(19)
(11)EP 3 179 608 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16201946.7

(22)Date of filing:  02.12.2016
(51)International Patent Classification (IPC): 
H02K 3/28(2006.01)

(54)

ROTATING MACHINERY

DREHMASCHINE

MACHINE TOURNANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.12.2015 JP 2015241875

(43)Date of publication of application:
14.06.2017 Bulletin 2017/24

(73)Proprietor: Mitsubishi Hitachi Power Systems, Ltd.
Yokohama 220-8401 (JP)

(72)Inventors:
  • Tanaka, Kiyoteru
    Yokohama 220-8401 (JP)
  • Takahashi, Kazuhiko
    Yokohama 220-8401 (JP)
  • Muto, Toru
    Yokohama 220-8401 (JP)

(74)Representative: MERH-IP Matias Erny Reichl Hoffmann Patentanwälte PartG mbB 
Paul-Heyse-Strasse 29
80336 München
80336 München (DE)


(56)References cited: : 
EP-A2- 2 093 862
CH-A- 478 476
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present disclosure relates to rotating machinery, and particularly to rotating machinery suitable for use as a large generator such as, for example, a turbine generator.

    2. Description of the Related Art



    [0002] Generally, a large generator such as a turbine generator is configured from a rotor rotatable together with a rotary shaft and including a rotor iron core and rotor coils, and a stator disposed in an opposed relationship to the rotor with a predetermined gap left therebetween and including a stator iron core and stator coils (armature coils). The stator iron core is configured from stacked steel sheets and has slots formed at predetermined distances in a circumferential direction at the inner circumference side thereof and extending in an axial direction in order to accommodate the stator coils. A tooth exists between each adjacent ones of the slots in the circumferential direction, and the stator coils are accommodated in the slots such that two stator coils are accommodated at the upper and lower sides in a diametrical direction in each slot. The coil accommodated at the inner circumference side is called top coil, and the coil accommodated at the outer circumference side is called bottom coil.

    [0003] Incidentally, since a generator of a large capacity outputs high current, electromagnetic force and heat generation of the stator coils are high. As a countermeasure for this, a method is taken wherein each stator coil is configured from a plurality of parallel circuits to decrease the current per one coil thereby to moderate electromagnetic force and temperature rise.

    [0004] However, where the number of parallel circuits is not equal to a divisor of the number of poles, the parallel circuits are deviated in current, resulting in appearance of a deviation in current that circulates between the parallel circuits. The circulating current gives rise to a problem that it increases the loss of the stator coils and raises the temperature of the coils, resulting in a decrease in efficiency or the possibility of damage to coil insulation.

    [0005] As a method for suppressing such circulating current as described above, a method of changing the combination of coil connections is available. According to this method, the coils are arranged changing the combination of coil connections taking the balance in voltage when the parallel circuits are released into consideration to suppress the unbalance in voltage.

    [0006] Japanese Patent No. 5060325 (hereinafter referred to as Patent Document 1) can be listed as a document that discloses a technology for suppressing such circulating current as described above to suppress the unbalance in voltage. In Patent Document 1, a connection scheme of stator windings of rotating machinery of the two-pole, three-phase, four-parallel circuit and 84-slot type. According to the connection scheme, the voltage unbalance rate that is the rate of the unbalance in voltage is 0.18%. It is to be noted that the voltage unbalance rate is an index that indicates that, when it is low, the degree of the unbalance in voltage is low.

    [0007] Furthermore, EP 2 093 862 A2 discloses an armature having an armature winding with four parallel circuits, which is applied to a rotating electrical machine having three-phase two-pole slots. Eventually, CH 478 476 A discloses polyphase dynamoelectric machines and provides an winding pattern for conductors of such a machine, wherein the polyphase generator armature is having two or more parallel circuits for each phase.

    SUMMARY OF THE INVENTION



    [0008] In Patent Document 1 described above, a connection pattern is disclosed which suppresses the unbalance in voltage among stator windings of rotating machinery of the two-pole, three-phase, four-parallel circuit and 84-slot type. To suppress the unbalance in voltage as in the case of Patent Document 1 leads to decrease of the loss, namely, to reduction of the heat generation.

    [0009] Accordingly, since to decrease the unbalance in voltage is a significant technology from the point of view of ensuring the reduced size, increased capacity, and reliability of a generator, it is demanded to implement further suppression of the voltage unbalance and reduce the loss of the generator.

    [0010] Therefore, it is desirable to provide rotating machinery that further suppresses the unbalance in voltage among stator windings of a conventional generator to further reduce the loss.

    [0011] In order to attain the object described above, according to the present disclosure, a rotating machinery according to claims 1, 2 and 3 is provided. In particular, a rotating machinery including a rotor of 2n poles, n being an integer equal to or greater than 1, 84n slots, and three-phase stator windings, a top coil being accommodated at the diametrically inner side of each of the slots, a bottom coil being accommodated at the diametrically outer side of each of the slots, the top coil and the bottom coil being connected to each other to form each of the stator windings, the stator windings having 2n phase belts per one phase, each of the phase belts being configured from a first parallel winding and a second parallel winding, where an average position in the circumferential direction of all of the top coils and the bottom coils that configure each of the phase belts is the center of the phase belt and the arrangement of the first and second parallel windings on at least one of the phase belts is viewed in order from the side near to the center of the phase belt, the top and bottom coils are formed by arranging the first and second parallel windings in predefined order.

    [0012] With the present disclosure, rotating machinery that further suppresses the unbalance in voltage among conventional stator windings and/ or includes stator windings that reduces the loss can be provided.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    FIG. 1 is a diagrammatic view illustrating a connection scheme of one phase belt in a first embodiment of rotating machinery of the present disclosure;

    FIG. 2 is a diagrammatic view illustrating a connection scheme of one phase belt in a second embodiment of the rotating machinery of the present disclosure; and

    FIG. 3 is a diagrammatic view illustrating a connection scheme of one phase belt in a third embodiment of the rotating machinery of the present disclosure.


    DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0014] In the following, the rotating machinery of the present disclosure is described in connection with embodiments depicted in the drawings. It is to be noted that the same elements in the embodiments are denoted by the same reference numerals.

    First Embodiment



    [0015] FIG. 1 illustrates a connection scheme of one phase belt in a first embodiment of the rotating machinery of the present disclosure.

    [0016] As illustrated in FIG. 1, the present embodiment adopts the following connection scheme. In particular, the rotating machinery includes a rotor of 2n poles, 84n slots, and three-phase stator windings, where n is an integer equal to or greater than 1. A top coil 1 is accommodated at the diametrically inner side and a bottom coil 2 is accommodated at the diametrically outer side of each slot, and the top coil 1 and the bottom coil 2 are connected to each other to form a stator winding. The stator windings have 2n phase belts 3 per one phase, and each of the phase belts 3 is configured from two parallel windings. Where an average position in the circumferential direction of all of the top coils 1 and the bottom coils 2 that configure each of the phase belts 3 is the center of the phase belt 3 (phase belt center 6) and the arrangement of the first and second parallel windings on at least one phase belt 3 is viewed in order from the side near to the center of the phase belt 3 (phase belt center 6), the top coils 1 are disposed in the order of the second, first, first, second, first, second, first, second, second, first, second, first, second, and first parallel windings while the bottom coils 2 connected to the top coils 1 are disposed in the order of the first, second, second, first, second, first, second, first, second, first, first, second, first, and second parallel windings. By the configuration described, the voltage unbalance rate indicative of the degree of unbalance in voltage becomes 0.07%.

    [0017] This voltage unbalance rate is derived by vector calculation of a voltage V generated for each of the slots, in which the coils are accommodated, by the following expression:

    where Sn is a number of a slot in which each coil is accommodated, and A is a phase angle of a voltage vector per one slot. The voltage V generated in each coil was calculated for each of the coils disposed in a first circuit and a second circuit. On the basis of results of the calculation, a voltage unbalance rate was determined from an average value in amplitude of the first and second circuits and a ratio in amplitude between the first and second circuits.

    [0018] Here, the phase belt 3 is defined as a coil group of the top coils 1 and the bottom coils 2 arranged for one pole. It is to be noted that reference numeral 4 denotes a lead wire, and reference numeral 5 denotes a jumper connector.

    [0019] By adopting such a configuration of the present embodiment as described above, the voltage unbalance rate, which was 0.18% in Patent Document 1, can be reduced to 0.07%. Therefore, rotating machinery of a small size and a large capacity can be obtained which suppresses the unbalance in voltage and reduces heat generation by circulating current. Further, from the point of view of reduction of the loss, the reduction of the voltage unbalance rate leads also to improvement in efficiency (performance) of the rotating machinery.

    [0020] It is to be noted that, even if the arrangement of the top coil 1 and the bottom coil 2 is reversed, a similar electric performance can be obtained, and therefore, unless otherwise specified, also a connection scheme in which the top coil 1 and the bottom coil 2 are replaced with each other is included in the present embodiment.

    [0021] In particular, also the arrangement is equivalent in which the top coils 1 are arranged in the order of the first, second, second, first, second, first, second, first, second, first, first, second, first, and second parallel windings and the bottom coils 2 are arranged in the order of the second, first, first, second, first, second, first, second, second, first, second, first, second, and first parallel windings.

    [0022] Also the configuration just described exhibits advantageous effects similar to those described hereinabove.

    Second Embodiment



    [0023] FIG. 2 illustrates a connection scheme of one phase belt according to a second embodiment of the rotating machinery of the present disclosure.

    [0024] As illustrated in FIG. 2, the present embodiment adopts the following connection scheme. In particular, the rotating machinery includes, where n is an integer equal to or greater than 1, a rotor of 2n poles, 84n slots, and three-phase stator windings. A top coil 1 is accommodated at the diametrically inner side and a bottom coil 2 is accommodated at the diametrically outer side of each slot, and the top coil 1 and the bottom coil 2 are connected to each other to form a stator winding. The stator windings have 2n phase belts 3 per one phase, and each of the phase belts 3 is configured from two parallel windings. Where an average position in the circumferential direction of all of the top coils 1 and the bottom coils 2 that configure each of the phase belts 3 is the center of the phase belt 3 (phase belt center 6) and the arrangement of the first and second parallel windings on at least one phase belt 3 is viewed in order from the side near to the center of the phase belt 3 (phase belt center 6), the top coils 1 are disposed in the order of the second, first, first, second, first, second, second, first, first, second, second, first, second, and first parallel windings while the bottom coils 2 connected to the top coils 1 are disposed in the order of the first, second, second, first, second, first, second, first, second, first, first, second, first, and second parallel windings. By the configuration described, the voltage unbalance rate indicative of the degree of unbalance in voltage becomes 0.15%.

    [0025] The voltage unbalance rate of 0.15% was calculated by a method same as that described in the description of the first embodiment. The voltage unbalance rate of 0.15% in the present embodiment was determined, based on results of calculation, for each of first and second circuits, of a voltage V generated for each of the slots in which the coils are accommodated, from an average value in amplitude of the first and second circuits and a ratio in amplitude of the voltages generated in the first and second circuits similarly as in the method described in connection with the first embodiment.

    [0026] Here, the phase belt 3 is defined as a coil group of the top coils 1 and the bottom coils 2 arranged for one pole.

    [0027] By adopting such a configuration of the present embodiment as described above, the voltage unbalance rate, which was 0.18% in Patent Document 1, can be reduced to 0.15%. Therefore, rotating machinery of a small size and a large capacity can be obtained which suppresses the unbalance in voltage and reduces heat generation by circulating current. Further, from the point of view of reduction of the loss, the reduction of the voltage unbalance rate leads also to improvement in efficiency (performance) of the rotating machinery.

    [0028] It is to be noted that, even if the arrangement of the top coil 1 and the bottom coil 2 is reversed, a similar electric performance can be obtained, and therefore, unless otherwise specified, also a connection scheme in which the top coil 1 and the bottom coil 2 are replaced with each other is included in the present embodiment.

    [0029] In particular, also the arrangement is equivalent in which the top coils 1 are arranged in the order of the first, second, second, first, second, first, second, first, second, first, first, second, first, and second parallel windings and the bottom coils 2 are arranged in the order of the second, first, first, second, first, second, second, first, first, second, second, first, second, and first parallel windings.

    [0030] Also the configuration just described exhibits advantageous effects similar to those described hereinabove.

    Third Embodiment



    [0031] FIG. 3 illustrates a connection scheme of one phase belt according to a third embodiment of the rotating machinery of the present disclosure.

    [0032] As illustrated in FIG. 3, the present embodiment adopts the following connection scheme. In particular, the rotating machinery includes, where n is an integer equal to or greater than 1, a rotor of 2n poles, 84n slots, and three-phase stator windings. A top coil 1 is accommodated at the diametrically inner side and a bottom coil 2 is accommodated at the diametrically outer side of each slot, and the top coil 1 and the bottom coil 2 are connected to each other to form a stator winding. The stator windings have 2n phase belts 3 per one phase, and each of the phase belts 3 is configured from two parallel windings. Where an average position in the circumferential direction of all of the top coils 1 and the bottom coils 2 that configure each of the phase belts 3 is the center of the phase belt 3 (phase belt center 6) and the arrangement of the first and second parallel windings on at least one phase belt 3 is viewed in order from the side near to the center of the phase belt 3 (phase belt center 6), the top coils 1 are disposed in the order of the first, second, first, second, second, first, second, first, second, first, first, second, second, and first parallel windings while the bottom coils 2 connected to the top coils 1 are disposed in the order of the second, first, second, first, first, second, first, second, second, first, second, first, first, and second parallel windings. By the configuration described, the voltage unbalance rate indicative of the degree of unbalance in voltage becomes 0.16%.

    [0033] The voltage unbalance rate of 0.16% was calculated by a method same as that described in the description of the first embodiment. The voltage unbalance rate of 0.16% in the present embodiment was determined, based on results of calculation, for each of first and second circuits, of a voltage V generated for each of the slots in which the coils are accommodated, from an average value in amplitude of the first and second circuits and a ratio in amplitude of the voltages generated in the first and second circuits similarly as in the method described in connection with the first embodiment.

    [0034] Here, the phase belt 3 is defined as a coil group of the top coils 1 and the bottom coils 2 arranged for one pole.

    [0035] By adopting such a configuration of the present embodiment as described above, the voltage unbalance rate, which was 0.18% in Patent Document 1, can be reduced to 0.16%. Therefore, rotating machinery of a small size and a large capacity can be obtained which suppresses the unbalance in voltage and reduces heat generation by circulating current. Further, from the point of view of reduction of the loss, the reduction of the voltage unbalance rate leads also to improvement in efficiency (performance) of the rotating machinery.

    [0036] It is to be noted that, even if the arrangement of the top coil 1 and the bottom coil 2 is reversed, a similar electric performance can be obtained, and therefore, unless otherwise specified, also a connection scheme in which the top coil 1 and the bottom coil 2 are replaced with each other is equivalent.

    [0037] In particular, also the arrangement is equivalent in which the top coils 1 are arranged in the order of the second, first, second, first, first, second, first, second, second, first, second, first, first, and second parallel windings and the bottom coils 2 are arranged in the order of the first, second, first, second, second, first, second, first, second, first, first, second, second, and first parallel windings.

    [0038] Also the configuration just described exhibits advantageous effects similar to those described hereinabove.

    DESCRIPTION OF REFERENCE NUMERALS



    [0039] 
    1
    Top coil
    2
    Bottom coil
    3
    Phase belt
    4
    Lead wire
    5
    Jumper connector
    6
    Phase belt center



    Claims

    1. A rotating machinery comprising:

    - a rotor of 2n poles, n being an integer equal to or greater than 1;

    - 84n slots; and

    - three-phase stator windings;

    - a top coil portion (1) being accommodated at the diametrically inner side of each of the slots;

    - a bottom coil portion (2) being accommodated at the diametrically outer side of each of the slots; the top coil portion (1) and the bottom coil portion (2) being connected to each other to form each of the stator windings;
    the stator windings having 2n phase belts (3) per one phase;
    each of the phase belts (3) being configured from a first parallel winding and a second parallel winding;
    where an average position in the circumferential direction of all of the top coil portions (1) and the bottom coil portions (2) that configure each of the phase belts (3) is the center (6) of the phase belt (3) and the arrangement of the first and second parallel windings on at least one of the phase belts (3) is viewed in order from the side near to the center (6) of the phase belt (3), the top and bottom coil portions (1, 2) are formed by arranging the first and second parallel windings in a predefined order from the side near to the center (6) of the phase belt (3), characterized in that,
    the predefined order of the first and second parallel windings of the top coil portions (1) is second, first, first, second, first, second, first, second, second, first, second, first, second, and first parallel windings while the bottom coil portions (2) connected to the top coil portions (1) are disposed in the order of the first, second, second, first, second, first, second, first, second, first, first, second, first, and second parallel windings, wherein optionally the arrangement of the top coil portions (1) and the bottom coil portions (2) is reversed, wherein
    the arrangement of the top coil portions (1) or the bottom coil portions (2) indicates a voltage unbalance rate, which indicates a degree of unbalance in voltage, of 0.07%.


     
    2. A rotating machinery comprising:

    - a rotor of 2n poles, n being an integer equal to or greater than 1;

    - 84n slots; and

    - three-phase stator windings;

    - a top coil portion (1) being accommodated at the diametrically inner side of each of the slots;

    - a bottom coil portion (2) being accommodated at the diametrically outer side of each of the slots; the top coil portion (1) and the bottom coil portion (2) being connected to each other to form each of the stator windings;
    the stator windings having 2n phase belts (3) per one phase;
    each of the phase belts (3) being configured from a first parallel winding and a second parallel winding;
    where an average position in the circumferential direction of all of the top coil portions (1) and the bottom coil portions (2) that configure each of the phase belts (3) is the center (6) of the phase belt (3) and the arrangement of the first and second parallel windings on at least one of the phase belts (3) is viewed in order from the side near to the center (6) of the phase belt (3), the top and bottom coil portions (1, 2) are formed by arranging the first and second parallel windings in a predefined order from the side near to the center (6) of the phase belt (3), characterized in that,
    the predefined order of the first and second parallel windings of the top coil portions (1) is second, first, first, second, first, second, second, first, first, second, second, first, second, and first parallel windings while the bottom coil portions (2) connected to the top coil portions (1) are disposed in the order of the first, second, second, first, second, first, second, first, second, first, first, second, first, and second parallel windings, wherein optionally the arrangement of the top coil portions (1) and the bottom coil portions (2) is reversed, wherein
    the arrangement of the top coil portions (1) or the bottom coil portions (2) indicates a voltage unbalance rate, which indicates a degree of unbalance in voltage, of 0.15%.


     
    3. A rotating machinery comprising:

    - a rotor of 2n poles, n being an integer equal to or greater than 1;

    - 84n slots; and

    - three-phase stator windings;

    - a top coil portion (1) being accommodated at the diametrically inner side of each of the slots;

    - a bottom coil portion (2) being accommodated at the diametrically outer side of each of the slots; the top coil portion (1) and the bottom coil portion (2) being connected to each other to form each of the stator windings;
    the stator windings having 2n phase belts (3) per one phase;
    each of the phase belts (3) being configured from a first parallel winding and a second parallel winding;
    where an average position in the circumferential direction of all of the top coil portions (1) and the bottom coil portions (2) that configure each of the phase belts (3) is the center (6) of the phase belt (3) and the arrangement of the first and second parallel windings on at least one of the phase belts (3) is viewed in order from the side near to the center (6) of the phase belt (3), the top and bottom coil portions (1, 2) are formed by arranging the first and second parallel windings in a predefined order from the side near to the center (6) of the phase belt (3), characterized in that,
    the predefined order of the first and second parallel windings of the top coil portions (1) is the first, second, first, second, second, first, second, first, second, first, first, second, second, and first parallel windings while the bottom coil portions (2) connected to the top coil portions (1) are disposed in the order of the second, first, second, first, first, second, first, second, second, first, second, first, first, and second parallel windings, wherein optionally the arrangement of the top coil portions (1) and the bottom coil portions (2) is reversed, wherein
    the arrangement of the top coil portions (1) or the bottom coil portions (2) indicates a voltage unbalance rate, which indicates a degree of unbalance in voltage, of 0.16%.


     


    Ansprüche

    1. Rotierende Maschine, die Folgendes umfasst:

    - einen Rotor mit 2n Polen, wobei n eine Ganzzahl gleich oder größer als 1 ist,

    - 84n Nuten und

    - dreiphasigen Statorwicklungen;

    - einen oberen Spulenabschnitt (1), der auf der diametral inneren Seite von jeder Nut untergebracht ist; und

    - einen unteren Spulenabschnitt (2), der auf der diametral äußeren Seite von jeder Nut untergebracht ist; wobei der obere Spulenabschnitt (1) und der untere Spulenabschnitt (2) miteinander verbunden sind, um jede der Statorwicklungen zu bilden;
    wobei die Statorwicklungen 2n Wicklungsstränge (3) für eine Phase aufweisen;
    wobei jeder der Wicklungsstränge (3) aus einer ersten parallelen Wicklung und einer zweiten parallelen Wicklung konfiguriert ist; und
    wobei eine Durchschnittsposition in der Umfangsrichtung von allen der oberen Spulenabschnitte (1) und der unteren Spulenabschnitte (2), die jeden der Wicklungsstränge (3) konfigurieren, die Mitte (6) des Wicklungsstrangs (3) ist und die Anordnung der ersten und der zweiten parallelen Wicklung auf mindestens einem der Wicklungsstränge (3) in der Reihenfolge von der Seite in der Nähe der Mitte (6) des Wicklungsstrangs (3) betrachtet wird, wobei der obere und der untere Spulenabschnitt (1, 2) gebildet sind, indem die erste und die zweite parallele Wicklung in einer vordefinierten Reihenfolge von der Seite in der Nähe der Mitte (6) des Wicklungsstrangs (3) angeordnet sind,
    dadurch gekennzeichnet, dass
    die vordefinierte Reihenfolge der ersten und der zweiten parallelen Wicklung der oberen Spulenabschnitte (1) zweite, erste, erste, zweite, erste, zweite, erste, zweite, zweite, erste, zweite, erste, zweite und erste parallele Wicklungen ist, während die unteren Spulenabschnitte (2), die mit den oberen Spulenabschnitten (1) verbunden sind, in der Reihenfolge der ersten, zweiten, zweiten, ersten, zweiten, ersten, zweiten, ersten, zweiten, ersten, ersten, zweiten, ersten und zweiten parallelen Wicklungen vorgesehen sind, wobei die Anordnung der oberen Spulenabschnitte (1) und der unteren Spulenabschnitte (2) optional umgekehrt ist, und
    die Anordnung der oberen Spulenabschnitte (1) oder der unteren Spulenabschnitte (2) eine Spannungsungleichgewichtsrate, die einen Grad des Ungleichgewichts der Spannung angibt, von 0,07 % angibt.


     
    2. Rotierende Maschine, die Folgendes umfasst:

    - einen Rotor mit 2n Polen, wobei n eine Ganzzahl gleich oder größer als 1 ist,

    - 84n Nuten und

    - dreiphasigen Statorwicklungen;

    - einen oberen Spulenabschnitt (1), der auf der diametral inneren Seite von jeder Nut untergebracht ist; und

    - einen unteren Spulenabschnitt (2), der auf der diametral äußeren Seite von jeder Nut untergebracht ist; wobei der obere Spulenabschnitt (1) und der untere Spulenabschnitt (2) miteinander verbunden sind, um jede der Statorwicklungen zu bilden;
    wobei die Statorwicklungen 2n Wicklungsstränge (3) für eine Phase aufweisen;
    wobei jeder der Wicklungsstränge (3) aus einer ersten parallelen Wicklung und einer zweiten parallelen Wicklung konfiguriert ist; und
    wobei eine Durchschnittsposition in der Umfangsrichtung von allen der oberen Spulenabschnitte (1) und der unteren Spulenabschnitte (2), die jeden der Wicklungsstränge (3) konfigurieren, die Mitte (6) des Wicklungsstrangs (3) ist und die Anordnung der ersten und der zweiten parallelen Wicklung auf mindestens einem der Wicklungsstränge (3) in der Reihenfolge von der Seite in der Nähe der Mitte (6) des Wicklungsstrangs (3) betrachtet wird, wobei der obere und der untere Spulenabschnitt (1, 2) gebildet sind, indem die erste und die zweite parallele Wicklung in einer vordefinierten Reihenfolge von der Seite in der Nähe der Mitte (6) des Wicklungsstrangs (3) angeordnet sind,
    dadurch gekennzeichnet, dass
    die vordefinierte Reihenfolge der ersten und der zweiten parallelen Wicklung der oberen Spulenabschnitte (1) zweite, erste, erste, zweite, erste, zweite, zweite, erste, erste, zweite, zweite, erste, zweite und erste parallele Wicklungen ist, während die unteren Spulenabschnitte (2), die mit den oberen Spulenabschnitten (1) verbunden sind, in der Reihenfolge der ersten, zweiten, zweiten, ersten, zweiten, ersten, zweiten, ersten, zweiten, ersten, ersten, zweiten, ersten und zweiten parallelen Wicklungen vorgesehen sind, wobei die Anordnung der oberen Spulenabschnitte (1) und der unteren Spulenabschnitte (2) optional umgekehrt ist, und
    die Anordnung der oberen Spulenabschnitte (1) oder der unteren Spulenabschnitte (2) eine Spannungsungleichgewichtsrate, die einen Grad des Ungleichgewichts der Spannung angibt, von 0,15 % angibt.


     
    3. Rotierende Maschine, die Folgendes umfasst:

    - einen Rotor mit 2n Polen, wobei n eine Ganzzahl gleich oder größer als 1 ist,

    - 84n Nuten und

    - dreiphasigen Statorwicklungen;

    - einen oberen Spulenabschnitt (1), der auf der diametral inneren Seite von jeder Nut untergebracht ist; und

    - einen unteren Spulenabschnitt (2), der auf der diametral äußeren Seite von jeder Nut untergebracht ist; wobei der obere Spulenabschnitt (1) und der untere Spulenabschnitt (2) miteinander verbunden sind, um jede der Statorwicklungen zu bilden;
    wobei die Statorwicklungen 2n Wicklungsstränge (3) für eine Phase aufweisen;
    wobei jeder der Wicklungsstränge (3) aus einer ersten parallelen Wicklung und einer zweiten parallelen Wicklung konfiguriert ist; und
    wobei eine Durchschnittsposition in der Umfangsrichtung von allen der oberen Spulenabschnitte (1) und der unteren Spulenabschnitte (2), die jeden der Wicklungsstränge (3) konfigurieren, die Mitte (6) des Wicklungsstrangs (3) ist und die Anordnung der ersten und der zweiten parallelen Wicklung auf mindestens einem der Wicklungsstränge (3) in der Reihenfolge von der Seite in der Nähe der Mitte (6) des Wicklungsstrangs (3) betrachtet wird, wobei der obere und der untere Spulenabschnitt (1, 2) gebildet sind, indem die erste und die zweite parallele Wicklung in einer vordefinierten Reihenfolge von der Seite in der Nähe der Mitte (6) des Wicklungsstrangs (3) angeordnet sind,
    dadurch gekennzeichnet, dass
    die vordefinierte Reihenfolge der ersten und der zweiten parallelen Wicklung der oberen Spulenabschnitte (1) erste, zweite, erste, zweite, zweite, erste, zweite, erste, zweite, erste, erste, zweite, zweite und erste parallele Wicklungen ist, während die unteren Spulenabschnitte (2), die mit den oberen Spulenabschnitten (1) verbunden sind, in der Reihenfolge der zweiten, ersten, zweiten, ersten, ersten, zweiten, ersten, zweiten, zweiten, ersten, zweiten, ersten, ersten und zweiten parallelen Wicklungen vorgesehen sind, wobei die Anordnung der oberen Spulenabschnitte (1) und der unteren Spulenabschnitte (2) optional umgekehrt ist, und
    die Anordnung der oberen Spulenabschnitte (1) oder der unteren Spulenabschnitte (2) eine Spannungsungleichgewichtsrate, die einen Grad des Ungleichgewichts der Spannung angibt, von 0,16 % angibt.


     


    Revendications

    1. Machine rotative comprenant :

    - un rotor de 2n pôles, n étant un entier égal ou supérieur à 1 ;

    - 84n fentes ; et

    - des bobinages de stator triphasés ;

    - une portion de bobine supérieure (1) étant logée au niveau du côté diamétralement intérieur de chacune des fentes ;

    - une portion de bobine de fond (2) étant logée au niveau du côté diamétralement extérieur de chacune des fentes ; la portion de bobine supérieure (1) et la portion de bobine de fond (2) étant connectées l'une à l'autre pour former chacun des bobinages de stator ;
    les bobinages de stator ayant 2n bandes de phase (3) pour une phase ; chacune des bandes de phase (3) étant configurée à partir d'un premier bobinage parallèle et d'un second bobinage parallèle ;
    dans laquelle une position moyenne dans la direction circonférentielle de toutes les portions de bobine supérieures (1) et de toutes les portions de bobine de fond (2) qui configurent chacune des bandes de phase (3) est le centre (6) de la bande de phase (3), et l'agencement du premier et du second bobinages parallèles sur l'une au moins des bandes de phase (3) est vu dans un ordre en partant du côté proche du centre (6) de la bande de phase (3), les portions de bobine supérieures et de fond (1, 2) sont formées en agençant les premier et second bobinages parallèles dans un ordre prédéfini en partant du côté proche du centre (6) de la bande de phase (3),
    caractérisée en ce que
    l'ordre prédéfini du premier et du second bobinages parallèles des portions de bobine supérieures (1) est second, premier, premier, second, premier, second, premier, second, second, premier, second, premier, second et premier bobinages parallèles, tandis que les portions de bobine de fond (2) connectées aux portions de bobine supérieures (1) sont disposées dans l'ordre premier, second, second, premier, second, premier, second, premier, second, premier, premier, second, premier et second bobinages parallèles, dans laquelle en option l'agencement des portions de bobine supérieures (1) et des portions de bobine de fond (2) est inversé, dans laquelle l'agencement des portions de bobine supérieures (1) ou des portions de bobine de fond (2) indique un taux de déséquilibre de tension, qui indique un degré de déséquilibre dans la tension, de 0,07 %.


     
    2. Machine rotative comprenant :

    - un rotor de 2n pôles, n étant un entier égal ou supérieur à 1 ;

    - 84n fentes ; et

    - des bobinages de stator triphasés ;

    - une portion de bobine supérieure (1) étant logée au niveau du côté diamétralement intérieur de chacune des fentes ;

    - une portion de bobine de fond (2) étant logée au niveau du côté diamétralement extérieur de chacune des fentes ; la portion de bobine supérieure (1) et la portion de bobine de fond (2) étant connectées l'une à l'autre pour former chacun des bobinages de stator ;
    les bobinages de stator ayant 2n bandes de phase (3) pour une phase ; chacune des bandes de phase (3) étant configurée à partir d'un premier bobinage parallèle et d'un second bobinage parallèle ;
    dans laquelle une position moyenne dans la direction circonférentielle de toutes les portions de bobine supérieures (1) et de toutes les portions de bobine de fond (2) qui configurent chacune des bandes de phase (3) est le centre (6) de la bande de phase (3), et l'agencement du premier et du second bobinage parallèles sur l'une au moins des bandes de phase (3) est vu dans un ordre en partant du côté proche du centre (6) de la bande de phase (3), les portions de bobine supérieures et de fond (1, 2) sont formées en agençant les premier et second bobinages parallèles dans un ordre prédéfini en partant du côté proche du centre (6) de la bande de phase (3),
    caractérisée en ce que
    l'ordre prédéfini du premier et du second bobinages parallèles des portions de bobine supérieures (1) est second, premier, premier, second, premier, second, second, premier, premier, second, second, premier, second et premier bobinages parallèles, tandis que les portions de bobine de fond (2) connectées aux portions de bobine supérieures (1) sont disposés dans l'ordre premier, second, second, premier, second, premier, second, premier, second, premier, premier, second, premier et second bobinages parallèles, dans laquelle en option l'agencement des portions de bobine supérieures (1) et des portions de bobine de fond (2) est inversé, dans laquelle l'agencement des portions de bobine supérieures (1) ou des portions de bobine de fond (2) indique un taux de déséquilibre de tension, qui indique un degré de déséquilibre dans la tension, de 0,15 %.


     
    3. Machine rotative comprenant :

    - un rotor de 2n pôles, n étant un entier égal ou supérieur à 1 ;

    - 84n fentes ; et

    - des bobinages de stator triphasés ;

    - une portion de bobine supérieure (1) étant logée au niveau du côté diamétralement intérieur de chacune des fentes ;

    - une portion de bobine de fond (2) étant logée au niveau du côté diamétralement extérieur de chacune des fentes ; la portion de bobine supérieure (1) et la portion de bobine de fond (2) étant connectées l'une à l'autre pour former chacun des bobinages de stator ;
    les bobinages de stator ayant 2n bandes de phase (3) pour une phase ; chacune des bandes de phase (3) étant configurée à partir d'un premier bobinage parallèle et d'un second bobinage parallèle ;
    dans laquelle une position moyenne dans la direction circonférentielle de toutes les portions de bobine supérieures (1) et de toutes les portions de bobine de fond (2) qui configurent chacune des bandes de phase (3) est le centre (6) de la bande de phase (3), et l'agencement du premier et du second bobinage parallèles sur l'une au moins des bandes de phase (3) est vu dans un ordre en partant du côté proche du centre (6) de la bande de phase (3), les portions de bobine supérieures et de fond (1, 2) sont formées en agençant les premier et second bobinages parallèles dans un ordre prédéfini en partant du côté proche du centre (6) de la bande de phase (3),
    caractérisée en ce que
    l'ordre prédéfini du premier et du second bobinages parallèles des portions de bobine supérieures (1) est premier, second, premier, second, second, premier, second, premier, second, premier, premier, second, second, et premier bobinages parallèles, tandis que les portions de bobine de fond (2) connectées aux portions de bobine supérieures (1) sont disposés dans l'ordre second, premier, second, premier, premier, second, premier, second, second, premier, second, premier, premier et second bobinages parallèles, dans laquelle en option l'agencement des portions de bobine supérieures (1) et des portions de bobine de fond (2) est inversé, dans laquelle l'agencement des portions de bobine supérieures (1) ou des portions de bobine de fond (2) indique un taux de déséquilibre de tension, qui indique un degré de déséquilibre dans la tension, de 0,16 %.


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description