(11)EP 3 180 117 B1


(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 15763428.8

(22)Date of filing:  10.08.2015
(51)International Patent Classification (IPC): 
B01F 15/00(2006.01)
B01F 3/08(2006.01)
B01F 15/04(2006.01)
(86)International application number:
(87)International publication number:
WO 2016/024925 (18.02.2016 Gazette  2016/07)





(84)Designated Contracting States:

(30)Priority: 13.08.2014 TR 201409453

(43)Date of publication of application:
21.06.2017 Bulletin 2017/25

(73)Proprietor: Ozbekoglu Ith. Ihc. Ins. Muh. Ltd. Ti.
06450 Dikmen Ankara (TR)

  • SEN, Mustafa
    06450 Dikmen Ankara (TR)

(74)Representative: 2s-ip Schramm Schneider Bertagnoll Patent- und Rechtsanwälte Part mbB 
Postfach 86 02 67
81629 München
81629 München (DE)

(56)References cited: : 
EP-A2- 2 468 390
US-A1- 2004 057 334
US-A- 4 654 802
US-B1- 6 496 781
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Technical field to which the invention is related to:

    [0001] The invention is related to a system for measurement of quantity (density) of particles/solid materials in wastewater, and dilution of particle quantity based on the intended application. Currently enabling quick and serial measurement of particle quantity in laboratory environment, this system is placed inside the desired step of the process of an industrial facility. This way, the system yields quick results and in turn reduces the analysis and evaluation costs.

    Current state of technique:

    [0002] With the increasing environmental awareness, the grey water, also called wastewater, is now being treated and used in numerous fields across the industry with releasing to the nature as pollutants.

    [0003] However; the use of water which contain large quantities of heavy metal slurry or unwanted particles in such industries in an uncontrolled way and without treatment may cause environmental pollution, decrease in quality of ecosystem around the area of use or health issues depending on the industrial area of use.

    [0004] As a matter of fact, wastewater-using industrial fields need specific quality requirements. Therefore, the water obtained from the grey water recycling system should conform to the standards of the intended area of use. Generally, the utility water obtained via treating grey water must be hygienically and microbiologically safe, colorless and totally free from solid wastes. No odor must form a few days after the treated water is stored. Currently, due to lack of legal regulations on quality of utility water and on working principles of enterprises, it is recommended to ask a written guarantee for the quality of grey water treated from the companies manufacturing grey water recycling system.

    [0005] Because grey water contains numerous components such as SiO2, P2O5, Fe2O3, CaO, Al2O3, MgO, ZnO, TiO2, grid and sieving, sedimentation pond or neutralization, coagulation and flocculation and similar methods are employed in making use of such waters.

    [0006] For the processes of treatment, impurification and making clean as desired used at the industrial facilities; first of all, it is necessary to calculate the ratio of pollutants or unwanted particles in the grey water. In order to determine ratio of unwanted particles in the liquid, to make the liquid reusable again and introduce to the production process again, the entire production system is paused and water samples are analyzed in the laboratory in the current state of technique. Since it takes hours and sometimes days to get the analysis results, it costs a lot for the industry to pause the process. For reasons of such disadvantages, it becomes difficult to reach a certain standard in use of grey waters and particles in undesired level remain in the water.

    [0007] An example of the current state of the technique is the patent application numbered WO2006008472 A2. This application titled grey water filtering system describes a filtering assembly used for recycling of grey water. This system uses a filter for filtering the unwanted materials in grey water which separates the particles and solid materials from water. Grey water is recycled by means of a filter mechanism which includes a support mesh or blanket holding a sedimentary material produced by electrolysis of seawater.

    [0008] However, the system covered by the above-mentioned application is rather costly and time consuming. Moreover, the water undergoing these processes is not clean enough to be used as potable water and in this case, it does not make it convenient for the consumer to make use of such high-cost processes for the purpose of treating water for only industrial purposes.

    [0009] US2004/0057334A1 relates to an apparatus for blending and supplying process materials. The apparatus comprises a dispensing subsystem that supplies process materials to a mixing subsystem where they are blended with a static mixer.

    Purpose of Invention:

    [0010] The purpose of the invention is to bring forward a system, which measures, records, reports the quantity of particles in the liquid, which changes the liquid mixture ratios and which is automatically controlled by computers in order to obtain liquids containing particles in the desired levels based on the area of use of liquids and desire of user.

    [0011] A further purpose of the present invention is to prevent problems experienced in obtaining grey water at various levels to be used for different industrial applications.

    [0012] A further purpose of the present invention is to make sure that quantity and density of particles and solid materials in liquids are easily determined.

    [0013] A further purpose of the present invention is to prevent loss of time experienced in traditional methods used for determination of material density and content.

    [0014] A further purpose of the present invention is to reduce the costs associated with analysis of particles and change of particle ratios in liquids.

    [0015] These objects are solved by the apparatus of claim 1.

    Description of Figures:


    Figure 1 is a view of wastewater reclamation system.

    Figure 2 is a view of particle quantity analyzer comprising probe sets and PLC system.

    Figure 3 is a view of station of blending water preparation and homogenization for concrete production.

    [0017] The parts shown above have been numbered one by one and the part names corresponding to these numbers are given below;

    1. Pumps for automatic water cleaning line

    2. Analysis equipment cleaning line

    3. Wastewater feeding line

    4. Analysis equipment

    4.1. Transmitter* system
    4.1.1. transmitter probe

    4.2. Receiver system
    4.2.1. Receiver probe

    5. System processor

    6. Tank

    6.1. Clean water tank

    6.2. Waste liquid tank

    6.3. Transfer cover

    7. Clean water feeding line

    8. Agitator drive mechanism

    9. Agitator

    10. Discharge cover

    11. Control panel

    12. PLC/Control system

    Description of invention:

    [0018] This invention relates to a system which determines the particle quantity in liquids in real-time, as seen in Figure 1, which comprises a waste liquid feeding line (3) which ensures feeding waste liquid into the system; at least one tank (6) in which the liquid is stored and which comprises an agitator (9) which ensures a homogenous mixture in a way precluding sedimentation of particles and solid materials in the liquid and agitator drive mechanism (8) which controls the agitator (9); a clean water feeding line (7), which provides clean water intake to waste liquid tank (6.2); a discharge valve (10) which ensures that the homogenized liquid and/or solid material is discharged and transmitted to the place of use; at least one analysis equipment (4) which determines the particle density of waste liquid, entering into tank, during the liquid flow; PLC/Control system (12) located on the control panel (11) to which the values received from the analysis equipment (4) are transferred; cleaning line (2) which feeds pressurized water to analysis equipment (4) by means of automatic water cleaning line pump (1).

    [0019] It is aimed by using the system covered by the present invention that liquids containing particles in desired ratios can be obtained based on the place of application and user of waste liquids and for this purpose, a system, which measures, records, reports the quantity of particles in the liquid, which changes the liquid mixture ratios and which is automatically controlled by computers while the wastewater is transmitted/transported from one place to another, has been created.

    [0020] The process of obtaining liquids in desired particle density in this system comprises the following steps:
    • Storage of wastewater in waste liquid tank (6.2) by passing through analysis equipment (4) received from waste liquid feeding line (3),
    • Receipt of information concerning pollution degree of water the density of particles inside the water by analysis equipment (4) during passage of waste liquid to the tank, and transfer of signals sensed to the processor (5) and PLC control system (12) on the control panel (12),
    • Conversion by PLC control system (12) of signal received from analysis equipment (4) into particle density and display of these values on the PLC screen,
    • Comparison of values with density values predetermined by user and recorded in the control system database,
    • Transfer of water in the tank outside the tank if the value measured conforms to the measurement range of density value predetermined by the user and recorded in the system,
    • If the value measured does not conform to the measurement range of density value predetermined by the user and recorded in the system, calculation by PLC control system of amount of water necessary to increase the water amount and dilute the density and realization of water intake from clean liquid feeding line (7),
    • Removal of final homogenized liquid from tank through discharge valve (10) and transfer that liquid to place of use.

    [0021] While the above-described steps are realized, the agitator (9) is simultaneously operated by agitator drive mechanism (8) in a manner that prevents sedimentation of particles in the liquid inside the waste liquid tank (6.2) and ensures homogenous liquids. Thus, the liquid collected in the waste liquid tank (6.2) is always homogenous.

    [0022] The most prominent characteristics of the system is that there is no need to pause and interrupt the process across the industrial facility during the analysis. Instant information received and analysis results enable the continuation of process as desired. This way, more work is performed at a unit of time and expenditures made for analysis is reduced.

    [0023] Since the employees conducting such analyses will not be needed any more within the system, standard quality values are yielded that do not depend on individual experience and care. This characteristic in turn allows the use of the system at any type of industrial facility safely and reliably.

    [0024] Another factor in the use of the system in a safe and reliable way is that the system features self-quality control and regular self-calibration. The system feeds pressurized water to the analysis equipment (4) by means of analysis equipment cleaning line (2). The analysis equipment cleaning line (2) that feeds pressurized water is fed through automatic water cleaning pump (1). Thus, the system prevents sedimentation of unwanted particles on the analysis equipment (4) and erroneous measurements.

    [0025] Probes, sensors and similar transceiver mechanisms can be used in the present system under this invention.

    [0026] In this case, a further prominent characteristic of the invention is the relation between the analysis equipment (4), which can also be probe sets (4) and the PLC control system (12). The probe set (4) given in the Figure 2 comprises transmitter system (4.1) to which the transmitter probe (4.1.1) is connected and the receiver system (4.2) to which the receive probe (4.2.1) is connected.

    [0027] The probe sets (4) can vary depending on the industrial process, in which the system will be used, and may also comprise beam, magnetic field, sound and similar wave transceivers.

    [0028] To illustrate, when a system using beam probes (4) is considered; the beams emitted from the transmitter probe (4.1.1) through the power supplied by transmitter system (4.1) hit the particles inside the water flow, passing through the waste liquid feeding line (3) and shown by arrow in Figure 2, and transferred to the receiver system (4.2) by the receiver probe (4.2.1). The receiver system (4.2) transmits the signals received to the PLC and control system (12) and the process is run.

    [0029] At this point, the beam transmitter system (4.1)can be selected as to send infrared, ultraviolet and similar beams.

    [0030] On the other hand, the receiver probe (4.2.1) must have the capability to detect the wavelength of beams emitted from the transmitter system (4.1), to which it is connected.

    [0031] Therefore, the probe sets (4) must be located inside the water flow and waste liquid feeding line (3) on the point the water flows into waste liquid tank (6.2).

    [0032] Since the waste liquid (water) flowing inside the tank is not homogenized yet, waste liquid (water) which has the same particle density should not always pass through the probe sets. However, because with the transfer of signals received from the receiver probe (4.2.1) to the PLC control system (12) the system presents the final density as the average of signals obtained during the liquid passage, the error margin decreases.

    [0033] Being also used for making the grey waters used in especially mortar mixing, drenching and material preparation in construction sites impurity level necessary optimum yield, the system aims at obtaining water in impurity level that can be used for mortars and other mixtures by reducing the impurities in the waters. When the subject system is detailed in a way suitable specifically for process of blend water preparation for concrete production, the system seen in Figure 3 is obtained.

    [0034] According to this, the system has more than one tank (6). While one of these tanks (6.1) stores clean water, this stored clean water is used for dilution of waste water in the waste liquid tank when necessary. Thus, the water passage occurs between the clean water tank and the waste liquid tank (6.2), also called agitation tank, by means of transfer cover (6.3) in line with the command received from the PLC control system (12). The amount of water passing depends on the calculation made by the PLC control system (12), which determines the particle density of wastewater entering into the waste liquid tank, by comparing the densities recorded in the system database with the values measured.

    [0035] All the components as well as the number and dimension of such components of the system under the present invention may vary based on the industrial process, in the which the system will be used.


    1. An apparatus for analysis and reusing waste liquid, the waste liquid being wastewater, comprising:

    at least one analysis equipment (4) configured to enable analysis of the waste liquid;

    a clean water tank (6.1) in which clean water is transferred and stored;

    at least one clean water feeding line (7) configured to transfer and fill clean water into the clean water tank (6.1);

    at least one waste liquid feeding line (3) configured to feed waste liquid into the system;

    a waste liquid tank (6.2) adapted to intake analysed waste liquid transferred from the analysis equipment (4) via waste liquid feeding line (3), and adapted to dilute said waste liquid;

    said waste liquid tank (6.2) further comprising an agitator (9);

    an agitator drive mechanism (8) configured to drive the agitator (9);

    a discharge valve (10) at the bottom of the waste liquid tank (6.2) configured to enable discharging of the diluted liquid;

    a transfer valve (6.3) configured to connect the clean water tank (6.1) with the waste liquid tank (6.2) for transferring clean water from the clean water tank (6.1) to the waste liquid tank (6.2);

    the analysis equipment (4) comprising at least a receiver system (4.2) and a transmitter system (4.1), the receiver system (4.2) comprising at least a receiver probe (4.2.1) and the transmitter system (4.1) comprising at least a transmitter probe (4.1.1), the probes being located inside the water flow and the waste liquid feeding line (3) on the point the water flow flows into the waste liquid tank (6.2);

    the analysis equipment being adapted to determine the particle density of the waste liquid during passage to the waste liquid tank (6.2);

    at least one PLC control panel (11) comprising a PLC control system (12) configured to enable receiving data from the analysis equipment (4);

    a system processor (5) configured to process the data received;

    an analysis equipment cleaning line (2) configured to enable keeping the analysis equipment (4) operative;

    at least one automatic water cleaning line pump (1) configured to generate pressurized water;


    the analysis equipment cleaning line (2) is operatively connected via the pump (1) to the analysis equipment (4) which connects to the PLC control system (12);

    the waste liquid is transferred to the waste liquid tank (6.2) after solid materials have been analysed; and

    the analysis equipment cleaning line (2) is configured to transfer pressurized water to the analysis equipment (4) in order to clean the analysis equipment (4) when the analysis of the said waste liquid is performed.

    2. The apparatus according to claim 1, characterized in that the apparatus is further configured to discharge solid materials and/or homogenized liquid which are discharged by discharge valve (10) for reuse.
    3. The apparatus according to any of the preceding claims, characterized in that the control panel (11) is configured to compare received data with the saved reference data and determines the quantity of water to be supplied from the clean liquid feeding line (7).


    1. Einrichtung zum Analysieren und Wiederverwenden von Abfallflüssigkeit, wobei die Abfallflüssigkeit Abwasser ist, umfassend:

    wenigstens eine Analyseanlage (4), die konfiguriert ist, um die Analyse der Abfallflüssigkeit zu ermöglichen;

    ein Reinwassertank (6.1), in den Reinwasser transferiert und gespeichert wird;

    wenigstens eine Reinwasserzufuhrleitung (7), die konfiguriert ist, um Reinwasser in den Reinwassertank (6.1) zu transferieren und einzufüllen;

    wenigstens eine Abfallflüssigkeitszufuhrleitung (3), die konfiguriert ist, um Abfallflüssigkeit in das System zuzuführen;

    ein Abfallflüssigkeitstank (6.2), der angepasst ist, um analysierte Abfallflüssigkeit aufzunehmen, die von der Analyseanalage (4) über die Abfallflüssigkeitszufuhrleitung (3) transferiert wird, und angepasst ist, um die Abfallflüssigkeit zu verdünnen;

    wobei der Abfallflüssigkeitstank (6.2) ferner einen Rührer (9) umfasst;

    einen Rührantriebsmechanismus (8), der konfiguriert ist, um den Rührer (9) anzutreiben;

    ein Ablassventil (10) an dem Boden des Abfallflüssigkeitstanks (6.2), das konfiguriert ist, um das Ablassen der verdünnten Flüssigkeit zu ermöglichen;

    ein Transferventil (6.3), das konfiguriert ist, um den Reinwassertank (6.1) mit dem Abfallflüssigkeitstank (6.2) zum Transferieren des Reinwassers von dem Reinwassertank (6.1) zu dem Abfallflüssigkeitstank (6.2) zu verbinden;

    wobei die Analyseanlage (4) wenigstens ein Empfängersystem (4.2) und ein Sendersystem (4.1) umfasst, wobei das Empfängersystem (4.2) wenigstens eine Empfängersonde (4.2.1) umfasst und das Sendersystem (4.1) wenigstens eine Sendersonde (4.1.1) umfasst, wobei sich die Sonden innerhalb des Wasserstroms und der Abfallflüssigkeitszufuhrleitung (3) an dem Punkt befinden, an dem der Wasserstrom in den Abfallflüssigkeitstank (6.2) strömt;

    wobei die Analyseanlage angepasst ist, um die Teilchendichte der Abfallflüssigkeit während des Durchgangs zu dem Abfallflüssigkeitstank (6.2) zu bestimmen;

    wenigstens ein SPS-Steuerpult (11), das ein SPS-Steuersystem (12) umfasst, das konfiguriert ist, um ein Empfangen von Daten von der Analyseanlage (4) zu ermöglichen;

    einen Systemprozessor (5), der konfiguriert ist, um die empfangenen Daten zu verarbeiten;

    eine Reinigungsleitung für die Analyseanlage (2), die konfiguriert ist, um es zu ermöglichen, die Analyseanlage (4) betriebsbereit zu halten;

    wenigstens eine automatische Wasserreinigungsleitungspumpe (1), die konfiguriert ist, um Druckwasser zu erzeugen;


    die Reinigungsleitung (2) der Analyseanlage über die Pumpe (1) mit der Analyseanlage (4) wirkverbunden ist, die mit dem SPS-Steuersystem (12) verbunden ist;

    die Abfallflüssigkeit in den Abfallflüssigkeitstank (6.2) transferiert wird, nachdem Feststoffe analysiert wurden; und

    die Reinigungsleitung der Analyseanlage (2) konfiguriert ist, um das Druckwasser zu der Analyseanlage (4) zu transferieren, um die Analyseanlage (4) zu reinigen, wenn die Analyse der Abfallflüssigkeit durchgeführt wird.

    2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einrichtung ferner konfiguriert ist, um Feststoffe und/oder homogenisierte Flüssigkeit abzulassen, die durch das Ablassventil (10) zum Wiederverwenden abgelassen werden.
    3. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Steuerpult (11) konfiguriert ist, um empfangene Daten mit den gespeicherten Referenzdaten zu vergleichen und die Wassermenge zu bestimmen, die von der Reinflüssigkeitszufuhrleitung (7) zugeführt werden soll.


    1. Appareil permettant l'analyse et la réutilisation de déchets liquides, les déchets liquides étant des eaux usées, comprenant :

    au moins un équipement d'analyse (4) configuré pour permettre l'analyse des déchets liquides ;

    un réservoir d'eau propre (6.1) dans lequel de l'eau propre est transférée et stockée ;

    au moins une conduite d'alimentation en eau propre (7) configurée pour transférer de l'eau propre dans le réservoir d'eau propre (6.1) et en remplir celui-ci ;

    au moins une conduite d'alimentation en déchets liquides (3) conçue pour introduire des déchets liquides dans le système ;

    un réservoir de déchets liquides (6.2) apte à absorber les déchets liquides analysés transférés depuis l'équipement d'analyse (4) par le biais de la conduite d'alimentation en déchets liquides (3), et apte à diluer lesdits déchets liquides ;

    ledit réservoir de déchets liquides (6.2) comprenant en outre un agitateur (9) ;

    un mécanisme d'entraînement d'agitateur (8) conçu pour entraîner l'agitateur (9) ;

    une vanne d'évacuation (10) au fond du réservoir de déchets liquides (6.2) configurée pour permettre l'évacuation du liquide dilué ;

    une vanne de transfert (6.3) conçue pour raccorder le réservoir d'eau propre (6.1) au réservoir de déchets liquides (6.2) afin de transférer de l'eau propre du réservoir d'eau propre (6.1) au réservoir de déchets liquides (6.2) ;

    l'équipement d'analyse (4) comprenant au moins un système récepteur (4.2) et un système émetteur (4.1), le système récepteur (4.2) comprenant au moins une sonde réceptrice (4.2.1) et le système émetteur (4.1) comprenant au moins une sonde émettrice (4.1.1), les sondes étant situées à l'intérieur du flux d'eau et de la conduite d'alimentation en déchets liquides (3) à l'emplacement où le flux d'eau s'écoule dans le réservoir de déchets liquides (6.2) ;

    l'équipement d'analyse étant apte à déterminer la densité particulaire des déchets liquides pendant leur passage vers le réservoir de déchets liquides (6.2) ;

    au moins un panneau de commande de type contrôleur programmable (11) comprenant un système de commande de type contrôleur programmable (12) configuré pour permettre la réception de données depuis l'équipement d'analyse (4) ;

    un processeur de système (5) configuré pour traiter les données reçues ;

    une conduite de nettoyage d'équipement d'analyse (2) configurée pour permettre le fonctionnement de l'équipement d'analyse (4) ;

    au moins une pompe de conduite de nettoyage automatique de l'eau (1) conçue pour générer de l'eau sous pression ;

    dans lequel la conduite de nettoyage de l'équipement d'analyse (2) est raccordée de manière fonctionnelle par le biais de la pompe (1) à l'équipement d'analyse (4) qui se raccorde au système de commande de type contrôleur programmable (12) ;

    les déchets liquides sont transférés dans le réservoir de déchets liquides (6.2) une fois les matériaux solides analysés ; et

    la conduite de nettoyage de l'équipement d'analyse (2) est conçue pour transférer de l'eau sous pression vers l'équipement d'analyse (4) afin de nettoyer l'équipement d'analyse (4) lorsque l'analyse desdits déchets liquides est achevée.

    2. Appareil selon la revendication 1, caractérisé en ce que l'appareil est en outre conçu pour évacuer des matériaux solides et/ou du liquide homogénéisé qui sont évacués par la vanne d'évacuation (10) pour être réutilisés.
    3. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que le panneau de commande (11) est configuré pour comparer les données reçues avec les données de référence enregistrées et détermine la quantité d'eau à fournir depuis la conduite d'alimentation en liquide propre (7).


    Cited references


    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description