back surface side of the recording layer.

    [0009] EP 3 026 089 A1 discloses a transparent adhesive sheet on which printing can be performed during in use and which has a high transparency. The transparent adhesive sheet includes a base material layer formed to the transparent material, an adhesive layer formed on the back surface side of the base material layer and formed with an adhesive agent for bonding to an adherent, a recording layer formed on the front surface side of the base material layer and containing a color developing material that thermally develops color, and a release layer formed on the further front surface side of the recording layer and having release properties to the release agent. The transparent adhesive sheet is transparent in the state before the recording layer develops color.

    [0010] EP 2 554 392 A1 discloses a heat sensitive recording material and a method for manufacturing the same. The thermal recording material comprises an intermediate layer and a heat sensitive recording layer for color formation by heat stacked in this order onto a support, the thermal recording material being characterized in that the intermediate layer contains a bellows-shaped hollow resin, and that the roughness of the surface of the color forming side is 1.0 µm or less.

    SUMMARY OF THE INVENTION


    TECHNICAL PROBLEMS



    [0011]  In the meantime, the thermosensitive recoding bodies may be further used as labels or packaging films for containers packed with various kinds of foodstuffs. The labels and films using the thermosensitive recoding bodies, however, may conceal the contents of the containers, making it difficult for the consumers to check the contents of the containers.

    [0012] The labels or films using the thermosensitive recoding bodies, therefore, should desirably be transparent to see what is inside the containers. However, none of the conventional thermosensitive recording bodies is transparent enough to serve the purpose.

    [0013] To address this issue, this invention is directed to providing a thermosensitive recording body that may excel in transparency.

    SOLUTIONS TO THE PROBLEMS



    [0014] A thermosensitive recording body according to this invention is characterized as described below.

    [0015] The thermosensitive recording body according to this invention has at least a thermosensitive recording layer and a topcoat layer formed on a substrate. The substrate consists of a transparent film. At least the thermosensitive recording layer and the topcoat layer include a diffuse reflection suppressor component that suppresses diffuse reflection of light from particles constituting the thermosensitive recording layer and the topcoat layer.

    [0016]  In the thermosensitive recording body according to this invention, at least the thermosensitive recording layer and the topcoat layer formed on the substrate consisting of a transparent film each include the diffuse reflection suppressor component that suppresses the diffuse reflection of light from the particles constituting these layers. In the layers including this component, therefore, the diffuse reflection of light from the particle surfaces may be effectively suppressed. As a result, the thermosensitive recording body finally obtained may excel in transparency.

    [0017] According to an aspect of this invention, the thermosensitive recording body, exclusive of the substrate, has a thickness greater than or equal to 1.0 µm and less than or equal to 10 µm, and the thermosensitive recording body has an opacity less than or equal to 10% pursuant to Japanese Industrial Standards (JIS): P8138.

    [0018] In this aspect, the opacity of the thermosensitive recording body according to JIS: P8138 is less than or equal to 10%. When the thermosensitive recording body is bonded to a container as a label or a packaging film, therefore, the contents of the container may be visually observed through the label or film.

    [0019] According to another aspect of this invention, the thermosensitive recording layer includes a low-melting paraffin having a melting point lower than or equal to a color developing temperature as the diffuse reflection suppressor component.

    [0020] In this aspect, the low-melting paraffin added as the diffuse reflection suppressor component is melted in the process of spreading and drying a liquid material prepared for the thermosensitive recording layer on the substrate. The melted paraffin penetrates into and fills gaps such as anguralities of the surfaces of the particles constituting the thermosensitive recording layer. This may suppress the diffuse reflection of light from the particle surfaces, affording an improved transparency.

    [0021] According to yet another aspect of this invention, the thermosensitive recording body further includes an intermediate layer between the thermosensitive recording layer and the topcoat layer. The intermediate layer includes a resin containing a water-soluble portion as the diffuse reflection suppressor component.

    [0022] In this aspect, the intermediate layer includes a resin containing a water-soluble portion. In the process of spreading and drying a liquid material prepared for the intermediate layer on the thermosensitive recording body, therefore, the resin containing a water-soluble portion sinks into the thermosensitive recording layer, allowing the intermediate layer formed to improve in smoothness. This technical feature may effectively suppress the diffuse reflection of light from the thermosensitive recording layer, delivering a further improved transparency.

    [0023] According to yet another aspect of this invention, the resin containing a water-soluble portion is a polyvinyl alcohol resin.

    [0024] The water-soluble polyvinyl alcohol resin used in this aspect has favorable film formation properties. By using this material, the intermediate layer improved in smoothness may be formed on the thermosensitive recording layer. This may suppress that the diffuse reflection of light from the thermosensitive recording layer, affording improved transparency.

    [0025] According to yet another aspect of this invention, the resin containing a water-soluble portion is a core-shell type resin.

    [0026] In this aspect using the core-shell type resin, the water-soluble shells may serve the purpose of forming the intermediate layer improved in smoothness, delivering a higher transparency. Further, the hydrophobic core of this resin may prevent the risk of degrading waterproofness.

    [0027] According to yet another aspect of this invention, the topcoat layer contains a colloidal silica as the diffuse reflection suppressor component.

    [0028] The colloidal silica has smaller particle sizes than other usable fillers of the topcoat layer such as calcium carbonate and organic fillers, effectively suppressing the diffuse reflection of light.

    EFFECTS OF THE INVENTION



    [0029] In the thermosensitive recording body according to this invention, at least the thermosensitive recording layer and the topcoat layer are formed on the substrate consisting of a transparent film, and the thermosensitive recording layer and the topcoat layer each include the diffuse reflection suppressor component that suppresses the diffuse reflection of light from the particles constituting these layers. This technical feature may effectively suppress the diffuse reflection of light from the particle surfaces. As a result, the thermosensitive recording body finally obtained may excel in transparency.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0030] Fig. 1 is a schematic cross-sectional view of a thermosensitive recording body according to an embodiment of this invention.

    EMBODIMENT OF THE INVENTION



    [0031] An embodiment of this invention is hereinafter described in detail referring to the accompanying drawing.

    [0032] As illustrated in Fig. 1, a thermosensitive recording body 1 according to this embodiment has a structure in which a thermosensitive recording layer 3 color-developed by heating, an intermediate layer 4, and a topcoat layer 5 are formed in a stacked configuration on a substrate 2 in the form of a sheet.

    [0033] Exemplified materials of the substrate 2 may include transparent synthetic resin films such as polypropylene films, polyethylene terephthalate films, polystyrene films, and polycarbonate films. Though the film selected from these examples may have an optional thickness, examples of the thickness may range from approximately 10 µm to 100 µm in view of better coating properties and higher transparency.

    [0034]  Exemplified materials of the thermosensitive recording layer 3 may include colorants color-developed by heating, developers, fillers, binders, and lubricants.

    [0035] To improve the thermosensitive recording layer in transparency, the materials used may preferably have smaller particle sizes. The finer particles of the materials may more effectively suppress the diffuse reflection of light from the particles.

    [0036] Specific examples of leuco dyes usable as the colorant may include 2-aniline-3-methyl-6-(N-methyl-P-toluidine) fluorans, particle sizes of which may preferably be between 0.1 µm and 1.0 µm. The "particle size" is generally defined as a 50% median particle size measured by microtrac laser analysis or scattering particle size analysis.

    [0037] Likewise, the "particle size" in this description refers to a 50% median particle size measured by microtrac laser analysis or scattering particle size analysis.

    [0038] Examples of the developers may include 3,3'-diaryl-4,4'-dihydroxydiphenyl sulfones, particle sizes of which may preferably be between 0.1 µm and 1.0 µm.

    [0039] Examples of the fillers may include kaolin and calcium carbonate, particle sizes of which may preferably be less than or equal to 1.0 µm.

    [0040]  Examples of the binders may include styrene-butadiene copolymers.

    [0041] Examples of the lubricants may include polyethylene, zinc stearate, and paraffins, particle sizes of which may preferably be less than or equal to 0.5 µm

    [0042] The paraffins may be effectively useful for enhancing the transparency, and a low-melting paraffin is particularly preferable. The low-melting paraffin may have a melting point lower than the color developing temperature of the thermosensitive recording layer 3, preferably lower than 80°C, or more preferably lower than 50°C.

    [0043] The low-melting paraffin may preferably have particle sizes less than or equal to 0.5 µm. The content of the paraffin may preferably be between 0.1 and 1.0 g/m2 by dry weight.

    [0044] In the process of spreading and drying a liquid material prepared for the thermosensitive recording layer 3 on the substrate 2, the low-melting paraffin is melted. The melted paraffin then penetrates into and fills gaps such as irreguralities of the surfaces of the particles constituting the thermosensitive recording layer 3. This may suppress the diffuse reflection of light from the particle surfaces, affording an improved transparency.

    [0045] The intermediate layer 4 has barrier properties against water and oil and primarily consists of a resin.

    [0046]  Examples of the resin used for the intermediate layer 4 may include acrylic resin emulsions, water-soluble resins such as polyvinyl alcohol (PVA) resins, and SBR resins.

    [0047] To enhance the transparency, the resin may preferably be a resin containing a water-soluble portion, for example, a polyvinyl alcohol (PVA) resin containing a hydroxy group as a hydrophilic structural unit, or a core-shell type resin having hydrophobic core particles coated with a water-soluble shell polymer. Typical examples of the core-shell type resin may include core-shell type acrylic resins.

    [0048] The water-soluble polyvinyl alcohol (PVA) resins and core-shell type acrylic resins have favorable film formation properties. In the process of spreading and drying a liquid material prepared for the intermediate layer on the thermosensitive recording layer 3, the resin containing a water-soluble portion sinks into the thermosensitive recording layer 3, allowing the intermediate layer 4 formed to improve in smoothness. This may suppress the diffuse reflection of light from the thermosensitive recording layer 3, affording an improved transparency.

    [0049] The core-shell type resins are known materials. Examples of the core-shell type acrylic resins may include a commercially available product known by the trade name, BARIASTAR (Mitsui Chemicals, Inc.).

    [0050] The topcoat layer 5 improves the head-matching properties of the thermosensitive recording body 1 to the thermal head, thereby assisting in successful color development of the thermosensitive recording layer 3. The topcoat layer 5 is prepared by adding a filler, a lubricant, a cross-linking agent to a binder, etc.

    [0051] Examples of the binder may include acrylic resins.

    [0052] Examples of the lubricant may include polyethylene and zinc stearate.

    [0053] Examples of the cross-linking agent may include zirconium carbonate.

    [0054] Examples of the filler may include colloidal silica, calcium carbonate, polymethyl methacrylate (PMMA), and polystyrene (PS).

    [0055] The filler selected and used may preferably have particle sizes less than or equal to 1.0 µm.

    [0056] The filler may preferably be colloidal silica having small particle sizes for a better transparency.

    [0057] The thickness in total of the thermosensitive recording layer 3, the intermediate layer 4, and the topcoat layer 5 made of such materials is not particularly limited, meaning that the thickness of the sheet-like thermosensitive recoding body 1, exclusive of the substrate 2, may have an optional thickness. For instance, the thermosensitive recoding body 1 greater than or equal to 1.0 µm in thickness has an opacity less than or equal to 10%. This opacity is determined pursuant to JIS: P8138 that sets forth the testing method for opacity of paper.

    [0058] This invention is hereinafter described in further detail based on working examples.

    [0059] To begin with, the inventor discussed, through tests, effective compositions of the thermosensitive recording layer 3, the intermediate layer 4, and the topcoat layer 5 for improvements of the transparency.

    [0060] As the substrate 2 were used OPP (biaxially oriented polypropylene) films having the thickness of 40 µm.

    [0061] The opacity of the OPP films pursuant to JIS: P8138 was 2.0%.

    [0062] This opacity was measured by the reflectometer, "TC-6DS/A", supplied by Tokyo Denshoku CO., LTD.

    [Discussed compositions of the thermosensitive recording layer]



    [0063] Four different liquid materials for the thermosensitive recording layer were prepared, as shown with No. 1 to No. 4 in Table 1. The liquid materials were respectively spread on the OPP film so as to have the dry weight of 4.0 g/m2, and then dried to obtain different thermosensitive recording layers.
    [Table 1]
      DeveloperKaolinSBRPESt-ZnPar affinDye 
    Melting point, etc.  Tg: -3°C100°C120°C66°C46°C 
    Particle size0.4 µ0.4 µ 0.6 µ5.5 µ0.3 µ0.2 µ0.5 µTotal
    Composition No. 1 25 10 20 3 1     12 71
    2 25 10 20     10   12 77
    3 25 10 20       4 12 71
    4 25 10 20       10 12 77


    [0064] In Table 1, values of the materials in the respective compositions represent the percentages by dry weight. As is known from Table 1, the materials in the respective compositions were, developer: 3,3'-diaryl-4,4-dihydroxydiphenyl sulfone having the particle sizes of 0.4 µm, filler: kaolin having the particle sizes of 0.4 µm, binder: SBR having the glass transition temperature Tg of "-0.3°C", and lubricants: polyethylene (PE) having the melting point of 100°C and the particle sizes of 0.6 µm, zinc stearate (St-Zn) having the melting point of 120°C and the particle sizes of 5.5 µm, paraffin having the melting point of 66°C and the particle sizes of 0.3 µm, and paraffin having the melting point of 46°C and the particle sizes of 0.2 µm. Further, the dye used was 2-aniline-3-methyl-6-(N-methyl-P-toluidine) fluoran having the particle sizes of 0.5 µm.

    [0065] The developer, kaolin as the filler, SBR as the binder, and the dye were all added in equal amounts to the compositions No. 1 to No. 4.

    [0066] The lubricants added to the composition No. 1 were polyethylene (PE) and zinc stearate. The lubricant added to the composition No. 2 was the paraffin having the melting point of 66°C and the particle sizes of 0.3 µm. The lubricant added to the composition No. 3 was the paraffin having the melting point of 46°C and the particle sizes of 0.2 µm. The lubricant added to the composition No. 4 was the same paraffin as the composition 3, which was, however, added to the composition No. 4 in a greater amount than the composition No. 3.

    [0067]  Liquid materials having the respective compositions were prepared for the thermosensitive recording layer, and then spread and dried on the OPP films. Pursuant to JIS: 8138, the inventor measured the opacities of up to the respective thermosensitive recording layers formed on the OPP films. Table 2 shows the measured opacities.
    [Table 2]
    Composition No.Opacity (%)
    1 25.6
    2 19.2
    3 16.6
    4 14.9
    As shown in Table 2, the composition No. 4 containing, as the lubricant, the paraffin having the melting point of 46°C and the particle sizes of 0.2 µm in the largest amount resulted in the lowest opacity of 14.9%, meaning that this composition marked the highest transparency. On the contrary, the composition No. 1 containing, as the lubricant, polyethylene (PE) and zinc stearate, instead of the paraffin, resulted in the highest opacity of 25.6%, meaning that this composition marked the lowest transparency.

    [0068] Two of the compositions were compared to each other; composition No. 2 containing, as the lubricant, the paraffin having the melting point of 66°C and the particle sizes of 0.3 µm, and the composition No. 3 containing, as the lubricant, the paraffin having the melting point of 46°C and the particle sizes of 0.2 µm. The comparison shows that the composition No. 2 resulted in the opacity of 19.2%, while the composition No. 3 resulted in the lower opacity of 16.6% than the composition No. 2. Thus, the composition No. 3 containing the paraffin having the lower melting point and smaller particle sizes favorably resulted in a higher transparency.

    [0069] This may demonstrate that the paraffin having a lower melting point and smaller particle sizes serves to improve the transparency, because the low-melting paraffin is melted in the process of spreading and drying the liquid material for the thermosensitive recording layer on the substrate, and the melted paraffin penetrates into and fills gaps such as irreguralities of the surfaces of particles constituting the thermosensitive recording layer, effectively suppressing the diffuse reflection of light from the particle surfaces.

    [Discussed compositions of the intermediate layer]



    [0070] Thus, the thermosensitive recording layer having the composition No. 4 favorably resulted in the lowest opacity. The real importance, however, lies in the opacity of the whole thermosensitive recording body in which the intermediate layer and the topcoat layer are formed on the thermosensitive recording layer.

    [0071] Assuming the thermosensitive recording layer having the composition No. 3 that favorably resulted in the lower opacity than the composition No. 4, the inventor discussed binders to be added to the intermediate layer formed on this thermosensitive recording layer.

    [0072]  The liquid material for the thermosensitive recording layer having the composition No. 3 was mechanically applied so as to have the dry weight of 4.0 g/m2. The opacity of up to the thermosensitive recording layer was 17.2%. Table 2 shows the opacity of up to the thermosensitive recording layer according to the composition No. 3 was 16.6%, which was different from the above-mentioned opacity. This is because the liquid material was manually applied in Table 2.

    [0073] The inventor prepared four different liquid materials for the intermediate layer having compositions No. 5 to No. 8 containing the binders shown in Table 3. These liquid materials were spread on the thermosensitive recording layer having the composition No. 3 so as to have the dry weight of 1.8 g/m2, and then dried to obtain different intermediate layers.
    [Table 3]
    Composition No.BinderOpacity (%)Water--proofnessBarrier properties
    5 Core-shel 1 acryl 6.5 good good
    6 Acryl 9.6 good poor
    7 PVA 6.5 poor good
    8 SBR 7.8 good poor
    Commercial product -- 13.0 -- --


    [0074] As shown in Table 3, the binders added to the compositions No. 5 to No. 8 were respectively a core-shell type acrylic resin, an acrylic resin, PVA, and SBR. Other than the binders, the same materials were used in these compositions.

    [0075] The liquid materials having the respective compositions were prepared for the intermediate layer, and spread and dried on the thermosensitive recording layer having the composition No. 3. Pursuant to JIS: P8138, the inventor measured opacities of up to these intermediate layers.

    [0076] Further, they were evaluated for waterproofness and barrier properties.

    [0077] To evaluate waterproofness, the formed layers were immersed in tap water at 23°C for 24 hours and visually checked whether their surfaces absorbed water and peeled off. The layers with no peeled-off part were evaluated as "good", whereas the layers with any peeled-off part were evaluated as "poor".

    [0078] For barrier properties, two droplets of edible oil were dropped on the surfaces and left at rest at 40°C for 15 hours. Then, it was visually checked whether what was printed thereon was gone. The layers with no missing print were evaluated as "good", whereas the layers with any missing print were evaluated as "poor". The evaluation result is shown in Table 3. Table 3 also shows the opacity evaluation of a thermosensitive recording sheet manufactured by other company. This thermosensitive recording sheet had a thermosensitive recording layer and an intermediate layer formed on an OPP film.

    [0079]  Table 3 shows that the opacities of up to the intermediate layers having the compositions No. 5 to No. 8 were lower than the opacity, 17.2%, of up to the thermosensitive recording layer. This may demonstrate that these intermediate layers conduce to improvements of the transparency.

    [0080] In particular, the compositions No. 5 and No. 7 respectively containing, as the binder, the core-shell type acrylic resin and the water-soluble PVA both resulted in that opacities of up to the intermediate layers were the lowest opacity of 6.5%, meaning that these compositions could achieve a satisfactory transparency.

    [0081] The composition No. 5 using the core-shell type acrylic resin was satisfactory in waterproofness and barrier properties, as well as in transparency.

    [0082] The transparency is thus improved by forming the intermediate layers respectively containing, as the binder, the core-shell type acrylic resin and water-soluble PVA, because the core-shell type acrylic resin and water-soluble PVA have good film formation properties. In the process of spreading and drying the liquid material for the intermediate layer on the thermosensitive recording layer 3, the resin containing a water-soluble portion sinks into the thermosensitive recording layer 3, allowing the intermediate layer 4 formed to improve in smoothness. This may suppress the diffuse reflection of light from the thermosensitive recording layer 3.

    [Discussed compositions of the topcoat layer]



    [0083] The inventor prepared liquid materials for seven different topcoat layers having the compositions No. 9 to No. 15 shown in Table 4, and two liquid materials A and B for general-use topcoat layers.

    The values of the materials in the respective compositions represent the percentages by dry weight. As shown in Fig. 4, the lubricants used were polyethylene (PE) and zinc stearate (St-Zn).

    [0084] Different types of polyethylene were used; one type of polyethylene having the particles sizes of 0.12 µm, and two types of polyethylene having the particles sizes of 0.6 µm. The two types of polyethylene having the particles sizes of 0.6 µm; polyethylene added to the composition No. 9, and polyethylene added to the composition No. 10 and the general-use topcoat layer B, were acquired from different manufacturers.

    [0085] Different types of zinc stearate were used; zinc stearate having the particle sizes of 0.1 µm, zinc stearate having the particle sizes of 0.9 µm, and zinc stearate having the particle sizes of 5.5 µm.

    [0086] An acrylic resin was used as the binder, and zirconium carbonate was used as the cross-linking agent.

    [0087] The fillers used were colloidal silica having the particles sizes of a few nm, colloidal silica having the particle sizes of several dozen nm, calcium carbonate having the particle sizes of 0.6 µm, polymethyl methacrylate (PMMA) having the particles sizes of 2.6 µm, and polystyrene having the particles sizes of 0.9 µm.

    [0088] To the seven compositions No. 9 to No. 15 were added equal amounts of the acrylic resin as the binder, zirconium carbonate as the cross-linking agent, and colloidal silicas respectively having the particles sizes of a few nm and several dozen nm as the filler. The lubricants alone were added in different amounts to these compositions.

    [0089] The fillers added to the compositions of the two general-use topcoat layers A and B were calcium carbonate, polymethyl methacrylate (PMMA), and polystyrene. Neither of the colloidal silicas was added to these compositions.

    [0090] Liquid materials having the compositions No. 9 to No. 15 were prepared for the topcoat layer. The prepared liquid materials were spread so as to have the dry weight of 1.5 g/m2 on PET (polyethylene terephthalate) films having the thickness of 38 µm, and then dried. Then, the opacities of the topcoat layers obtained were measured pursuant to JIS: P8138.

    [0091] As for the composition No. 15 of the seven compositions and the compositions of the topcoat layers A and B, the thermosensitive recording layer having the composition No. 3 was formed on OPP films as described in the discussed compositions of the intermediate layer. Then, the intermediate layer having the composition No. 5 was formed on the respective thermosensitive recording layers, and the liquid materials for the topcoat layer having the before-mentioned compositions were spread on the respective intermediate layers so as to have the dry weight of 1.5 g/m2, and dried to form the topcoat layers. Then, the resulting opacities were measured. The liquid material for the thermosensitive recording layer was applied so as to have the dry weight of 4.0 g/m2, and the liquid material for the intermediate layer was applied so as to have the dry weight of 1.8 g/m2. Before the topcoat layers were formed, the opacity of up to the intermediate layer was 7.4%. The composition No. 5 shown in Table 3 resulted in that the opacity of up to the intermediate layer was 6.5%. This difference in opacity is associated with different methods of applying the liquid materials; whether they are mechanically or manually applied.

    [0092] Further, the PET films coated with the topcoat layers made of the liquid materials having the compositions No. 13 to No. 15 lower in opacity, i.e., higher in transparency, were further evaluated for sticking resistance.

    [0093] As for the evaluation of sticking resistance, the obtained films were printed by a printer, "HP-3600" supplied by Teraoka Seiko Co., Ltd., under the conditions; standard energy of 53% duty and printing speed of 100 mm/sec., and high energy of 80% duty and printing speed of 80 mm/sec. Then, the films were evaluated for surface distortion as follows; "good" for no surface distortion, "fair" for more or less surface distortion, and "poor" for more surface distortion than the films evaluated as fair.

    [0094] Table 5 shows the evaluation results on opacity and sticking resistance.
    [Table 5]
    Composition No.PET 38 µ /topcoatOPP 40 µ/ thermo sensitive /intermediate/topcoatSticking resistance (HP-3600)
    Opacity (%)100 mm / S-53%80 mm / s-80%
    9 8.3 -- -- --
    10 11.6 -- -- --
    11 10.8 -- -- --
    12 7.6 -- -- --
    13 8.4 -- good good
    14 2.8 -- good / fair poor
    15 4.8 6.9 good good
    Topcoat material A -- 16.0 --  
    Topcoat material B -- 20.0 -- --


    [0095] Table 5 shows the opacity of each of the compositions No. 9 to No. 15 in which the topcoat layers were fromed on PET films 38 µm in thickness and the opacity of each of the composition No. 15 and two general-use topcoat layers A and B in which the thermosensitive recording layers and the intermediate layers were formed on OPP films 40 µm in thickness, and then the topcoat layers were formed on the intermediate layers.

    [0096] As for the compositions resulting in relatively high opacities, i.e., relatively poor transparencies and poor sticking resistance in the case where the topcoat layers were formed on the PET films, opacities in the case where these topcoat layers were formed on the intermediate layers were not measured.

    [0097] Among the topcoat layers directly formed on the PET films having the thickness of 38 µm, the topcoat layers of the compositions No. 14 and No. 15 exhibited the low opacities of 2.8% and 4.8%, i.e., favorably high transparencies.

    [0098] The topcoat layers having the compositions No. 13 to No. 15 were evaluated for sticking resistance as well, which revealed that the topcoat layer of the composition No. 14 exhibiting the highest transparency resulted in poor sticking resistance.

    [0099] As for the composition No. 15, in which the thermosensitive recording layers and the intermediate layers were formed on the OPP films, and as for two general-use topcoat layers A and B, the opacity of the composition No. 15 favorably exhibited the low opacity of 6.9%. On the other hand, the opacities of the general-use topcoat layers A and B exhibited the high opacities of 16.0% and 20.0%, which were more than twice of the opacity obtained from the composition No. 15.

    [0100] This may demonstrate that the composition No. 15 containing, as the filler, the colloidal silica having smaller particle sizes results in a higher transparency than the general-use topcoat layers A and B containing, as the filler, calcium carbonate, polymethyl methacrylate (PMMA), and/or polystyrene (PS) having greater particle sizes.

    [Rediscussed compositions of the thermosensitive recording layer]



    [0101] As described thus far, the composition No. 5 in Table 3 may preferably be selected for the intermediate layer in terms of transparency, waterproofness, and barrier properties. The compositions No. 13 and No. 15 in Table 4 may preferably be selected for the topcoat layer in terms of transparency and sticking resistance.

    [0102] The intermediate layer having the composition No. 5 was formed on four thermosensitive recording layers having the compositions No. 1 to No. 4 in Table 1. Then, the topcoat layer having the composition No. 13 and the topcoat layer having the composition No. 15 were respectively formed on the intermediate layers, and evaluated for opacity and sticking resistance.

    [0103] The liquid materials for the thermosensitive recording layer were spread on the OPP films so as to have the dry weight of 4.0 g/m2. The liquid material for the intermediate layer was spread on the thermosensitive recording layers so as to have the dry weight of 1.8 g/m2. The liquid materials for the topcoat layer were spread on the intermediate layers so as to have the dry weight of 1.5 g/m2. The opacity measurement was performed upon completing the formation of each layer; thermosensitive recording layer, intermediate layer, and topcoat layer. The total thickness of the thermosensitive recording layer, intermediate layer, and topcoat layer, i.e., thickness from the bottom layer to the topcoat layer, exclusive of the OPP film, was approximately 7 µm.

    [0104] Table 6 shows the evaluation results on opacity and sticking resistance.
    [Table 6]
    Composition No.Opacity (%)Sticking resistance (HP-3600)
    Thermosensitive recording layerIntermediate layerTopcoat layer (No. 13)Topcoat layer (No. 15)100 mm/s-53%80 mm/s-80%
    1 25.6 7.5 10.6 7.4 good good
    2 19.2 9.0 9.9 9.0 good good
    3 16.6 7.4 8.4 7.3 good good
    4 14.9 8.3 9.4 8.0 good good


    [0105] As for the opacities of up to the thermosensitive recording layers, as shown in Table 6, the thermosensitive recording layer having the composition No. 4 marked the lowest opacity of 14.9%, while the thermosensitive recording layer having the composition No. 1 marked the highest opacity of 25.6%.

    [0106] As for the opacities of up to the intermediate layer in the case where the intermediate layer having the composition No. 5 was formed on the thermosensitive recording layer, the thermosensitive recording layer having the composition No. 3 marked the lowest opacity of 7.4%, while the thermosensitive recording layer having the composition No. 2 marked the highest opacity of 9.0%. In both of these thermosensitive recording layers, the intermediate layer of the composition No. 5 formed thereon significantly lowered their opacities.

    [0107] As for the opacities of up to the topcoat layer in the case where the topcoat layer having the composition No. 13 was formed on the intermediate layers, the thermosensitive recording layer having the composition No. 3 marked the lowest opacity of 8.4%, while the thermosensitive recording layer having the composition No. 1 marked the highest opacity of 10.6%.

    [0108] As for the opacities of up to the topcoat layer in the case where the topcoat layer having the composition No. 15 was formed on the intermediate layers, the thermosensitive recording layer having the composition No. 3 marked the lowest opacity of 7.3%, while the thermosensitive recording layer having the composition No. 2 marked the highest opacity of 9.0%.

    [0109]  These thermosensitive recording layers were both satisfactory in sticking resistance.

    [0110] It is known from these results that, by thus selecting the materials capable of suppressing the diffuse reflection of light to form the thermosensitive recording layer, intermediate layer, and topcoat layer, the opacity of up to the topcoat layer may be as low as substantially 10% or less, providing a thermosensitive recording body that may excel in transparency.

    [0111] When the thermosensitive recording body according to this invention is bonded to a container of food as a label or a packaging film, the contents of the container may be visually checked through such a label or film that may excel in transparency.

    [0112] The intermediate layer 4 formed in the embodiment described so far may be omitted, in which case a resin having a water-soluble portion, such as a core-shell type resin, may preferably be added to the topcoat layer 5.

    [0113] Optionally, the thermosensitive recording body may have an anchor layer that increases adhesion between the substrate 2 and the thermosensitive recording layer 3, or any other suitable layer.

    DESCRIPTION OF REFERENCE SIGNS



    [0114] 
    1
    thermosensitive recording body
    2
    substrate
    3
    thermosensitive recording layer
    4
    intermediate layer
    5
    topcoat layer



    Claims

    1. A thermosensitive recording body, comprising at least a thermosensitive recording layer and a topcoat layer formed on a substrate,
    the substrate consisting of a transparent film,
    wherein the thermosensitive recording body further comprises an intermediate layer between the thermosensitive recording layer and the topcoat layer, wherein at least the thermosensitive recording layer, the topcoat layer and the intermediate layer include a component configured for suppressing diffuse reflection of light from particles constituting each of the thermosensitive recording layer, the topcoat layer and the intermediate layer,
    wherein the thermosensitive recording body has an opacity less than or equal to 10% pursuant to JIS: P8138,
    wherein the thermosensitive recording layer includes a low-melting paraffin as the component, the low-melting paraffin having a melting point lower than or equal to a color developing temperature, wherein the intermediate layer includes a resin containing a water-soluble portion as the component,
    characterized in that the thermosensitive recording body, exclusive of the substrate, has a thickness greater than or equal to 1.0 µm and less than or equal to 10 µm, and the thermosensitive recording layer is formed by a process in which the melted paraffin penetrates into and fills gaps of irregular surfaces of the thermosensitive recording layer,
    and the intermediate layer is formed by a process in which the resin sinks into the thermosensitive recording layer, allowing the intermediate layer to be formed in smoothness.
     
    2. The thermosensitive recording body as claimed in claim 1, wherein the resin containing a water-soluble portion is a polyvinyl alcohol resin.
     
    3. The thermosensitive recording body as claimed in claim 1, wherein the resin containing a water-soluble portion is a core-shell type resin.
     
    4. The thermosensitive recording body as claimed in claim 1, wherein the topcoat layer includes a colloidal silica as the diffuse reflection suppressor component.
     


    Ansprüche

    1. Wärmeempfindlicher Aufzeichnungskörper, umfassend zumindest eine wärmeempfindliche Aufzeichnungsschicht und eine Deckschicht, die auf einem Substrat gebildet sind,
    welches Substrat aus einer transparenten Schicht besteht,
    wobei der wärmeempfindliche Aufzeichnungskörper ferner eine Zwischenschicht zwischen der wärmeempfindlichen Aufzeichnungsschicht und der Deckschicht umfasst, wobei zumindest die wärmeempfindliche Aufzeichnungsschicht, die Deckschicht und die Zwischenschicht eine Komponente umfassen, die zur Unterdrückung diffuser Reflexion von Licht von Partikeln ausgebildet ist, welche jede der wärmeempfindlichen Aufzeichnungsschicht, der Deckschicht und der Zwischenschicht bilden,
    wobei der wärmeempfindliche Aufzeichnungskörper eine Opazität von kleiner oder gleich 10% gemäß JIS: P8138 aufweist,
    und die wärmeempfindliche Aufzeichnungsschicht niedrigschmelzendes Paraffin als die Komponente umfasst, welches niedrigschmelzende Paraffin einen Schmelzpunkt niedriger oder gleich einer Farbentwicklungstemperatur aufweist,
    wobei die Zwischenschicht ein Harz umfasst, welches einen wasserlöslichen Anteil als die Komponente umfasst,
    dadurch gekennzeichnet, dass der wärmeempfindliche Aufzeichnungskörper, ausschließlich des Substrats, eine Dicke größer oder gleich 1,0 µm und kleiner oder gleich 10 µm aufweist, und die wärmeempfindliche Aufzeichnungsschicht gebildet wird durch ein Verfahren, in welchem das geschmolzene Paraffin in Zwischenräume unregelmäßiger Oberflächen der wärmeempfindlichen Aufzeichnungsschicht eindringt und diese ausfüllt,
    und die Zwischenschicht gebildet wird durch ein Verfahren, in welchem das Harz in die wärmeempfindliche Aufzeichnungsschicht einsinkt, wodurch eine gleichförmige Bildung der Zwischenschicht ermöglicht wird.
     
    2. Wärmeempfindlicher Aufzeichnungskörper gemäß Anspruch 1, bei welchem das Harz, welches den wasserlöslichen Anteil enthält, ein Polyvinyl-Alkohol-Harz ist.
     
    3. Wärmeempfindlicher Aufzeichnungskörper gemäß Anspruch 1, bei welchem das Harz, das einen wasserlöslichen Anteil enthält, ein Harz vom Kern-Schalen-Typ ist.
     
    4. Wärmeempfindlicher Aufzeichnungskörper gemäß Anspruch 1, bei welchem die Deckschicht eine Kolloid-Kieselerde als Komponente zur Unterdrückung diffuser Reflexion enthält.
     


    Revendications

    1. Corps d'enregistrement thermosensible, comprenant au moins une couche d'enregistrement thermosensible et une couche de finition formées sur un substrat,
    le substrat consistant en un film transparent,
    dans lequel le corps d'enregistrement thermosensible comprend en outre une couche intermédiaire entre la couche d'enregistrement thermosensible et la couche de finition, dans lequel au moins la couche d'enregistrement thermosensible, la couche de finition et la couche intermédiaire comprennent un composant configuré pour supprimer la réflexion diffuse de lumière à partir de particules constituant chacune de la couche d'enregistrement thermosensible, de la couche de finition et de la couche intermédiaire,
    dans lequel le corps d'enregistrement thermosensible a une opacité inférieure ou égale à 10 % selon JIS:P813.8,
    dans lequel la couche d'enregistrement thermosensible comprend une paraffine à bas point de fusion en tant que composant, la paraffine à bas point de fusion ayant un point de fusion inférieur ou égal à une température de développement de couleur,
    dans lequel la couche intermédiaire comprend une résine contenant une partie hydrosoluble en tant que composant,
    caractérisé en ce que le corps d'enregistrement thermosensible, à l'exclusion du substrat, a une épaisseur supérieure ou égale à 1,0 µm et inférieure ou égale à 10 µm, et la couche d'enregistrement thermosensible est formée par un procédé dans lequel la paraffine en fusion pénètre dans et remplit les interstices entre des surfaces irrégulières de la couche d'enregistrement thermosensible,
    et la couche intermédiaire est formée par un procédé dans lequel la résine s'écoule dans la couche d'enregistrement thermosensible, permettant à la couche intermédiaire d'être formée de façon lisse.
     
    2. Corps d'enregistrement thermosensible selon la revendication 1, dans lequel la résine contenant une partie hydrosoluble est une résine d'alcool polyvinylique.
     
    3. Corps d'enregistrement thermosensible selon la revendication 1, dans lequel la résine contenant une partie hydrosoluble est une résine de type noyauenveloppe.
     
    4. Corps d'enregistrement thermosensible selon la revendication 1, dans lequel la couche de finition comprend une silice colloïdale en tant que composant suppresseur de réflexion diffuse.
     




    Drawing






    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description