(19)
(11)EP 3 176 769 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 16202011.9

(22)Date of filing:  02.12.2016
(51)International Patent Classification (IPC): 
G09G 3/00(2006.01)
H01L 27/12(2006.01)
G02F 1/13(2006.01)
H01L 27/32(2006.01)

(54)

DISPLAY DEVICE

ANZEIGEVORRICHTUNG

DISPOSITIF D'AFFICHAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.12.2015 KR 20150172293

(43)Date of publication of application:
07.06.2017 Bulletin 2017/23

(73)Proprietor: LG Display Co., Ltd.
Seoul 07336 (KR)

(72)Inventors:
  • KANG, Minha
    03104 Seoul (KR)
  • SIM, Jaeho
    42270 Daegu (KR)
  • JUNG, Dawoon
    150-989 Seoul (KR)

(74)Representative: Morrall, Jonathan Ian McLachlan 
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
EP-A1- 2 674 932
US-A1- 2008 054 798
US-A1- 2009 102 758
US-A1- 2007 164 954
US-A1- 2008 266 210
US-A1- 2009 189 835
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    Field



    [0001] The present disclosure relates to a display device, and more particularly, to a display device having a circular display panel.

    Discussion of Related Art



    [0002] As information technology has advanced, a market for display devices as connection mediums between users and information has expanded. Thus, display devices using a flat display panel such as a liquid crystal display (LCD), an organic light emitting display device, an electrophoretic display (EPD), and a plasma display panel (PDP) have been increasingly used.

    [0003] Among the display devices mentioned above, for example, the LCD or the organic light emitting display device includes a display panel including a plurality of subpixels disposed in a matrix and a driver for driving the display panel. The driver includes a scan driver for supplying a scan signal (or a gate signal) to the display panel and a data driver for supplying a data signal to the display panel. The display device displays a specific image as the display panel emits light or allows light to be transmitted therethrough on the basis of power output from a power supply unit and a scan signal and a data signal output from the scan driver and the data driver.

    [0004] Recently, the use of portable display devices is growing, and, in particular, wearable display devices that may be worn on wrists are on the rise. Wearable display devices may also be implemented on the basis of deformed display panels having a circular or oval shape. While deformed display panels have a curved shape, transistors and signal lines are linearly patterned. Thus, in order to effectively reduce the size of the bezel, an array structure of transistors and signal lines leaves space for improvement.

    [0005] US 2008/266210 A1 discloses a display apparatus having circuit units arranged to conform to and extend around the outer circumference of a non-rectangular display section.

    [0006] EP 2 674 932 A1 discloses an organic light emitting diode display including a lighting test circuit.

    [0007] US 2009/102758 A1 discloses an electro-optical device including first and second signal lines for intersecting each other on a component substrate.

    [0008] US 2007/164954 A1 discloses a liquid crystal display having a gate driver formed as an integrated circuit on a substrate of the display device for controlling switching transistors of the display device.

    [0009] US 2009/189835 A1 discloses a display device including a display panel, a source driver and gate driver being adapted to accommodate different shapes of display.

    [0010] US 2008/054798 A1 discloses an organic light emitting display device and mother substrate of the same having transistor groups adapted to test pixels of the display device.

    SUMMARY



    [0011] Accordingly, the present disclosure is directed to a display device that substantially obviate one or more problems due to limitations and disadvantages of the related art.

    [0012] Advantageously there is provided a display device having a circular display panel with reduced bezel area.

    [0013] Additional features and advantages will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice. These and other advantages will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

    [0014] The invention is defined in the appended independent claim.

    [0015] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory.

    BRIEF DESCRIPTION OF DRAWINGS



    [0016] The accompanying drawings, which are included to provide a further understanding and are incorporated in and constitute a part of this specification, illustrate embodiments and together with the description serve to explain the principles of the disclosure. In the drawings:

    FIG. 1 is a view illustrating a display device according to an embodiment;

    FIG. 2 is a view illustrating an example of a pixel illustrated in FIG. 1;

    FIG. 3 is a view illustrating an array structure of an inspection part;

    FIGS. 4 and 5 are views illustrating a change in a bezel according to a shape of an inspection part;

    FIG. 6 is a plan view illustrating an example of an array of an inspection part;

    FIG. 7 is an equivalent circuit diagram of inspection switch elements illustrated in FIG. 6; and

    FIG. 8 is a cross-sectional view taken along line I-I' of FIG. 6.


    DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS



    [0017] Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Like reference numerals refer to like elements throughout. If a detailed explanation for a related known function or construction is considered to unnecessarily obscure an explanation of an embodiment, such explanation will be omitted but would be understood by those skilled in the art.

    [0018] FIG. 1 is a view illustrating a display device according to an embodiment.

    [0019] Referring to FIG. 1, the display device according to an embodiment includes a display panel 100 and a driving circuit DIC. The display panel 100 includes a pixel array area AA in which pixels are disposed and a bezel BZ surrounding the pixel array area AA. The driving circuit DIC includes a timing controller, a data driver, and a power supply unit.

    [0020] Pixels P illustrated in FIG. 2 are formed in the pixel array area AA of the display panel 100. Each of the pixels P is formed in a region in which a data line DL and a gate line GL intersect with each other. Each of the pixels P operates in response to a scan signal supplied through a switching element SW connected to the gate line GL and the data line DL to represent a gray level with brightness corresponding to a data voltage. A pixel circuit PC and the switching element SW of each of the pixels P may be implemented in different forms depending on types of display panels.

    [0021] The driving circuit DIC may be integrated into a drive IC so as to be attached to a bezel BZ. The driving circuit DIC may include a timing controller and a data driver. The timing controller receives digital video data RGB and receives timing signals such as a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, a data enable signal DE, a main clock CLK, and the like. The timing controller transmits digital data of an input image to the data driver, and controls an operation timing of the data driver and the gate driver GIP. In response to a data timing control signal supplied from the timing controller, the data driver samples video digital data, and in response to a gamma reference voltage, the data driver converts digital video data into analog data voltages and outputs the converted analog data voltages to the data lines.

    [0022] The power supply unit generates a high potential driving voltage VDD and a low potential driving voltage VSS to be supplied to the display panel. The power supply unit generates a gate high voltage VGH and a gate low voltage VGL to be supplied to the gate driver GIP, as well as power VDD or VSS to be supplied to the display panel 100, on the basis of input power supplied from the outside. The high potential driving voltage VDD and the low potential driving voltage VSS are voltages for driving the pixel circuit PC.

    [0023] A multiplexer MUX is disposed between the driving circuit DIC and the pixel array area AA, and distributes data voltages provided from the driving circuit DIC to a plurality of data lines DL.

    [0024] The gate driver outputs a gate pulse Gout using a gate timing enable signal. The gate driver includes a shift register. The shift register includes multiple stages which are dependently connected to each other. In response to a start pulse, the shift register starts to output a gate pulse, and shifts an output according to a shift clock. Output signals sequentially output from the shift register are supplied as gate pulses to the gate lines.

    [0025] The inspection part AP is used for an auto probe inspection process and includes switch elements that supplies a test voltage to the pixel array area AA. The auto probe inspection process is to inspect a defect, or the like, of various signal lines disposed on the substrate before a driving circuit is mounted.

    [0026] FIG. 3 is a view illustrating an array structure of the inspection part AP.

    [0027] Referring to FIG. 3, the inspection part AP includes a plurality of switch elements AP Tr and inspection lines AP_L. The inspection lines AP_L are disposed in a staircase form, and the switch elements AP Tr are disposed along the inspection lines AP_L. In more detail, as illustrated in FIG. 6, the inspection lines AP_L include data lead-in lines TL1, TL2, and TL3 and enable signal lines EnL1, EnL2, and EnL3. The inspection lines AP_L are disposed in a staircase form along a curved section of the pixel array area AA.

    [0028] The switch elements AP Tr are arranged along the inspection line AP_L. In particular, since the switch elements AP Tr are disposed in at least two or more rows, boundaries of regions in which the switch elements AP Tr are disposed are disposed in a staircase form. The switch elements AP Tr disposed in the staircase form may reduce a region in which the inspection part AP is disposed. This will now be described in detail.

    [0029] FIG. 4 is a view illustrating a linear inspection part disposed in a circular pixel array as a comparative example.

    [0030] Referring to FIG. 4, when the inspection part AP is disposed in a linear form at an end of the circular pixel array area AA, an interval h2 between opposing ends of the inspection part AP and the pixel array area AA is greater than an interval h1 between the center of the inspection part AP and the pixel array area AA. That is, in the array structure of the inspection part AP illustrated in FIG. 4, a size of the bezel may increase at opposing ends of the inspection part AP.

    [0031] In order to reduce the interval between the pixel array area AA and opposing ends of the inspection part AP, the inspection part AP is beneficially disposed to correspond to the curved shape of the pixel array area AA. When the inspection line AP_L is implemented in the staircase form, a length of the inspection line AP_L in a horizontal direction may be lengthened by a width d of a vertical portion VA. As a result, 12 of a curved inspection part AP in a horizontal direction illustrated in FIG. 5 is longer than a length 11 of the linear inspection part AP in the horizontal direction illustrated in FIG. 4.

    [0032] In contrast, as illustrated in FIG. 3, in the array structure of the inspection part AP according to an embodiment, since at least a pair of switch elements AP Tr are disposed to be adjacent to each other vertically, a length of a horizontal portion HA in which the switch elements AP Tr are disposed may be reduced. As a result, an increase in the horizontal length of the inspection part AP due to the width d of the inspection line AP_L in the vertical portion VA may be reduced or prevented.

    [0033] FIG. 6 is a plan view illustrating an array structure of an inspection part according to an embodiment, and FIG. 7 is an equivalent circuit diagram of switch elements disposed in a vertical direction among switch elements illustrated in FIG. 6.

    [0034] Referring to FIGS. 6 and 7, the inspection part AP according to an embodiment includes a first switch element T1 to a third switch element T9 respectively operated by a first enable signal En1 to a third enable signal En3.

    [0035] The first switch element T1 includes a first gate electrode GE1, a first drain electrode DE1, and a first source electrode SE1, and the second switch element T2 includes the first gate electrode GE1, the first drain electrode DE1, and a second source electrode SE2. The third switch element T3 includes a second gate electrode GE2, a second drain electrode DE2, and a first source electrode SE1, and a fourth switch element T4 includes the second gate electrode GE2, the second drain electrode DE2, and the second source electrode SE2.

    [0036] The first switch element T1 and the second switch element T2 share the first gate electrode GE1 and the first drain electrode DE1. The third switch element T3 and the fourth switch element T4 share the second gate electrode GE2 and the second drain electrode DE2. Also, the first switch element T1 and the third switch element T3 share the first source electrode SE1 and the second switch element T2 and the fourth switch element T4 share the second source electrode SE2.

    [0037] The first source electrode SE1 and the second source electrode SE2 are disposed at the same vertical axis. The first source electrode SE1 is connected to a first data line DL1, and the second source electrode SE2 is connected to a fifth data line DL5 through a first link pattern LP1. The first gate electrode GE1 is disposed on one side of the first source electrode SE1. The first drain electrode DE1 is disposed to be adjacent to the first source electrode SE1 with the first gate electrode GE1 interposed therebetween. The second gate electrode GE2 is disposed on one side of the first source electrode SE1. The second drain electrode DE2 is disposed to be adjacent to the second source electrode SE2 with the second gate electrode SE2 interposed therebetween.

    [0038] The first drain electrode DE1 is connected to a first data lead-in line TL1, and the first gate electrode GE1 is connected to a second enable signal line EnL2. As a result, the first switch element T1 and the second switch element T2 supply a first test voltage Tdata1 to the first data line DL1 and the fifth data line DL5 in response to a second enable signal En2.

    [0039] The second drain electrode DE2 is connected to a second data lead-in line TL2, and the second gate electrode GE2 is connected to a first enable signal line EnL1. As a result, the third switch element T3 and the fourth switch element T4 supply a second test voltage Tdata2 to the first data line DL1 and the fifth data line DL5 in response to a first enable signal En1.

    [0040] A fifth switch element T5 includes a third gate electrode GE3, a third drain electrode DE3, and a third source electrode SE3, and a sixth switch element T6 includes the third gate electrode GE3, the third drain electrode DE3, and a fourth source electrode SE4. The fifth switch element T5 and the sixth switch element T6 share the third gate electrode GE3 and the third drain electrode DE3.

    [0041] The third source electrode SE3 and the fourth source electrode SE4 are disposed at the same vertical axis. The third source electrode is connected to the second data line DL2, and the fourth source electrode is connected to a sixth data line DL6 through a second link pattern LP2. The third gate electrode GE3 is disposed on one side of the third source electrode SE3. The third drain electrode DE3 is disposed to be adjacent to the third source electrode SE3 with the third gate electrode GE3 interposed therebetween.

    [0042] The third drain electrode DE3 is connected to the third data lead-in line TL3, and the third gate electrode GE3 is connected to a third enable signal line EnL3. As a result, the fifth switch element T5 and the sixth switch element T6 supply a third test voltage Tdata3 to the second data line DL2 and the sixth data line DL6 in response to a third enable signal En3.

    [0043] A seventh switch element T7 includes a fourth gate electrode GE4, a fourth drain electrode DE4, and a fifth source electrode SE5, and an eighth switch element T8 includes a fifth gate electrode GE5, a fifth drain electrode DE5, and a fifth source electrode SE5. The seventh switch element T7 and the eighth switch element T8 share the fifth source electrode SE5.

    [0044] The fifth source electrode SE5 is connected to the third data line DL3. The fourth gate electrode GE4 and the fifth gate electrode GE5 are disposed on both sides of the fifth source electrode SE5. The fourth drain electrode DE4 is disposed to be adjacent to the fifth source electrode SE5 with the fourth gate electrode GE4 interposed therebetween. The fifth drain electrode DE5 is disposed to be adjacent to the fifth source electrode SE5 with the fourth gate electrode GE4 interposed therebetween.

    [0045] The fourth drain electrode DE4 is connected to the first data lead-in line TL1, and the fourth gate electrode GE4 is connected to the first enable signal line EnL1. The fifth drain electrode DE4 is connected to the second data lead-in line TL2, and the fifth gate electrode GE5 is connected to the second enable signal line EnL2.

    [0046] As a result, the seventh switch element T7 supplies a first test voltage Tdata1 to the second data line DL2 in response to a first enable signal En1. The eighth switch element T8 supplies a second test voltage Tdata2 to the second data line DL2 in response to a second enable signal En2.

    [0047] A ninth switch element T9 includes a sixth gate electrode GE6, a sixth drain electrode DE6, and a sixth source electrode SE6. The sixth source electrodes SE6 is connected to the fourth data line DL4. The sixth gate electrode GE6 is disposed on one side of the sixth source electrodes SE6. The sixth drain electrode DE6 is disposed to be adjacent to the sixth source electrode SE6 with the sixth gate electrodes SE6 interposed therebetween.

    [0048] The sixth drain electrode DE6 is connected to the third data lead-in line TL3, and the sixth gate electrode GE6 is connected to the third enable signal line EnL3. As a result, the ninth switch element T9 supplies a third test voltage Tdata3 to the fourth data line DL4 in response to the third enable signal En3.

    [0049] The test voltages provided to the respective data lines DL through the first to third data lead-in lines TL1, TL2, and TL3 during the AP inspection process may be three primary colors of red (R), green (G), and blue (B). For example, the first test voltage Tdata1 may be a red test voltage, the second test voltage Tdata2 may be a green test voltage, and the third test voltage Tdata3 may be a blue test voltage. Also, the first to third enable signals En1, En2, and En3 may be applied in a time-division manner.

    [0050] In FIG. 6, since the switch elements are disposed between the second, fourth, and sixth transistors T2, T4, and T6 and the pixel array area AA, the second source electrode SE2 and the fourth source electrode SE4 may not be directly connected to data lines. Thus, the second source electrode SE2 and the fourth source electrode SE4 are connected to data lines through a first link pattern LP1 and a second link pattern LP2, respectively. The first and second link patterns LP1 and LP2 are patterned on a metal layer separated by an insulating film from a gate electrode and a drain electrode in order to prevent a short.

    [0051] FIG. 7 is a cross-sectional view taken along line I-I' of FIG. 6. A cross-section of the region in which the first link pattern is disposed will be described with reference to FIG. 7.

    [0052] Hereinafter, a cross-sectional structure of switch elements will be described with reference to FIGS. 6 and 7. FIGS. 6 and 7 illustrate a region in which a second enable signal pattern is disposed, but the same configuration may be formed using the same material and method. Hereinafter, each component will be generally referred to in the cross-sectional structure of the switch elements. For example, FIGS. 6 and 7 illustrate only a second enable signal pattern but first to sixth enable signal patterns will be generally referred to as an "enable signal pattern (MP)".

    [0053] A buffer layer BUF is formed on a substrate SUB, and a semiconductor active layer ACT is disposed on the buffer layer BUF. The semiconductor active layer ACT may be formed to cover a region in which a gate electrode GE, a source electrode SE, and a drain electrode DE are to be disposed. A gate insulating layer GI is formed to cover the buffer layer BUF.

    [0054] Gate electrodes GE are disposed on the gate insulating layer GI. A first interlayer insulating layer ILD1 is formed to cover the gate electrodes GE, and a first link pattern LP1 is disposed on the first interlayer insulating layer ILD1. A second interlayer insulating layer ILD2 is disposed to cover the first link pattern LP1, and a first drain electrode DE1 and a second source electrode SE2 are disposed on the second interlayer insulating layer ILD2. The second source electrode SE2 is connected to the first link pattern LP1 through a first contact hole CNT1.

    [0055] As described above, since the inspection line AP_L is disposed in a staircase form and some of the switch elements AP Tr are vertically disposed, the bezel BZ of the region where the inspection part AP is disposed may be reduced. The array structure of the switch elements illustrated in FIGS. 6 and 7 represents an embodiment, and the number and position of vertically adjacent switch elements are not limited to the embodiment illustrated in the drawings.


    Claims

    1. A display device comprising:

    a circular display area (A/A)

    a bezel area (BZ) outside the display area;

    data lines (DL);

    a plurality of pixels (P) in the display area, the pixels being connected to the data lines (DL);

    a plurality of switch elements (AP Tr) in the bezel area;

    an inspection pad part (PAD);

    inspection lines (AP_L) comprising an enable signal line (EnL1) and a lead-in line (TL1), the inspection lines connecting the inspection pad part and the switch elements, wherein the switch elements are arranged to supply test voltages provided on the lead-in line to the data lines in response to an enable signal provided on the enable signal line, the inspection lines being in the bezel area; and

    wherein:

    the inspection lines are disposed in a staircase form along a section of the circular display area having a curved shape,

    the switch elements are disposed along the inspection lines,

    the inspection line has a first portion (HA) and a second portion (VA) perpendicular to the first portion,

    the switch elements include a first switch element (T1) and a second switch element (T2) adjacent to each other in a direction parallel to the second portion of the inspection line,

    the first switch element includes a first source electrode (SE1) connected to a first data line (DL1), wherein the second switch element includes a second source electrode (SE2) connected to a second data line (DL5), and wherein the first source electrode and the second source electrode are disposed along the same axis and are not connected to each other, said axis being in a direction parallel to the second portion of the inspection line,

    the first switch element includes a first gate electrode (GE1) and a first drain electrode (DEI),

    the second source electrode and the second data line are connected through a link pattern (LP1),

    the link pattern is disposed in a layer separated from the first source electrode, the first gate electrode, and the first drain electrode,

    the link pattern is disposed on a first interlayer insulating layer (ILD1) covering the first gate electrode, the second source electrode is disposed on a second interlayer insulating layer (ILD2) covering the link pattern, and the link pattern and the second source electrode are connected via a contact hole (CNT1) through the interlayer insulating layer.


     
    2. The display device according to claim 1, wherein the switch elements are disposed adjacent the second portion of the inspection line between the display area and the inspection line.
     
    3. The display device of claim 1, wherein the first switch element and second switch element share the first gate electrode (GE1) and the first drain electrode (DE1) disposed on one side of the first and second source electrodes, and wherein the first switch element and second switch element are arranged to supply a first test voltage (Tdatal) to the first data line and the second data line, respectively, in response to a first enable signal (En2).
     
    4. The display device of claim 3, wherein the inspection unit further includes a third switch element (T3) sharing the first source electrode, and wherein the third switch element is arranged to supply a second test voltage (Tdata2), different from the first test voltage, to the first data line through the first source electrode.
     
    5. The display device of claim 4, wherein the third switch element supplies the second test voltage in response to a second enable signal (En1).
     


    Ansprüche

    1. Anzeigevorrichtung, umfassend:

    einen kreisförmigen Anzeigebereich (A/A),

    einen Einfassungsbereich (BZ) außerhalb des Anzeigebereichs;

    Datenleitungen (DL);

    eine Vielzahl von Pixeln (P) in dem Anzeigebereich, wobei die Pixel mit den Datenleitungen (DL) verbunden sind,

    eine Vielzahl von Schaltelementen (AP Tr) in dem Einfassungsbereich;

    ein Prüfkontaktteil (PAD);

    Prüfleitungen (AP_L), die eine Aktivierungssignalleitung (EnL1) und eine Zuleitung (TL1) umfassen, wobei die Prüfleitungen das Prüfkontaktteil und die Schaltelemente verbinden, wobei die Schaltelemente geeignet sind, um die Datenleitungen als Reaktion auf ein Aktivierungssignal, das auf der Aktivierungssignalleitung bereitgestellt wird, mit Testspannungen zu versorgen, die auf der Zuleitung bereitgestellt werden, wobei sich die Prüfleitungen in dem Einfassungsbereich befinden; und

    wobei:

    die Prüfleitungen treppenförmig entlang eines Sektors des kreisförmigen Anzeigebereichs angebracht sind, der eine gekrümmte Form aufweist,

    wobei die Schaltelemente entlang den Prüfleitungen angebracht sind,

    wobei die Prüfleitung einen ersten Abschnitt (HA) und einen zweiten Abschnitt (VA) aufweist, der senkrecht zu dem ersten Abschnitt steht,

    wobei die Schaltelemente ein erstes Schaltelement (T1) und ein zweites Schaltelement (T2) aufweist, die in einer Richtung parallel zu dem zweiten Abschnitt der Prüfleitung benachbart zueinander sind,

    wobei das erste Schaltelement eine erste Source-Elektrode (SE1) aufweist, die mit einer ersten Datenleitung (DL1) verbunden ist, wobei das zweite Schaltelement eine zweite Source-Elektrode (SE2) aufweist, die mit einer zweiten Datenleitung (DL5) verbunden ist, und wobei die erste Source-Elektrode und die zweite Source-Elektrode entlang der gleichen Achse angebracht sind und nicht miteinander verbunden sind, wobei die Achse in einer Richtung parallel zum zweiten Abschnitt der Prüfleitung liegt,

    wobei das erste Schaltelement eine erste Gate-Elektrode (GE1) und eine erste Drain-Elektrode (DE1) aufweist,

    wobei die zweite Source-Elektrode und die zweite Datenleitung durch eine Verbindungsstruktur (LP1) verbunden sind,

    wobei die Verbindungsstruktur in einer Schicht getrennt von der ersten Source-Elektrode, der ersten Gate-Elektrode und der ersten Drain-Elektrode angebracht ist,

    wobei die Verbindungsstruktur auf einer ersten isolierenden Zwischenschicht (ILD1) angebracht ist, welche die erste Gate-Elektrode abdeckt, wobei die zweite Source-Elektrode auf einer zweiten isolierenden Zwischenschicht (ILD2) angebracht ist, welche die Verbindungsstruktur abdeckt, und wobei die Verbindungsstruktur und die zweite Source-Elektrode über eine Kontaktöffnung (CNT1) durch die isolierende Zwischenschicht verbunden sind.


     
    2. Anzeigevorrichtung nach Anspruch 1, wobei die Schaltelemente in der Nähe des zweiten Abschnitts der Prüfleitung zwischen dem Anzeigebereich und der Prüfleitung angebracht sind.
     
    3. Anzeigevorrichtung nach Anspruch 1, wobei das erste Schaltelement und das zweite Schaltelement die erste Gate-Elektrode (GE1) gemeinsam nutzen, und wobei die erste Drain-Elektrode (DE1) auf einer Seite der ersten und der zweiten Source-Elektrode angebracht ist, und wobei das erste Schaltelement und das zweite Schaltelement geeignet sind, um die erste Datenleitung bzw. die zweite Datenleitung als Reaktion auf ein erstes Aktivierungssignal (En2) mit einer ersten Testspannung (Tdatal) zu versorgen.
     
    4. Anzeigevorrichtung nach Anspruch 3, wobei die Prüfeinheit außerdem ein drittes Schaltelement (T3) aufweist, das die erste Source-Elektrode gemeinsam nutzt, und wobei das dritte Schaltelement geeignet ist, um die erste Datenleitung durch die erste Source-Elektrode mit einer zweiten Testspannung (Tdata2) zu versorgen, die verschieden von der ersten Testspannung ist.
     
    5. Anzeigevorrichtung nach Anspruch 4, wobei das dritte Schaltelement die zweite Testspannung als Reaktion auf ein zweites Aktivierungssignal (En1) bereitstellt.
     


    Revendications

    1. Dispositif d'affichage comprenant :

    une zone d'affichage circulaire (A/A) ;

    une zone de cadran (BZ) à l'extérieur de la zone d'affichage ;

    des lignes de données (DL) ;

    une pluralité de pixels (P) dans la zone d'affichage, les pixels étant reliés aux lignes de données (DL) ;

    une pluralité d'éléments de commutation (AP Tr) dans la zone de cadran ;

    une partie bloc de contrôle (PAD) ;

    des lignes de contrôle (AP_L) comprenant une ligne de signal d'activation (EnL1) et une ligne d'entrée (TL1), les lignes de contrôle reliant la partie bloc de contrôle et les éléments de commutation, les éléments de commutation étant agencés pour fournir des tensions d'essai appliquées sur la ligne d'entrée aux lignes de données en réponse à un signal d'activation appliqué sur la ligne de signal d'activation, les lignes de contrôle se trouvant dans la zone de cadran ; et

    dans lequel :

    les lignes de contrôle sont disposées en forme d'escalier le long d'une section de la zone d'affichage circulaire ayant une forme incurvée, les éléments de commutation sont disposés le long des lignes de contrôle,

    la ligne de contrôle a une première partie (HA) et une deuxième partie (VA) perpendiculaire à la première partie,

    les éléments de commutation comportent un premier élément de commutation (T1) et un deuxième élément de commutation (T2) adjacents l'un à l'autre dans une direction parallèle à la deuxième partie de la ligne de contrôle,

    le premier élément de commutation comporte une première électrode de source (SE1) reliée à une première ligne de données (DL1), le deuxième élément de commutation comportant une deuxième électrode de source (SE2) reliée à une deuxième ligne de données (DL5), et la première électrode de source et la deuxième électrode de source étant disposées le long du même axe et n'étant pas reliées l'une à l'autre, ledit axe pointant dans une direction parallèle à la deuxième partie de la ligne de contrôle,

    le premier élément de commutation comporte une première électrode de grille (GE1) et une première électrode de drain (DE1),

    la deuxième électrode de source et la deuxième ligne de données sont reliées par un motif de liaison (LP1),

    le motif de liaison est disposé dans une couche séparée de la première électrode de source, de la première électrode de grille et de la première électrode de drain,

    le motif de liaison est disposé sur une première couche d'isolation intercalaire (ILD1) recouvrant la première électrode de grille, la deuxième électrode de source est disposée sur une deuxième couche d'isolation intercalaire (ILD2) recouvrant le motif de liaison, et le motif de liaison et la deuxième électrode de source sont reliés par le biais d'un trou de contact (CNT1) à travers la couche d'isolation intercalaire.


     
    2. Dispositif d'affichage selon la revendication 1, dans lequel les éléments de commutation sont disposés au voisinage de la deuxième partie de la ligne de contrôle entre la zone d'affichage et la ligne de contrôle.
     
    3. Dispositif d'affichage de la revendication 1, dans lequel le premier élément de commutation et le deuxième élément de commutation partagent la première électrode de grille (GE1) et la première électrode de drain (DE1) disposées sur un côté des première et deuxième électrodes de source, et dans lequel le premier élément de commutation et le deuxième élément de commutation sont agencés pour fournir une première tension d'essai (Tdatal) à la première ligne de données et la deuxième ligne de données, respectivement, en réponse à un premier signal d'activation (En2).
     
    4. Dispositif d'affichage de la revendication 3, dans lequel l'unité de contrôle comporte en outre un troisième élément de commutation (T3) partageant la première électrode de source, et dans lequel le troisième élément de commutation est agencé pour fournir une deuxième tension d'essai (Tdata2), différente de la première tension d'essai, à la première ligne de données par le biais de la première électrode de source.
     
    5. Dispositif d'affichage de la revendication 4, dans lequel le troisième élément de commutation fournit la deuxième tension d'essai en réponse à un deuxième signal d'activation (En1).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description