(19)
(11)EP 3 170 983 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16200324.8

(22)Date of filing:  23.11.2016
(51)Int. Cl.: 
F01D 11/00  (2006.01)
F01D 5/30  (2006.01)

(54)

PLATFORM AND CORRESPONDING METHOD OF MANUFACTURING

PLATTFORM UND ZUGEHÖRIGES HERSTELLUNGSVERFAHREN

PLATE-FORME ET PROCÉDÉ DE FABRICATION ASSOCIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.11.2015 US 201514948624

(43)Date of publication of application:
24.05.2017 Bulletin 2017/21

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • TATTON, Royce E.
    Firth, ID 83236 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 3 121 386
US-A- 5 049 035
EP-A2- 2 108 785
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The subject matter disclosed herein generally relates to airfoil platforms used in gas turbine engines and, more particularly, to airfoil platforms having bowed sidewalls.

    [0002] Gas turbine engines generally include a fan section, a compressor section, a combustor section, and turbine sections positioned along a centerline referred to as an "axis of rotation." The fan, compressor, and combustor sections add work to air (also referred to as "core gas") flowing through the engine. The turbine extracts work from the core gas flow to drive the fan and compressor sections. The fan, compressor, and turbine sections each include a series of stator and rotor assemblies. The stator assemblies, which do not rotate (but may have variable pitch vanes), increase the efficiency of the engine by guiding core gas flow into or out of the rotor assemblies.

    [0003] The fan section includes a rotor assembly and a stator assembly. The rotor assembly of the fan includes a rotor disk and a plurality of outwardly extending rotor blades. Each rotor blade includes an airfoil portion, a dove-tailed root portion, and a platform. The airfoil portion extends through the flow path and interacts with the working medium gases to transfer energy between the rotor blade and working medium gases. The dove-tailed root portion engages attachment means of the rotor disk. The platform typically extends circumferentially from the rotor blade to a platform of an adjacent rotor blade. The platform is disposed radially between the airfoil portion and the root portion. The stator assembly includes a fan case, which circumscribes the rotor assembly in close proximity to the tips of the rotor blades.

    [0004] To reduce the size and cost of the rotor blades, the platform size may be reduced and a separate fan blade platform may be attached to the rotor disk. To accommodate the separate fan blade platforms, outwardly extending tabs may be forged onto the rotor disk to enable attachment of the platforms. Fan platforms having either straight or more than one straight feature joined by blend radii may create high inter-laminar stresses due to high tensile loading through the fillets and a thin, fragile geometry may be needed for internal mold tools.

    SUMMARY



    [0005] According to the invention, a platform for an airfoil in a gas turbine engine is defined in claim 1, the platform comprising: a top wall defining a front end and a back end of the platform and configured to connect to an airfoil of the gas turbine engine; a first connector configured to receive a pin and secure the platform to a rotor of the gas turbine engine; a first sidewall located at the front end and extending from the top wall to the first connector, the first sidewall having a first arm and a second arm, wherein the first arm and the second arm of the first sidewall are curved such that a bowed first sidewall extends from the top wall to the first connector; a second connector configured to receive the pin and secure the platform to the rotor of the gas turbine engine; a second sidewall located at the back end and extending from the top wall to the second connector, the second sidewall having a first arm and a second arm, wherein the first arm and the second arm of the second sidewall are curved such that a bowed second sidewall extends from the top wall to the second connector; and an interior, the interior defined by interior surfaces of the top wall, the first and second sidewalls and the first and
    second connectors; and wherein the first arms and the second arms of the first and second sidewalls are bowed outward relative to the interior of the platform.

    [0006] Further embodiments of the platform may include a blend radius between the first and second sidewalls and the top wall.

    [0007] Further embodiments of the platform may include a stiffener extending from the top wall to the first and second connectors and located between the first arm and the second arm of the first and second sidewalls.

    [0008] According to the invention, a method of manufacturing a platform for an airfoil in a gas turbine engine is defined in claim 5, the method comprising: forming a top wall defining a front end and a back end of the platform and configured to connect to the airfoil of the gas turbine engine; forming a first sidewall located at the front end and
    extending downward from the top wall, the first sidewall having a first arm and a second arm, wherein the first arm and the second arm of the first sidewall are curved such that a bowed first sidewall extends from the top wall downward, with the first arm and the second arm extending toward each other; forming a first connector between the first arm and the second arm of the first sidewall, the first connector configured to receive a pin and secure the platform to a rotor of the gas turbine engine; forming a second sidewall located at the back end and extending downward from the top wall, the second sidewall having a first arm and a second arm, wherein the first arm and the second arm of the second sidewall are curved such that a bowed second sidewall extends from the top wall downward, with the first arm and the second arm extending toward each other; forming a second connector between the first arm and the second arm of the second sidewall, the second connector configured to receive the pin and secure the platform to the rotor of the gas turbine engine; wherein the top wall, the first and second sidewalls, and the first and second connectors define an interior of the platform; and wherein the first arms and the second arms of the first and second sidewalls are bowed relative to the interior of the platform.

    [0009] Further embodiments of the method may include forming a blend radius between the first and second sidewalls and the top wall.

    [0010] Further embodiments of the method may include that the top wall, the first and second sidewalls, and the first and second connectors are formed substantially simultaneously.

    [0011] Further embodiments of the method may include that the top wall, the first and second sidewalls, and the first and second connectors are formed by additive manufacturing.

    [0012] Further embodiments of the method may include forming a stiffener extending from the top wall to the first and second connectors and located between the first arm and the second arm of the first and second sidewalls.

    [0013] According to another embodiment, a gas turbine engine is provided. The engine includes a rotor, at least one airfoil, and a platform according to any of the foregoing embodiments.

    [0014] Further embodiments of the engine may include a plurality of airfoils and a plurality of platforms configured to attach to the rotor.

    [0015] Embodiments of the present disclosure include a platform used in a gas turbine engine having bowed sidewalls. Further embodiments include a process of manufacturing a platform for a gas turbine engine that includes bowed sidewalls. The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, that the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] The subject matter is particularly pointed out and distinctly claimed at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1A is a schematic cross-sectional illustration of a gas turbine engine that may employ various embodiments disclosed herein;

    FIG. 2 is a perspective view of a fan rotor including a plurality of blade root attachment lugs and a blade platform;

    FIG. 3 is a cross-sectional illustration of a blade platform as engaged with a blade root attachment lug;

    FIG. 4A is a perspective schematic illustration of a platform in accordance with an embodiment of the present disclosure;

    FIG. 4B is a rear elevation schematic illustration of the platform of FIG. 4A;

    FIG. 5 is a rear elevation schematic illustration of a platform in accordance with another embodiment of the present disclosure; and

    FIG. 6 is a process for manufacturing a platform in accordance with an embodiment of the present disclosure.


    DETAILED DESCRIPTION



    [0017] As shown and described herein, various features of the disclosure will be presented. Various embodiments may have the same or similar features and thus the same or similar features may be labeled with the same reference numeral, but preceded by a different first number indicating the figure to which the feature is shown. Thus, for example, element "a" that is shown in FIG. X may be labeled "Xa" and a similar feature in FIG. Z may be labeled "Za." Although similar reference numbers may be used in a generic sense, various embodiments will be described and various features may include changes, alterations, modifications, etc. as will be appreciated by those of skill in the art, whether explicitly described or otherwise would be appreciated by those of skill in the art.

    [0018] FIG. 1A schematically illustrates a gas turbine engine 20. The exemplary gas turbine engine 20 is a two-spool turbofan engine that generally incorporates a fan section 22, a compressor section 24, a combustor section 26, and a turbine section 28.

    [0019] Alternative engines might include an augmenter section (not shown) among other systems for features. The fan section 22 drives air along a bypass flow path B, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26. Hot combustion gases generated in the combustor section 26 are expanded through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to turbofan engines and these teachings could extend to other types of engines, including but not limited to, three-spool engine architectures.

    [0020] The gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine centerline longitudinal axis A. The low speed spool 30 and the high speed spool 32 may be mounted relative to an engine static structure 33 via several bearing systems 31. It should be understood that other bearing systems 31 may alternatively or additionally be provided.

    [0021] The low speed spool 30 generally includes an inner shaft 34 that interconnects a fan 36, a low pressure compressor 38 and a low pressure turbine 39. The inner shaft 34 can be connected to the fan 36 through a geared architecture 45 to drive the fan 36 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 35 that interconnects a high pressure compressor 37 and a high pressure turbine 40. In this embodiment, the inner shaft 34 and the outer shaft 35 are supported at various axial locations by bearing systems 31 positioned within the engine static structure 33.

    [0022] A combustor 42 is arranged between the high pressure compressor 37 and the high pressure turbine 40. A mid-turbine frame 44 may be arranged generally between the high pressure turbine 40 and the low pressure turbine 39. The mid-turbine frame 44 can support one or more bearing systems 31 of the turbine section 28. The mid-turbine frame 44 may include one or more airfoils 46 that extend within the core flow path C.

    [0023] The inner shaft 34 and the outer shaft 35 are concentric and rotate via the bearing systems 31 about the engine centerline longitudinal axis A, which is co-linear with their longitudinal axes. The core airflow is compressed by the low pressure compressor 38 and the high pressure compressor 37, is mixed with fuel and burned in the combustor 42, and is then expanded over the high pressure turbine 40 and the low pressure turbine 39. The high pressure turbine 40 and the low pressure turbine 39 rotationally drive the respective high speed spool 32 and the low speed spool 30 in response to the expansion.

    [0024] The pressure ratio of the low pressure turbine 39 can be pressure measured prior to the inlet of the low pressure turbine 39 as related to the pressure at the outlet of the low pressure turbine 39 and prior to an exhaust nozzle of the gas turbine engine 20. In one non-limiting embodiment, the bypass ratio of the gas turbine engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 38, and the low pressure turbine 39 has a pressure ratio that is greater than about five (5:1). It should be understood, however, that the above parameters are only examples of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines, including direct drive turbofans.

    [0025] In this embodiment of the example gas turbine engine 20, a significant amount of thrust is provided by the bypass flow path B due to the high bypass ratio. The fan section 22 of the gas turbine engine 20 is designed for a particular flight condition-typically cruise at about 0.8 Mach and about 35,000 feet (10,668 metres). This flight condition, with the gas turbine engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC). TSFC is an industry standard parameter of fuel consumption per unit of thrust.

    [0026] Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 without the use of a Fan Exit Guide Vane system. The low Fan Pressure Ratio according to one non-limiting embodiment of the example gas turbine engine 20 is less than 1.45. Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5([(Tram ° K)/(288.2° K)]0.5), where Tram represents the ambient temperature in degrees Rankine. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example gas turbine engine 20 is less than about 1150 fps (351 m/s).

    [0027] Each of the compressor section 24 and the turbine section 28 may include alternating rows of rotor assemblies and vane assemblies (shown schematically) that carry airfoils that extend into the core flow path C. For example, the rotor assemblies can carry a plurality of rotating blades 25, while each vane assembly can carry a plurality of vanes 27 that extend into the core flow path C. The blades 25 of the rotor assemblies create or extract energy (in the form of pressure) from the core airflow that is communicated through the gas turbine engine 20 along the core flow path C. The vanes 27 of the vane assemblies direct the core airflow to the blades 25 to either add or extract energy.

    [0028] Various components of a gas turbine engine 20, including but not limited to the airfoils of the blades 25 and the vanes 27 of the compressor section 24 and the turbine section 28, may be subjected to repetitive thermal cycling under widely ranging temperatures and pressures. The hardware of the turbine section 28 is particularly subjected to relatively extreme operating conditions. Therefore, some components may require internal cooling circuits for cooling the parts during engine operation.

    [0029] Turning now to FIG. 2, illustrated is a perspective view of a fan rotor 202 that may be located within a fan section of a gas turbine engine. As shown, the fan rotor 202 includes at least one blade root attachment lug 212. During installation of the fan section, a fan blade platform 210 is operably coupled to each of the blade root attachment lugs 212. As shown, each of the blade root attachment lug 212 may include one or more slots 214 that are configured to receive a portion of a platform 210. For example, as shown, a front end 216 of the platform 210 may include a first connector 218 that may engage within a respective first cavity 214, and at back end 220 of the platform 210, a second connector 222 may engage with a respective second cavity 214. A locking pin (not shown) may be used to provide removable attachment between the platform 210 and the blade root attachment lug 212. Turning now to FIG. 3, a cross-sectional schematic view of a portion of a fan rotor 302 is shown. During installation of a fan section of a gas turbine engine, a fan blade platform 310 may be operably coupled to each of the blade root attachment lugs 312 of the fan rotor 302. Each platform 310 may include at least one connector, e.g., first connector 318 and second connector 322, extending from a bottom of the platform 310. Each of the at least one connectors 318, 322 include an aperture 324, 326, respectively, formed therethrough.

    [0030] To secure the platform 310 to a respective blade root attachment lug 312, the first connector 318 is inserted into a first cavity 314a at a front end 316, and the second connector 322 is inserted into a second cavity 314b at a back end 320. A pin 328 may be inserted through a blade root attachment lug aperture 330 to pass through each of the apertures 324, 326 of the platform 310 in the first connector 318 and the second connector 322.

    [0031] Turning now to FIGS. 4A and 4B, views of a platform 410 in accordance with the invention are shown. FIG. 4A is a perspective view of the platform 410 and FIG. 4B is a rear elevation view of the platform 410. The platform 410 may be installed and operated similar to the platforms described above.

    [0032] Platform 410 includes a top wall 411 or flow path surface. A first sidewall 432, having two arms 432a, 432b, is located at a front end 416 of the platform 410 and extends downward from the top wall 411. A second sidewall 434, having two arms 434a, 434b, is located at a rear end 420 of the platform 410 and extends downward from the top wall 411.

    [0033] As shown, the top wall 411, the first sidewall 432, and the second sidewall 434 form a unitary body of the platform 410. The arms 432a, 432b of the first sidewall 432 join opposite the top wall 411 to form the first connector 418. Similarly, the arms 434a, 434b of the second sidewall 434 join opposite the top wall 411 to form the second connector 422. As shown in FIG. 4A, the first connector 418 may define two pin supports 418a and 418b and the second connector 422 may define two pin supports 422a and 422b. The pin supports 418a, 418b and 422a, 422b may define apertures 424 and 426, respectively, which receive a locking pin (not shown).

    [0034] As shown, the sidewalls 432, 434 are bowed or curved, as extending from the top wall 411 to the respective pin supports 418a, 418b and 422a, 422b of the connectors 418, 422, respectively. A blend radius 436 (shown in FIG. 4B) joins the sidewalls 432, 434 to the top wall 411. Under centrifugal loading, an inner surface 438 of the bowed sidewalls 432, 434 may go into tension due to movement inward and upward which in turn decreases the high tensile load through a flow path fillet. The bowed sidewalls 432, 434 allow for spreading a bending load over the entire sidewall 432, 434 while also enlarging the available real estate inside the platform for inner mold tooling, especially near the front end 416. The bowed sidewalls 432, 434 may further decrease interlaminar stresses to within material tolerances as compared to similar platform designs with straight sidewalls.

    [0035] As shown in FIG. 4B, the sidewall 434 define a curvature or contour extending from the top wall 411 to the connector 422. That is, the arms 434a, 434b of the sidewall 434 may bow outward relative to a line extending from an edge of the top wall 411 and the connector 422. Outward, as used herein, is a direction away from an interior of the platform, the interior defined by interior surfaces of the top wall, the sidewalls, and the connector. As such, a straight wall construction is not used, but rather the sidewall 434 is curved.

    [0036] Turning now to FIG. 5, an alternative configuration of a platform in accordance with the present disclosure is shown. The platform 510 shown in FIG. 5 may be substantially similar to the platform shown in FIGS. 4A and 4B. Thus, platform 510 includes a top wall 511 with two arms 534a, 534b forming a bowed sidewall 534. The two arms 534a, 534b connected with a connector 522. However, in the embodiment shown in FIG. 5, the platform 510 includes a stiffener 538 extending from the top wall 511 to the connector 522 at a position between the arms 534a, 534b of the sidewall 534.

    [0037] Turning now to FIG. 6, a process of manufacturing a platform in accordance with the invention is shown. Process 600 may be employed to form a platform such as that shown in FIGS. 4A, 4B, or 5, having bowed or curved sidewalls.

    [0038] At block 602, a top wall of the platform is formed. This may be casting, molding, additive manufacturing, or other manufacturing technique. At block 604, bowed arms of sidewalls are formed that extend downward from the top wall and extend toward each other. At block 606, the arms of the sidewalls are joined to form a connector below the top wall. The connector may be formed with an aperture therethrough that is configured to receive a pin or other locking device. As will be appreciated by those of skill in the art, blocks 602-606 may be performed simultaneously depending on the manufacturing process, such as in molding, casting, or additive manufacturing. Further, in some embodiments, the connector may be formed first, and the bowed sidewalls may extend upward and outward therefrom, with the top wall being formed last. Thus, the order of the blocks 602-606 is not intended to be limiting, but rather is provided as an example manufacturing flow process. Moreover, additional steps and/or processes may be performed without departing from the scope of the present disclosure. For example, one or more stiffeners may be formed in the platform to provide additional structure and/or support to the platform.

    [0039] Advantageously, embodiments described herein provide a platform for an airfoil in a gas turbine engine having bowed sidewalls that extend from a top wall of the platform to a pin connector of the platform. Advantageously, the bowed sidewalls may provide improved (i.e., decreased) interlaminar stresses within the platform. For example, the bowed sidewalls may include a blend radius proximal to the top wall, and thus the stresses may be decreased.

    [0040] While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments.

    [0041] For example, although shown an described with respect to example embodiments, those of skill in the art will appreciate that the configuration and structure of the platforms disclosed herein may be varied without departing from the scope of the present disclosure. For example, although a central interior area or volume of the platform is shown as hollow or empty (e.g., as shown in FIGS. 4A and 4B), those of skill in the art will appreciate that one or more vertical stiffeners may be included therein. For example, a vertical stiffener may extend from a pin support to an interior surface of the top wall.

    [0042] Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. A platform (410; 510) for an airfoil in a gas turbine engine, the platform (410; 510) comprising:

    a top wall (411; 511) defining a front end (416) and a back end (420) of the platform (410; 510) and configured to connect to an airfoil of the gas turbine engine;

    a first connector (418) configured to receive a pin and secure the platform (410; 510) to a rotor of the gas turbine engine;

    a first sidewall (432) located at the front end (416) and extending from the top wall (411; 511) to the first connector (418), the first sidewall (432) having a first arm (432a) and a second arm (432b), wherein the first arm (432a) and the second arm (423b) of the first sidewall (432) are curved such that a bowed first sidewall extends from the top wall (411; 511) to the first connector (418);

    a second connector (422; 522) configured to receive the pin and secure the platform (410; 510) to the rotor of the gas turbine engine;

    a second sidewall (434; 534) located at the back end (420) and extending from the top wall (411; 511) to the second connector (422; 522), the second sidewall (434; 534) having a first arm (434a; 534a) and a second arm (434b; 534b), wherein the first arm (434a; 534a) and the second arm (434b; 534b) of the second sidewall (434; 534) are curved such that a bowed second sidewall extends from the top wall (411; 511) to the second connector (422); and

    an interior, the interior defined by interior surfaces of the top wall (411; 511), the first and second sidewalls (432; 434; 534) and the first and second connectors (418; 422); and

    wherein the first arms (432a; 434a; 534a) and the second arms (432b; 434b; 534b) of the first and second sidewalls (432; 434; 534) are bowed outward relative to the interior of the platform (410; 510).


     
    2. The platform (410; 510) of claim 1, wherein the top wall (411; 511), the first sidewall (432) and the second sidewall (434; 534) form a unitary body.
     
    3. The platform (410; 510) of any of the preceding claims, further comprising a blend radius (436) between the first and second sidewalls (432; 434; 534) and the top wall (411; 511).
     
    4. The platform (410; 510) of any of the preceding claims, further comprising a stiffener (538) extending from the top wall (411; 511) to the first and second connectors (418; 422; 522) and located between the first arms (432a; 434a; 534a) and the second arms (432b; 434b; 534b) of the first and second sidewalls (432; 434; 534).
     
    5. A method of manufacturing a platform (410; 510) for an airfoil in a gas turbine engine, the method comprising:

    forming a top wall (411; 511) defining a front end (416) and a back end (420) of the platform and configured to connect to the airfoil of the gas turbine engine;

    forming a first sidewall (432) located at the front end (416) and extending downward from the top wall (411; 511), the first sidewall (432) having a first arm (432a) and a second arm (432b), wherein the first arm (432a) and the second arm (432b) of the first sidewall (432) are curved such that a bowed first sidewall extends from the top wall (411; 511) downward, with the first arm (432a) and the second arm (432b) extending toward each other;

    forming a first connector (418) between the first arm (432a) and the second arm (432b) of the first sidewall (432), the first connector (418) configured to receive a pin and secure the platform (410; 510) to a rotor of the gas turbine engine;

    forming a second sidewall (434; 534) located at the back end (420) and extending downward from the top wall (411; 511), the second sidewall (434; 534) having a first arm (434a; 534a) and a second arm (434b; 534b), wherein the first arm (434a; 534a) and the second arm (434b; 534b) of the second sidewall (434; 534) are curved such that a bowed second sidewall extends from the top wall (411; 511) downward, with the first arm (434a; 534a) and the second arm (434b; 534b) extending toward each other;

    forming a second connector (422; 522) between the first arm (434a; 534a) and the second arm (434b; 534b) of the second sidewall (434; 534), the second connector (422; 522) configured to receive the pin and secure the platform (410; 510) to the rotor of the gas turbine engine;

    wherein the top wall (411; 511), the first and second sidewalls (432; 434; 534), and the first and second connectors (418; 422) define an interior of the platform (410; 510); and

    wherein the first arms (432a; 434a; 534a) and the second arms (432b; 434b; 534b) of the first and second sidewalls (432; 434; 534) are bowed outward relative to the interior of the platform (410; 510).


     
    6. The method of claim 5, further comprising forming a blend radius (436) between the first and second sidewalls (432; 434; 534) and the top wall (411; 511).
     
    7. The method of any of claims 5 or 6, wherein the top wall (411; 511), the first and second sidewalls (432; 434; 534), and the first and second connectors (418; 422; 522) are formed simultaneously.
     
    8. The method of any of claims 5, 6 or 7, wherein the top wall (411; 511), the first and second sidewalls (432; 434; 534), and the first and second connectors (418; 422; 522) are formed by additive manufacturing.
     
    9. The method of any of claims 5 to 8, further comprising forming a stiffener (538) extending from the top wall (411; 511) to the first and second connectors (418; 422; 522) and located between the first arms (432a; 434a; 534a) and the second arms (432b; 434b; 534b) of the first and second sidewalls (432; 434; 534).
     


    Ansprüche

    1. Plattform (410; 510) für ein Schaufelblatt in einem Gasturbinentriebwerk, wobei die Plattform (410; 510) umfasst:

    eine obere Wand (411; 511), die ein vorderes Ende (416) und ein hinteres Ende (420) der Plattform (410; 510) definiert und zum Verbinden mit einem Schaufelblatt des Gasturbinentriebwerks ausgestaltet ist;

    einen ersten Verbinder (418), der zum Aufnehmen eines Stifts und Befestigen der Plattform (410; 510) an einem Rotor des Gasturbinentriebwerks ausgestaltet ist;

    eine erste Seitenwand (432), die am vorderen Ende (416) angeordnet ist und sich von der oberen Wand (411; 511) zum ersten Verbinder (418) erstreckt, wobei die erste Seitenwand (432) einen ersten Arm (432a) und einen zweiten Arm (432b) aufweist, wobei der erste Arm (432a) und der zweite Arm (423b) der ersten Seitenwand (432) derart gekrümmt sind, dass sich eine gebogene erste Seitenwand von der oberen Wand (411; 511) zum ersten Verbinder (418) erstreckt;

    einen zweiten Verbinder (422; 522), der zum Aufnehmen des Stifts und Befestigen der Plattform (410; 510) am Rotor des Gasturbinentriebwerks ausgestaltet ist;

    eine zweite Seitenwand (434; 534), die am hinteren Ende (420) angeordnet ist und sich von der oberen Wand (411; 511) zum zweiten Verbinder (422; 522) erstreckt, wobei die zweite Seitenwand (434; 534) einen ersten Arm (434a; 534a) und einen zweiten Arm (434b; 534b) aufweist, wobei der erste Arm (434a; 534a) und der zweite Arm (434b; 534b) der zweiten Seitenwand (434; 534) derart gekrümmt sind, dass sich eine gebogene zweite Seitenwand von der oberen Wand (411; 511) zum zweiten Verbinder (422) erstreckt; und

    einen Innenraum, wobei der Innenraum durch Innenraumflächen der oberen Wand (411; 511), der ersten und der zweiten Seitenwand (432; 434; 534) und des ersten und des zweiten Verbinders (418; 422) definiert ist; und

    wobei die ersten Arme (432a; 434a; 534a) und die zweiten Arme (432b; 434b; 534b) der ersten und der zweiten Seitenwand (432; 434; 534) im Verhältnis zum Innenraum der Plattform (410; 510) nach außen gebogen sind.


     
    2. Plattform (410; 510) nach Anspruch 1, wobei die obere Wand (411; 511), die erste Seitenwand (432) und die zweite Seitenwand (434; 534) einen einstückigen Körper bilden.
     
    3. Plattform (410; 510) nach einem der vorangehenden Ansprüche, ferner umfassend einen Übergangsradius (436) zwischen der ersten und der zweiten Seitenwand (432; 434; 534) und der oberen Wand (411; 511).
     
    4. Plattform (410; 510) nach einem der vorangehenden Ansprüche, ferner umfassend eine Versteifung (538), die sich von der oberen Wand (411; 511) zum ersten und zweiten Verbinder (418; 422; 522) erstreckt und zwischen den ersten Armen (432a; 434a; 534a) und den zweiten Armen (432b; 434b; 534b) der ersten und der zweiten Seitenwand (432; 434; 534) angeordnet ist.
     
    5. Verfahren zum Herstellen einer Plattform (410; 510) für ein Schaufelblatt in einem Gasturbinentriebwerk, wobei das Verfahren umfasst:

    Bilden einer oberen Wand (411; 511), die ein vorderes Ende (416) und ein hinteres Ende (420) der Plattform definiert und zum Verbinden mit dem Schaufelblatt des Gasturbinentriebwerks ausgestaltet ist;

    Bilden einer ersten Seitenwand (432), die am vorderen Ende (416) angeordnet ist und sich von der oberen Wand (411; 511) nach unten erstreckt, wobei die erste Seitenwand (432) einen ersten Arm (432a) und einen zweiten Arm (432b) aufweist, wobei der erste Arm (432a) und der zweite Arm (432b) der ersten Seitenwand (432) derart gekrümmt sind, dass sich eine gebogene erste Seitenwand von der oberen Wand (411; 511) nach unten erstreckt, wobei sich der erste Arm (432a) und der zweite Arm (432b) zueinander hin erstrecken;

    Bilden eines ersten Verbinders (418) zwischen dem ersten Arm (432a) und dem zweiten Arm (432b) der ersten Seitenwand (432), wobei der erste Verbinder (418) zum Aufnehmen eines Stifts und Befestigen der Plattform (410; 510) an einem Rotor des Gasturbinentriebwerks ausgestaltet ist;

    Bilden einer zweiten Seitenwand (434; 534), die am hinteren Ende (420) angeordnet ist und sich von der oberen Wand (411; 511) nach unten erstreckt, wobei die zweite Seitenwand (434; 534) einen ersten Arm (434a; 534a) und einen zweiten Arm (434b; 534b) aufweist, wobei der erste Arm (434a; 534a) und der zweite Arm (434b; 534b) der zweiten Seitenwand (434; 534) derart gekrümmt sind, dass sich eine gebogene zweite Seitenwand von der oberen Wand (411; 511) nach unten erstreckt, wobei sich der erste Arm (434a; 534a) und der zweite Arm (434b; 534b) zueinander hin erstrecken;

    Bilden eines zweiten Verbinders (422; 522) zwischen dem ersten Arm (434a; 534a) und dem zweiten Arm (434b; 534b) der zweiten Seitenwand (434; 534), wobei der zweite Verbinder (422; 522) zum Aufnehmen des Stifts und Befestigen der Plattform (410; 510) am Rotor des Gasturbinentriebwerks ausgestaltet ist;

    wobei die obere Wand (411; 511), die erste und die zweite Seitenwand (432; 434; 534) und der erste und der zweite Verbinder (418; 422) einen Innenraum der Plattform (410; 510) definieren; und

    wobei die ersten Arme (432a; 434a; 534a) und die zweiten Arme (432b; 434b; 534b) der ersten und der zweiten Seitenwand (432; 434; 534) im Verhältnis zum Innenraum der Plattform (410; 510) nach außen gebogen sind.


     
    6. Verfahren nach Anspruch 5, ferner umfassend Bilden eines Übergangsradius (436) zwischen der ersten und der zweiten Seitenwand (432; 434; 534) und der oberen Wand (411; 511).
     
    7. Verfahren nach einem der Ansprüche 5 oder 6, wobei die obere Wand (411; 511), die erste und die zweite Seitenwand (432; 434; 534) und der erste und der zweite Verbinder (418; 422; 522) gleichzeitig gebildet werden.
     
    8. Verfahren nach einem der Ansprüche 5, 6 oder 7, wobei die obere Wand (411; 511), die erste und die zweite Seitenwand (432; 434; 534) und der erste und der zweite Verbinder (418; 422; 522) durch additive Fertigung gebildet werden.
     
    9. Verfahren nach einem der Ansprüche 5 bis 8, ferner umfassend Bilden einer Versteifung (538), die sich von der oberen Wand (411; 511) zum ersten und zweiten Verbinder (418; 422; 522) erstreckt und zwischen den ersten Armen (432a; 434a; 534a) und den zweiten Armen (432b; 434b; 534b) der ersten und der zweiten Seitenwand (432; 434; 534) angeordnet ist.
     


    Revendications

    1. Plate-forme (410 ; 510) conçue pour un profil aérodynamique dans un turbomoteur, la plate-forme (410 ; 510) comprenant :

    une paroi supérieure (411 ; 511) définissant une extrémité avant (416) et une extrémité arrière (420) de la plate-forme (410 ; 510) et conçue pour être reliée à un profil aérodynamique du turbomoteur ;

    un premier connecteur (418) conçu pour recevoir une broche et fixer la plate-forme (410 ; 510) à un rotor du turbomoteur ;

    une première paroi latérale (432) située à l'extrémité avant (416) et s'étendant depuis la paroi supérieure (411 ; 511) jusqu'au premier connecteur (418), la première paroi latérale (432) ayant un premier bras (432a) et un second bras (432b), dans laquelle le premier bras (432a) et le second bras (423b) de la première paroi latérale (432) sont courbés de sorte qu'une première paroi latérale courbée s'étend depuis la paroi supérieure (411 ; 511) jusqu'au premier connecteur (418) ;

    un second connecteur (422 ; 522) conçu pour recevoir une broche et fixer la plate-forme (410 ; 510) au rotor du turbomoteur ;

    une seconde paroi latérale (434 ; 534) située à l'extrémité arrière (420) et s'étendant depuis la paroi supérieure (411 ; 511) jusqu'au second connecteur (422 ; 522), la seconde paroi latérale (434 ; 534) ayant un premier bras (434a ; 534a) et un second bras (434b ; 534b), dans laquelle le premier bras (434a ; 534a) et le second bras (434b ; 534b) de la seconde paroi latérale (434 ; 534) sont courbés de sorte qu'une seconde paroi latérale courbée s'étend depuis la paroi supérieure (411 ; 511) jusqu'au second connecteur (422) ; et

    un intérieur, l'intérieur étant défini par les surfaces intérieures de la paroi supérieure (411 ; 511), les première et seconde parois latérales (432 ; 434 ; 534) et les premier et second connecteurs (418 ; 422) ; et

    dans laquelle les premiers bras (432a ; 434a ; 534a) et les seconds bras (432b ; 434b ; 534b) des première et seconde parois latérales (432 ; 434 ; 534) sont courbés vers l'extérieur par rapport à l'intérieur de la plate-forme (410 ; 510).


     
    2. Plate-forme (410 ; 510) selon la revendication 1, dans laquelle la paroi supérieure (411 ; 511), la première paroi latérale (432) et la seconde paroi latérale (434 ; 534) forment un corps unitaire.
     
    3. Plate-forme (410 ; 510) selon l'une quelconque des revendications précédentes, comprenant en outre un rayon de raccordement (436) entre les première et seconde parois latérales (432 ; 434 ; 534) et la paroi supérieure (411 ; 511).
     
    4. Plate-forme (410 ; 510) selon l'une quelconque des revendications précédentes, comprenant en outre un raidisseur (538) s'étendant depuis la paroi supérieure (411 ; 511) jusqu'aux premier et second connecteurs (418 ; 422 ; 522) et situé entre les premiers bras (432a ; 434a ; 534a) et les seconds bras (432b ; 434b ; 534b) des première et seconde parois latérales (432 ; 434 ; 534).
     
    5. Procédé de fabrication d'une plate-forme (410 ; 510) pour un profil aérodynamique dans un turbomoteur, le procédé comprenant :

    la formation d'une paroi supérieure (411 ; 511) définissant une extrémité avant (416) et une extrémité arrière (420) de la plate-forme et conçue pour être reliée au profil aérodynamique du turbomoteur ;

    la formation d'une première paroi latérale (432) située à l'extrémité avant (416) et s'étendant vers le bas depuis la paroi supérieure (411 ; 511), la première paroi latérale (432) ayant un premier bras (432a) et un second bras (432b), dans lequel le premier bras (432a) et le second bras (432b) de la première paroi latérale (432) sont courbés de sorte qu'une première paroi latérale courbée s'étend depuis la paroi supérieure (411 ; 511) vers le bas, le premier bras (432a) et le second bras (432b) s'étendant l'un vers l'autre ;

    la formation d'un premier connecteur (418) entre le premier bras (432a) et le second bras (432b) de la première paroi latérale (432), le premier connecteur (418) étant conçu pour recevoir une broche et fixer la plate-forme (410 ; 510) à un rotor du turbomoteur ;

    la formation d'une seconde paroi latérale (434 ; 534) située à l'extrémité arrière (420) et s'étendant vers le bas depuis la paroi supérieure (411 ; 511), la seconde paroi latérale (434 ; 534) ayant un premier bras (434a ; 534a) et un second bras (434b ; 534b), dans lequel le premier bras (434a ; 534a) et le second bras (434b ; 534b) de la seconde paroi latérale (434 ; 534) sont courbés de sorte qu'une seconde paroi latérale courbée s'étend depuis la paroi supérieure (411 ; 511) vers le bas, le premier bras (434a ; 534a) et le second bras (434b ; 534b) s'étendant l'un vers l'autre ;

    la formation d'un second connecteur (422 ; 522) entre le premier bras (434a ; 534a) et le second bras (434b ; 534b) de la seconde paroi latérale (434 ; 534), le second connecteur (422 ; 522) étant conçu pour recevoir la broche et fixer la plate-forme (410 ; 510) au rotor du turbomoteur ;

    dans lequel la paroi supérieure (411 ; 511), les première et seconde parois latérales (432 ; 434 ; 534) et les premier et second connecteurs (418 ; 422) définissent un intérieur de la plate-forme (410 ; 510) ; et

    dans lequel les premiers bras (432a ; 434a ; 534a) et les seconds bras (432b ; 434b ; 534b) des première et seconde parois latérales (432 ; 434 ; 534) sont courbés vers l'extérieur par rapport à l'intérieur de la plate-forme (410 ; 510).


     
    6. Procédé selon la revendication 5, comprenant en outre la formation d'un rayon de raccordement (436) entre les première et seconde parois latérales (432 ; 434 ; 534) et la paroi supérieure (411 ; 511).
     
    7. Procédé selon l'une quelconque des revendications 5 ou 6, dans lequel la paroi supérieure (411 ; 511), les première et seconde parois latérales (432 ; 434 ; 534) et les premier et second connecteurs (418 ; 422 ; 522) sont formés simultanément.
     
    8. Procédé selon l'une quelconque des revendications 5, 6 ou 7, dans lequel la paroi supérieure (411 ; 511), les première et seconde parois latérales (432 ; 434 ; 534) et les premier et second connecteurs (418 ; 422 ; 522) sont formés par fabrication additive.
     
    9. Procédé selon l'une quelconque des revendications 5 à 8, comprenant en outre la formation d'un raidisseur (538) s'étendant depuis la paroi supérieure (411 ; 511) jusqu'aux premier et second connecteurs (418 ; 422 ; 522) et situé entre les premiers bras (432a ; 434a ; 534a) et les seconds bras (432b ; 434b ; 534b) des première et seconde parois latérales (432 ; 434 ; 534).
     




    Drawing