(19)
(11)EP 3 182 624 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.08.2018 Bulletin 2018/31

(21)Application number: 17154649.2

(22)Date of filing:  24.09.2012
(51)International Patent Classification (IPC): 
H04J 11/00(2006.01)
H04L 1/18(2006.01)
H04L 1/00(2006.01)
H04L 5/14(2006.01)
H04B 7/26(2006.01)
H04L 5/00(2006.01)
H04L 1/16(2006.01)

(54)

METHOD FOR TRANSMITTING CONTROL INFORMATION AND APPARATUS FOR SAME

VERFAHREN ZUR ÜBERTRAGUNG VON STEUERINFORMATIONEN UND VORRICHTUNG DAFÜR

PROCÉDÉ DE TRANSMISSION D'INFORMATIONS DE COMMANDE ET APPAREIL CORRESPONDANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.09.2011 US 201161538141 P
11.06.2012 US 201261658386 P
13.07.2012 US 201261671104 P
04.09.2012 US 201261696312 P

(43)Date of publication of application:
21.06.2017 Bulletin 2017/25

(62)Application number of the earlier application in accordance with Art. 76 EPC:
12833266.5 / 2685650

(73)Proprietor: LG ELECTRONICS INC.
Yeongdeungpo-gu Seoul, 07336 (KR)

(72)Inventors:
  • YANG, Suckchel
    Gyeonggi-do 431-080 (KR)
  • AHN, Joonkui
    Gyeonggi-do 431-080 (KR)
  • SEO, Dongyoun
    Gyeonggi-do 431-080 (KR)

(74)Representative: Cabinet Plasseraud 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
  
  • CATT: "UL ACK/NAK transmission for TDD with CA", 3GPP DRAFT; R1-103469, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Dresden, Germany; 20100628, 22 June 2010 (2010-06-22), XP050448989,
  • LG ELECTRONICS: "TDD UL ACK/NACK mode 1 enhancements", 3GPP DRAFT; R1-112328 TDD UL ACKNACK MODE 1 ENHANCEMENTS_LGE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20110822, 16 August 2011 (2011-08-16), XP050537466,
  • 3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 10)", 3GPP DRAFT; DRAFT36213-A30, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 21 September 2011 (2011-09-21), XP050537192, [retrieved on 2011-09-21]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

[Technical Field]



[0001] The present invention relates to a wireless communication system, and more specifically, to a method for transmitting control information and a device for the same. Similar methods and apparatuses are known from 3GPP draft documents R1-103469, R1-112328 and 36213-A30.

[Background Art]



[0002] Wireless communication systems have been widely deployed to provide various types of communication services including voice and data services. In general, a wireless communication system is a multiple access system that supports communication among multiple users by sharing available system resources (e.g. bandwidth, transmit power, etc.) among the multiple users. The multiple access system may adopt a multiple access scheme such as Code Division Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Multiple Access (OFDMA), or Single Carrier Frequency Division Multiple Access (SC-FDMA).

[Detailed Description]


[Technical Objects]



[0003] An object of the present invention is to provide a method and device for efficiently transmitting control information in a wireless communication system. Another object of the present invention is to provide a method and device for efficiently transmitting uplink control information in a TDD (Time Division Duplex) system and efficiently managing resources for the same. The technical objects achieved by the present invention are not limited to the above-described technical objects and those skilled in the art will understand other technical objects from the following description.

[Technical Solution]



[0004] In an aspect of the present invention, provided herein is a method for transmitting uplink control information in a wireless communication system supporting carrier aggregation and operating in TDD (time division duplex), the method comprising: generating a first HARQ-ACK (hybrid automatic repeat request - acknowledgement) set for a first cell using a value M; generating a second HARQ-ACK set for a second cell using the value M; and transmitting a bit value corresponding to a third HARQ-ACK set including the first HARQ-ACK set and the second HARQ-ACK set in an uplink subframe n, wherein M = max(M1, M2), max(M1, M2) representing a value not smaller between M1 and M2, wherein M1 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the first cell, and M2 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the second cell, wherein the first cell and the second cell have different UL-DL configurations.

[0005] In another aspect of the present invention, provided herein is a communication device configured to transmit uplink control information in a wireless communication system supporting carrier aggregation and operating in TDD (time division duplex), the communication device comprising: a radio frequency (RF) unit; and a processor, wherein the processor is configured to generate a first HARQ-ACK set for a first cell using a value M, to generate a second HARQ-ACK set for a second cell using the value M, and to transmit a bit value corresponding to a third HARQ-ACK set including the first HARQ-ACK set and the second HARQ-ACK set in an uplink subframe n, wherein M = max(M1, M2), max(M1, M2) representing a value not smaller between M1 and M2, wherein M1 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the first cell, and M2 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the second cell, wherein the first cell and the second cell have different UL-DL configurations.

[0006] Preferably, the first cell may be a primary cell (PCell) and the second cell is a secondary cell (SCell).

[0007] Preferably, when M1≠1 and M2 ≠0, the first HARQ-ACK set may be followed by the second HARQ-ACK set in the third HARQ-ACK set.

[0008] Preferably, when M1 = 0 and M2 ≠0, the second HARQ-ACK set may be followed by the first HARQ-ACK set in the third HARQ-ACK set.

[0009] Preferably, when M1<M2, the first HARQ-ACK set may include M2 HARQ-ACK responses, and M2-M1 HARQ-ACK responses at the back of the first HARQ-ACK set may be set as DTX.

[0010] Preferably, the bit value corresponding to the third HARQ-ACK set may be transmitted using a specific PUCCH resource corresponding to the third HARQ-ACK set, from among a plurality of PUCCHs.

[0011] Preferably, the bit value corresponding to the third HARQ-ACK set may be transmitted through a PUSCH.

[Advantageous Effects]



[0012] According to the present invention, control information can be efficiently transmitted in a wireless communication system. Specifically, uplink control information can be efficiently transmitted in a TDD system and resources for the same can be efficiently managed.

[0013] The effects of the present invention are not limited to the above-described effects and other effects which are not described herein will become apparent to those skilled in the art from the following description.

[Description of Drawings]



[0014] The accompanying drawings, which are included to provide a further understanding of the invention, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:

FIG. 1 illustrates a radio frame structure;

FIG. 2 illustrates a resource grid of a downlink slot;

FIG. 3 illustrates a downlink subframe structure;

FIG. 4 illustrates an uplink subframe structure;

FIG. 5 illustrates a slot level structure of PUCCH format 1a/1b;

FIG. 6 illustrates an example of determining a PUCCH resource for ACK/NACK;

FIG. 7 illustrates a TDD UL ACK/NACK (uplink acknowledgement/negative acknowledgement) transmission process in a single cell situation;

FIG. 8 illustrates a carrier aggregation (CA) communication system;

FIG. 9 illustrates scheduling in case of aggregation of a plurality of carriers;

FIG 10 illustrates a TDD CA A/N transmission process;

FIG. 11 illustrates a HD (half duplex)-TDD CA scheme;

FIG. 12 illustrates a FD (full duplex)-TDD CA scheme;

FIG. 13 illustrates a TDD CA A/N transmission process according to an embodiment of the present invention;

FIG. 14 illustrates a TDD CA A/N transmission process according to another embodiment of the present invention; and

FIG. 15 illustrates a base station (BS) and a user equipment (UE) applicable to an embodiment of the present invention.


[Best Mode]



[0015] Embodiments of the present invention are applicable to a variety of wireless access technologies such as Code Division Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Multiple Access (OFDMA), and Single Carrier Frequency Division Multiple Access (SC-FDMA). CDMA can be implemented as a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA can be implemented as a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE). OFDMA can be implemented as a radio technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wireless Fidelity (Wi-Fi)), IEEE 802.16 (Worldwide interoperability for Microwave Access (WiMAX)), IEEE 802.20, Evolved UTRA (E-UTRA). UTRA is a part of Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA, employing OFDMA for downlink and SC-FDMA for uplink. LTE-Advanced (LTE-A) is an evolution of 3GPP LTE.

[0016] While the present invention is described focusing on 3GPP LTE/LTE-A to clarify the description, this is purely exemplary and thus should not be construed as limiting the present invention.

[0017] The terms used in the specification will now be described.
  • HARQ-ACK (Hybrid Automatic Repeat request-Acknowledgement): this represents an acknowledgment response to downlink transmission (e.g. PDSCH (Physical Downlink Shared Channel) or SPS release PDCCH (Semi-Persistent Scheduling release Physical Downlink Control Channel)), that is, an ACK(Acknowledgement)/NACK(Negative ACK)/DTX(Discontinuous Transmission) response (simply, ACK/NACK response, ACK/NACK, A/N response, or A/N). The ACK/NACK/DTX response refers to ACK, NACK, DTX or NACK/DTX. HARQ-ACK for a CC or HARQ-ACK of a CC refers to an ACK/NACK response to downlink transmission related to (e.g. scheduled for) the CC. A PDSCH may be replaced by a transport block (TB) or a codeword.
  • PDSCH: this corresponds to a DL grant PDCCH. The PDSCH is used interchangeably with a PDSCH w/ PDCCH in the specification.
  • SPS release PDCCH: this refers to a PDCCH indicating SPS release. A UE performs uplink feedback of ACK/NACK information with respect to an SPS release PDCCH.
  • SPS PDSCH: this is a PDSCH transmitted in DL using a resource semi-statically configured according to SPS. There is no DL grant PDCCH corresponding to the SPS PDSCH. The SPS PDSCH is used interchangeably with a PDSCH w/o PDCCH in the specification.
  • PUCCH (Physical Uplink Control Channel) index: this corresponds to a PUCCH resource. The PUCCH index indicates a PUCCH resource index, for example. The PUCCH resource index is mapped to at least one of an orthogonal cover (OC), a cyclic shift (CS) and PRB.
  • ARI (ACK/NACK Resource Indicator): this is used to indicate a PUCCH resource. For example, the ARI can be used to indicate a resource change value (e.g. offset) for a specific PUCCH resource (group) (configured by a higher layer). Otherwise, the ARI may be used to indicate a specific PUCCH resource (group) index in a PUCCH resource (group) set (configured by a higher layer). The ARI may be included in a TPC (Transmit Power Control) field of a PDCCH corresponding to a PDSCH on an SCC. PUCCH power control is performed through a TPC field in a PDCCH (i.e. a PDCCH corresponding to a PDSCH on a PCC) that schedules the PCC. Furthermore, the ARI may be included in a TPC field of a PDCCH other than a PDCCH that schedules a specific cell (e.g. PCell) while having a DAI (Downlink Assignment Index) initial value. The ARI is used interchangeably with a HARQ-ACK resource indication value.
  • DAI (Downlink Assignment Index): this is included in DCI transmitted through a PDCCH. The DAI may indicate an order value or counter value of a PDCCH. For convenience, a value indicated by a DAI field of a DL grant PDCCH is called a DL DAI and a value indicated by a DAI field of a UL grant PDCCH is called a UL DAI.
  • Implicit PUCCH resource: this represents a PUCCH resource/index linked to a lowest CCE index of a PDCCH that schedules a PCC or is transmitted through the PCC (refer to Equation 1).
  • Explicit PUCCH resource: this may be indicated using the ARI.
  • PDCCH scheduling a CC: this indicates a PDCCH that schedules a PDSCH on a corresponding CC. That is, this represents the PDCCH corresponding to the PDSCH on the CC.
  • PCC (Primary Component Carrier) PDCCH: this indicates a PDCCH that schedules a PCC. That is, the PCC PDCCH represents a PDCCH corresponding to a PDSCH on the PCC. The PCC PDCCH is transmitted only on the PCC on the assumption that cross-carrier scheduling is not permitted. The term PCC is used interchangeably with PCell (Primary Cell).
  • SCC (Secondary Component Carrier) PDCCH: this indicates a PDCCH that schedules an SCC. That is, the SCC PDCCH represents a PDCCH corresponding to a PDSCH on the SCC. The SCC PDCCH may be transmitted on a CC (e.g. PCC) other than the corresponding SCC when cross-carrier scheduling is permitted for the SCC. The SCC PDCCH is transmitted only on the SCC when cross-carrier scheduling is not permitted for the SCC. The term SCC is used interchangeably with SCell (Secondary Cell).
  • Cross-CC scheduling: this refers to an operation of transmitting a PDCCH scheduling an SCC through a CC (e.g. PCC) other than the SCC. Cross-CC scheduling means an operation of scheduling/transmitting all PDCCHs only through a PCC when only the PCC and one SCC are present.
  • Non-cross-CC scheduling: this refers to an operation of scheduling/transmitting a PDCCH scheduling each CC through the corresponding CC.


[0018] FIG. 1 illustrates a radio frame structure. In a cellular OFDM wireless packet communication system, uplink/downlink data packet transmission is performed on a subframe-by-subframe basis. A subframe is defined as a predetermined time interval including a plurality of OFDM symbols. LTE(-A) supports a type-1 radio frame structure for FDD (frequency division duplex) and a type-2 radio frame structure for TDD (time division duplex).

[0019] FIG. 1(a) illustrates a type-1 radio frame structure. A downlink subframe includes 10 subframes each of which includes 2 slots in the time domain. A time for transmitting a subframe is referred to as a transmission time interval (TTI). For example, each subframe has a length of 1ms and each slot has a length of 0.5ms. A slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain. Since downlink uses OFDM in LTE(-A), an OFDM symbol represents a symbol period. The OFDM symbol may be referred to as an SC-FDMA symbol or symbol period. A resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.

[0020] The number of OFDM symbols included in one slot may depend on Cyclic Prefix (CP) configuration. When an OFDM symbol is configured with the normal CP, for example, the number of OFDM symbols included in one slot may be 7. When an OFDM symbol is configured with the extended CP, the number of OFDM symbols included in one slot may be 6.

[0021] FIG. 1(b) illustrates a type-2 radio frame structure. The type-2 radio frame includes 2 half frames. Each half frame includes 5 subframes. One subframe consists of 2 slots.

[0022] Table 1 shows UL-DL configurations (UL-DL Cfg) of subframes in a radio frame in the TDD mode.
[Table 1]
Uplink-downlink configurationDownlink-to-Uplink Switch-point periodicitySubframe number
0123456789
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D


[0023] In Table 1, D denotes a downlink subframe, U denotes an uplink subframe and S denotes a special subframe.

[0024] The special subframe includes DwPTS (Downlink Pilot TimeSlot), GP (Guard Period), and UpPTS (Uplink Pilot TimeSlot). DwPTS is a time period reserved for downlink transmission and UpPTS is a time period reserved for uplink transmission.

[0025] Table 2 shows DwPTS/GP/UpPTS lengths according to special subframe configurations. In Table 2, Ts denotes sampling time.
[Table 2]
Special subframe configurationNormal cyclic prefix in downlinkExtended cyclic prefix in downlink
DwPTSUpPTSDwPTSUpPTS
Normal cyclic prefix in uplinkExtended cyclic prefix in uplinkNormal cyclic prefix in uplinkExtended cyclic prefix in uplink
0 6592·Ts 2192·Ts 2560·Ts 7680·Ts 2192·Ts 2560·Ts
1 19760·Ts 20480·Ts
2 21952·Ts 23040·Ts
3 24144·Ts 25600·Ts
4 26336·Ts 7680·Ts 4384·Ts 5120·Ts
5 6592·Ts 4384·Ts 5120·Ts 20480·Ts
6 19760·Ts 23040·Ts
7 21952·Ts - - -
8 24144·Ts - - -


[0026] The radio frame structure is exemplary and the number of subframes, the number of slots and the number of symbols in a radio frame may be changed in various ways.

[0027] FIG. 2 illustrates a resource grid of a downlink slot.

[0028] Referring to FIG. 2, a downlink slot includes a plurality of OFDM symbols in the time domain. One downlink slot may include 7(6) OFDM symbols, and one resource block (RB) may include 12 subcarriers in the frequency domain. Each element on the resource grid is referred to as a resource element (RE). One RB includes 12×7(6) REs. The number NRB of RBs included in the downlink slot depends on a downlink transmit bandwidth. The structure of an uplink slot may be same as that of the downlink slot except that OFDM symbols are replaced by SC-FDMA symbols.

[0029] FIG. 3 illustrates a downlink subframe structure.

[0030] Referring to FIG. 3, a maximum of three (four) OFDM symbols located in a front portion of a first slot within a subframe correspond to a control region to which a control channel is allocated. The remaining OFDM symbols correspond to a data region to which a physical downlink shared chancel (PDSCH) is allocated. Examples of downlink control channels include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), etc. The PCFICH is transmitted at a first OFDM symbol of a subframe and carries information regarding the number of OFDM symbols used for transmission of control channels within the subframe. The PHICH is a response of uplink transmission and carries an HARQ ACK/NACK (Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) signal.

[0031] Control information transmitted through the PDCCH is referred to as downlink control information (DCI). Formats 0, 3, 3A and 4 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B and 2C for downlink are defined as DCI formats. The DCI formats selectively include information such as hopping flag, RB allocation, MCS (Modulation Coding Scheme), RV (Redundancy Version), NDI (New Data Indicator), TPC (Transmit Power Control), cyclic shift for DM RS (Demodulation Reference Signal), CQI (Channel Quality Information) request, HARQ process number, TPMI (Transmitted Precoding Matrix Indicator), PMI (Precoding Matrix Indicator) according to usage.

[0032] A PDCCH may carry transport format and resource allocation informations of a downlink shared channel (DL-SCH), transport format and resource allocation information of an uplink shared channel (UL-SCH), paging information on a paging channel (PCH), system information on the DL-SCH, information on resource allocation of an upper-layer control message such as a random access response transmitted on the PDSCH, a set of Tx power control commands on individual UEs within an arbitrary UE group, a Tx power control command, information on activation of a voice over IP (VoIP), etc. A plurality of PDCCHs can be transmitted within a control region. A UE can monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs). The CCE is a logical allocation unit used to provide the PDCCH with a coding rate based on a state of a radio channel. The CCE corresponds to a plurality of resource element groups (REGs). A format of the PDCCH and the number of bits of the PDCCH are determined by the number of CCEs. The base station determines a PDCCH format according to DCI to be transmitted to the UE, and attaches a cyclic redundancy check (CRC) to control information. The CRC is masked with a unique identifier (e.g., a radio network temporary identifier (RNTI)) according to an owner or usage of the PDCCH. If the PDCCH is for a specific UE, a unique identifier (e.g., cell-RNTI (C-RNTI)) of the UE may be masked to the CRC. Alternatively, if the PDCCH is for a paging message, a paging identifier (e.g., paging-RNTI (P-RNTI)) may be masked to the CRC. If the PDCCH is for system information (more specifically, a system information block (SIB)), a system information RNTI (SI-RNTI) may be masked to the CRC. When the PDCCH is for a random access response, a random access-RNTI (RA-RNTI) may be masked to the CRC.

[0033] FIG. 4 illustrates an uplink subframe structure.

[0034] Referring to FIG. 4, an uplink subframe includes a plurality of (e.g. 2) slots. A slot may include different numbers of SC-FDMA symbols according to CP lengths. The uplink subframe is divided into a control region and a data region in the frequency domain. The data region includes a PUSCH and used to carry a data signal such as voice. The control region includes a PUCCH and used to carry uplink control information (UCI). The PUCCH includes an RB pair located at both ends of the data region in the frequency domain and hops in a slot boundary.

[0035] The PUCCH can be used to transmit the following control information.
  • Scheduling Request (SR): This is information used to request a UL-SCH resource and is transmitted using On-Off Keying (OOK) scheme.
  • HARQ ACK/NACK: This is a response signal to a downlink data packet on a PDSCH and indicates whether the downlink data packet has been successfully received. A 1-bit ACK/NACK signal is transmitted as a response to a single downlink codeword and a 2-bit ACK/NACK signal is transmitted as a response to two downlink codewords.
  • Channel Quality Indicator (CQI): This is feedback information about a downlink channel. Feedback information regarding Multiple Input Multiple Output (MIMO) includes Rank Indicator (RI) and Precoding Matrix Indicator (PMI). 20 bits are used for each subframe.


[0036] Table 3 shows the mapping relationship between PUCCH formats and UCI in LTE.
[Table 3]
PUCCH formatUCI (Uplink Control Information)
Format 1 SR (Scheduling Request) (non-modulated waveform)
Format 1a 1-bit HARQ ACK/NACK (SR exist/non-exist)
Format 1b 2-bit HARQ ACK/NACK (SR exist/non-exist)
Format 2 CQI (20 coded bits)
Format 2 CQI and 1- or 2-bit HARQ ACK/NACK (20 bits) (extended CP only)
Format 2a CQI and 1-bit HARQ ACK/NACK (20+1 coded bits)
Format 2b CQI and 2-bit HARQ ACK/NACK (20+2 coded bits)
Format 3 (LTE-A) HARQ ACK/NACK + SR (48 bits)


[0037] FIG. 5 illustrates a slot level structure of PUCCH formats 1a/1b. The PUCCH formats 1a/1b are used for ACK/NACK transmission. In the case of normal CP, SC-FDMA symbols #2, #3 and #4 are used for DM RS transmission. In the case of extended CP, SC-FDMA symbols #2 and #3 are used for DM RS transmission. Accordingly, 4 SC-FDMA symbols in a slot are used for ACK/NACK transmission. For convenience, PUCCH format 1a/1b is called PUCCH format 1.

[0038] Referring to FIG. 5, 1-bit [b(0)] and 2-bit [b(0)b(1)] ACK/NACK information are modulated according to BPSK and QPSK modulation schemes respectively, to generate one ACK/NACK modulation symbol d0. Each bit [b(i), i=0, 1] of the ACK/NACK information indicates a HARQ response to a corresponding DL transport block, corresponds to 1 in case of positive ACK and corresponds to 0 in case of negative ACK (NACK). Table 4 shows a modulation table defined for PUCCH formats 1a and 1b in LTE.
[Table 4]
PUCCH formatb(0),...,b(Mbit-1)d(0)
1a 0 1
1 -1
1b 00 1
01 -j
10 j
11 -1


[0039] PUCCH formats 1a/1b perform time domain spreading using an orthogonal spreading code (e.g. Walsh-Hadamard or DFT code) w0, w1, w2, w3 in addition to cyclic shift αcs,x in the frequency domain. In the case of PUCCH formats 1a/1b, a larger number of UEs can be multiplexed on the same PUCCH RB because code division multiplexing is used in both frequency and time domains.

[0040] FIG. 6 illustrates an example of determining PUCCH resources for ACK/NACK. In LTE(-A), a plurality of PUCCH resources for ACK/NACK are shared by a plurality of UEs in a cell every time the UEs need the PUCCH resources rather than allocated to UEs in advance. Specifically, a PUCCH resource used by a UE to transmit an ACK/NACK signal corresponds to a PDCCH carrying scheduling information on DL data or a PDCCH indicating SPS release. A PDCCH transmitted in a DL subframe to the UE is composed of a plurality of control channel elements (CCEs). The UE can transmit ACK/NACK through a PUCCH resource corresponding to a specific CCE (e.g. the first CCE) of the CCEs constituting the received PDCCH.

[0041] Referring to FIG. 6, each block in a Downlink Component Carrier (DL CC) represents a CCE and each block in an Uplink Component Carrier (UL CC) indicates a PUCCH resource. Each PUCCH index corresponds to a PUCCH resource for an ACK/NACK signal. If information on a PDSCH is delivered on a PDCCH composed of CCEs #4, #5 and #6, as shown in FIG. 6, a UE transmits an ACK/NACK signal through PUCCH resource #4 corresponding to CCE #4 which is the first CCE of constituting the PDCCH.

[0042] Specifically, a PUCCH resource index in LTE(-A) is determined as follows.



[0043] Here, n(1)PUCCH represents a resource index of PUCCH format 1a/1b for ACK/NACK/DTX transmission, N(1)PUCCH denotes a signaling value received from a higher layer, and nCCE denotes the lowest value of CCE indexes used for PDCCH transmission. A cyclic shift, an orthogonal spreading code and a Physical Resource Block (PRB) for PUCCH formats 1a/1b are obtained from n(1)PUCCH.

[0044] Since an LTE UE cannot simultaneously transmit a PUCCH and a PUSCH, UCI (e.g. CQI/PMI, HARQ-ACK, RI, etc.) is multiplexed to a PUSCH region (PUSCH piggyback) when the UCI needs to be transmitted through a subframe in which a PUSCH is transmitted. An LTE-A UE may also be configured such that the UE cannot simultaneously transmit a PUCCH and a PUSCH. In this case, the UE can multiplex UC I (e.g. CQI/PMI, HARQ-ACK, RI, etc.) to a PUSCH region (PUSCH piggyback) when the UCI needs to be transmitted through a subframe in which a PUSCH is transmitted.

[0045] FIG. 7 illustrates a TDD UL ACK/NACK transmission process in a single cell situation.

[0046] Referring to FIG. 7, a UE can receive one or more DL signals (e.g. PDSCH signals) in M DL subframes (SFs) (S502_0 to S502_M-1). Each PDSCH signal is used to transmit one or more (e.g. 2) transport blocks (TBs) (or codewords (CWs)) according to transmission mode. A PDCCH signal requiring an ACK/NACK response, for example, a PDCCH signal indicating SPS release (simply, SPS release PDCCH signal) may also be received in step S502_0 to S502_M-1, which is not shown. When a PDSCH signal and/or an SPS release PDCCH signal are present in the M DL subframes, the UE transmits ACK/NACK through a UL subframe corresponding to the M DL subframes via processes for transmitting ACK/NACK (e.g. ACK/NACK (payload) generation, ACK/NACK resource allocation, etc.) (S504). ACK/NACK includes acknowledgement information for the PDSCH signal and/or an SPS release PDCCH received in step S502_0 to S502_M-1. While ACK/NACK is transmitted through a PUCCH basically (e.g., refer to FIGS. 5 and 6), ACK/NACK can be transmitted through a PUSCH when a PUSCH is transmitted at ACK/NACK transmission timing. Various PUCCH formats shown in Table 3 can be used for ACK/NACK transmission. To reduce the number of transmitted ACK/NACK bits, various methods such as ACK/NACK bundling and ACK/NACK channel selection can be used.

[0047] As described above, in TDD, ACK/NACK relating to data received in the M DL subframes is transmitted through one UL subframe (i.e. M DL SF(s) : 1 UL SF) and the relationship therebetween is determined by a DASI (Downlink Association Set Index).

[0048] Table 5 shows DASI (K: {k0, k1, ...., kM-1}) defined in LTE(-A). Table 5 shows spacing between a UL subframe transmitting ACK/NACK and a DL subframe associated with the UL subframe. Specifically, when a PDSCH transmission and/or SPS release PDCCH is present in a subframe n-k (k∈K), the UE transmits ACK/NACK in a subframe n.
[Table 5]
UL-DL ConfigurationSubframe n
0123456789
0 - - 6 - 4 - - 6 - 4
1 - - 7, 6 4 - - - 7, 6 4 -
2 - - 8, 7, 4, 6 - - - - 8, 7, 4, 6 - -
3 - - 7, 6, 11 6, 5 5, 4 - - - - -
4 - - 12, 8, 7, 11 6, 5, 4, 7 - - - - - -
5 - - 13, 12, 9, 8, 7, 5, 4, 11, 6 - - - - - - -
6 - - 7 7 5 - - 7 7 -


[0049] In TDD operation, the UE needs to transmit an ACK/NACK signal through one UL SF with respect to one or more DL signals (e.g. PDSCH) received through M DL SFs. Transmission of ACK/NACK for a plurality of DL SFs through one UL SF is performed according to the following methods.
  1. 1) ACK/NACK bundling: ACK/NACK bits for a plurality of data units (e.g. PDSCH, SPS release PDCCH, etc.) are combined according to a logical operation (e.g. logical AND operation). For example, upon successful decoding of all data units, a receiver (e.g. UE) transmits ACK signals. If any of data units has not been decoded (detected), the receiver does not transmit a NACK signal or no signal.
  2. 2) Channel selection: Upon reception of a plurality of data units (e.g. PDSCH, SPS release PDCCH, etc.), a UE occupies a plurality of PUCCH resources for ACK/NACK transmission. ACK/NACK responses to the plurality of data units are identified according to combinations of PUCCH resources used for ACK/NACK transmission and contents of transmitted ACK/NACK (e.g. bit values, QPSK symbol values). Channel selection is also referred to as ACK/NACK selection and PUCCH selection.


[0050] Channel selection will now be described in more detail. According to channel selection, the UE occupies a plurality of uplink physical channel resources (e.g. PUCCH resources) in order to transmit multiplexed ACK/NACK signals when a plurality of downlink data is received. For example, upon reception of a plurality of PDSCHs, the UE can occupy as many PUCCH resources as the number of PDSCHs using a specific CCE of a PDCCH indicating each PDSCH. In this case, the UE can transmit an ACK/NACK signal multiplexed using a combination of information about which PUCCH resource is selected from the occupied PUCCH resources and contents of modulated/coded information applied to the selected PUCCH resource.

[0051] Table 6 shows a mapping table for channel selection, defined in LTE.
[Table 6]
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)Subframe
n(1)PUCCH,ib(0), b(1)
ACK,ACK,ACK, ACK n(1)PUCCH,1 1,1
ACK,ACK,ACK, NACK/DTX n(1)PUCCH,1 1,0
NACK/DTX,NACK/DTX, NACK, DTX n(1)PUCCH,2 1,1
ACK,ACK, NACK/DTX, ACK n(1)PUCCH,1 1,0
NACK, DTX,DTX, DTX n(1)PUCCH,0 1,0
ACK,ACK, NACK/DTX, NACK/DTX n(1)PUCCH,1 1,0
ACK, NACK/DTX, ACK, ACK n(1)PUCCH,3 0,1
NACK/DTX,NACK/DTX,NACK/DTX, NACK n(1)PUCCH,3 1,1
ACK, NACK/DTX, ACK, NACK/DTX n(1)PUCCH,2 0,1
ACK, NACK/DTX,NACK/DTX, ACK n(1)PUCCH,0 0,1
ACK, NACK/DTX,NACK/DTX, NACK/DTX n(1)PUCCH,0 1,1
NACK/DTX, ACK,ACK, ACK n(1)PUCCH,3 0,1
NACK/DTX, NACK, DTX, DTX n(1)PUCCH,1 0,0
NACK/DTX, ACK,ACK, NACK/DTX n(1)PUCCH,2 1,0
NACK/DTX, ACK, NACK/DTX, ACK n(1)PUCCH,3 1,0
NACK/DTX, ACK, NACK/DTX, NACK/DTX n(1)PUCCH,1 0,1
NACK/DTX,NACK/DTX, ACK, ACK n(1)PUCCH,3 0,1
NACK/DTX,NACK/DTX, ACK, NACK/DTX n(1)PUCCH,2 0,0
NACK/DTX,NACK/DTX,NACK/DTX, ACK n(1)PUCCH,3 0,0
DTX,DTX,DTX, DTX N/A N/A


[0052] In Table 6, HARQ-ACK(i) indicates a HARQ ACK/NACK/DTX response for an i-th data unit (0≤i≤3). The HARQ ACK/NACK/DTX response includes ACK, NACK, DTX and NACK/DTX. NACK/DTX represents NACK or DTX. ACK and NACK represent whether a transport block (equivalent to a codeword) transmitted through a PDSCH has been successfully decoded or not. DTX (Discontinuous Transmission) represents that a PDCCH has not been successfully detected. Maximum 4 PUCCH resources (i.e., n(1)PUCCH,0 to n(1)PUCCH,3) can be occupied for each data unit. The multiplexed ACK/NACK signal is transmitted through one PUCCH resource selected from the occupied PUCCH resources. In Table 6, n(1)PUCCH,i represents a PUCCH resource actually used for ACK/NACK transmission. b(0)b(1) indicates two bits transmitted through the selected PUCCH resource, which are modulated using QPSK. For example, when the UE has decoded 4 data units successfully, the UE transmits bits (1, 1) to a BS through a PUCCH resource linked to n(1)PUCCH,1. Since combinations of PUCCH resources and QPSK symbols cannot represent all available ACK/NACK suppositions, NACK and DTX are coupled (NACK/DTX, N/D) except for a few cases.

[0053] FIG. 8 illustrates a carrier aggregation (CA) communication system. To use a wider frequency band, an LTE-A system employs carrier aggregation (or bandwidth aggregation) technology which aggregates a plurality of UL/DL frequency blocks to obtain a wider UL/DL bandwidth. Each frequency block is transmitted using a component carrier (CC). The component carrier can be regarded as a carrier frequency (or center carrier, center frequency) for the frequency block.

[0054] Referring to FIG. 8, a plurality of UL/DL CCs can be aggregated to support a wider UL/DL bandwidth. The CCs may be contiguous or non-contiguous in the frequency domain. Bandwidths of the CCs can be independently determined. Asymmetrical carrier aggregation in which the number of UL CCs is different from the number of DL CCs can be implemented. For example, when there are two DL CCs and one UL CC, the DL CCs can correspond to the UL CC in the ratio of 2:1. A link between DL CC/UL CC can be fixed or semi-statically configured in the system. Even if the system bandwidth is configured with N CCs, a frequency band that a specific UE can monitor/receive can be limited to L (<N) CCs. Various parameters with respect to carrier aggregation can be configured cell-specifically, UE-group-specifically, or UE-specifically. Control information may be transmitted/received only through a specific CC. This specific CC can be referred to as a Primary CC (PCC) (or anchor CC) and other CCs can be referred to as Secondary CCs (SCCs).

[0055] In LTE-A, the concept of a cell is used to manage radio resources [refer to 36.300 V10.2.0 (2010-12) 5.5. Carrier Aggregation; 7.5. Carrier Aggregation]. A cell is defined as a combination of downlink resources and uplink resources. Yet, the uplink resources are not mandatory. Therefore, a cell may comprise downlink resources only or both downlink resources and uplink resources. The linkage between the carrier frequencies (or DL CCs) of downlink resources and the carrier frequencies (or UL CCs) of uplink resources may be indicated by system information. A cell operating in primary frequency (or PCC) may be referred to as a primary cell (PCell) and a cell operating in secondary frequency (or an SCC) may be referred to as a secondary cell (SCell). The PCell is used for a UE to establish an initial connection or re-establish a connection. The PCell may refer to a cell indicated during handover. The SCell may be configured after an RRC connection is established and may be used to provide additional radio resources. The PCell and the SCell may collectively be referred to as a serving cell. Accordingly, a single serving cell composed of a PCell only exists for a UE in an RRC_Connected state, for which carrier aggregation is not configured or which does not support carrier aggregation. On the other hand, one or more serving cells exist, including a PCell and entire SCells, for a UE which is in an RRC_CONNECTED state and carrier aggregation is configured for. For carrier aggregation, a network may configure one or more SCells in addition to an initially configured PCell for a UE supporting carrier aggregation during connection setup after an initial security activation operation is initiated.

[0056] When cross-carrier scheduling (or cross-CC scheduling) is applied, a PDCCH for downlink allocation can be transmitted on DL CC #0 and a corresponding PDSCH can be transmitted on DL CC #2. For cross-CC scheduling, introduction of a carrier indicator field (CIF) may be considered. Presence or absence of the CIF in a PDCCH may be configured semi-statically and UE-specifically (or UE group-specifically) by higher layer signaling (e.g. RRC signaling). The baseline of PDCCH transmission is summarized as follows.
  • CIF disabled: a PDCCH on a DL CC is used to allocate a PDSCH resource on the same DL CC or a PUSCH resource on a linked UL CC.
  • CIF enabled: a PDCCH on a DL CC can be used to allocate a PDSCH or PUSCH resource on a specific DL/UL CC from among a plurality of aggregated DL/UL CCs using the CIF.


[0057] When the CIF is present, the BS can allocate a PDCCH monitoring DL CC to reduce BD complexity of the UE. The PDCCH monitoring DL CC set includes one or more DL CCs as parts of aggregated DL CCs and the UE detects/decodes a PDCCH only on the corresponding DL CCs. That is, when the BS schedules a PDSCH/PUSCH for the UE, a PDCCH is transmitted only through the PDCCH monitoring DL CC set. The PDCCH monitoring DL CC set can be set in a UE-specific, UE-group-specific or cell-specific manner. The term "PDCCH monitoring DL CC" may be replaced by the terms such as "monitoring carrier" and "monitoring cell". The term "CC" aggregated for the UE may be replaced by the terms such as "serving CC", "serving carrier" and "serving cell".

[0058] FIG. 9 illustrates scheduling when a plurality of carriers is aggregated. It is assumed that 3 DL CCs are aggregated and DL CC A is configured as a DL CC monitoring PDCCH. DL CC A, DL CC B and DL CC C can be called serving CCs, serving carriers, serving cells, etc. In case of CIF disabled, a DL CC can transmit only a PDCCH that schedules a PDSCH corresponding to the DL CC without a CIF. In case of CIF enabled, a DL CC A (monitoring DL CC) may transmit not only a PDCCH scheduling the PDSCH of the DL CC A but also PDCCHs scheduling PDSCHs of other DL CCs using the CIF. A PDCCH is not transmitted in DL CC B/C which are not configured as DL CC monitoring PDCCH.

[0059] A description will be given of a case in which channel selection using PUCCH format 1b is configured for HARQ-ACK transmission in case of TDD CA. It is assumed that 2 serving cells (i.e. PCell and SCell, or PCC and SCC) having the same TDD UL-DL configuration are aggregated in LTE-A.

[0060] A channel selection scheme using PUCCH format 1b when M≤2 in a UL subframe n for HARQ-ACK transmission will first be described. Here, M denotes the number of elements of set K described above with reference to Table 5 (i.e. the number of DL SFs corresponding to UL SFs). When M≤2 in the UL subframe n, a UE can transmit b(0)b(1) on a PUCCH resource selected from A PUCCH resources n(1)PUCCH,i(0≤i≤A-1 and A⊂{2,3,4}). Specifically, the UE transmits an A/N signal in the UL subframe n using PUCCH format 1b according to Table 7, 8 and 9. When M=1 in the UL subframe n, HARQ-ACK(j) denotes an A/N response to a transport block or an SPS release PDCCH, which is related to a serving cell c. Here, when M=1, a transport block, HARQ-ACK(j) and A PUCCH resources may be given according to Table 10. When M=2 in the UL subframe n, HARQ-ACK(j) denotes an A/N response to a transport block or an SPS release PDCCH within DL subframe(s) given by set K in each serving cell. Here, when M=2, subframes and A PUCCH resources in each serving cell for HARQ-ACK(j) may be given according to Table 11.

[0061] Table 7 is a mapping table for channel selection, defined in LTE-A when 2 CCs having the same UL-DL configuration are aggregated, M=1 and A=2.
[Table 7]
HARQ-ACK(0), HARQ-ACK(1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0
DTX, NACK/DTX No Transmission


[0062] Here, an implicit PUCCH resource linked to a PDCCH scheduling PCC (or PCell) (i.e. PCC-PDCCH) may be allocated to n(1)PUCCH,0, and an implicit PUCCH resource linked to a PDCCH scheduling SCC (i.e. SCC-PDCCH) or an explicit PUCCH resource reserved by RRC may be allocated to n(1)PUCCH,1 according to whether cross-CC scheduling is applied. For example, when cross-CC scheduling is applied, an implicit PUCCH resource linked to the PCC-PDCCH may be allocated to n(1)PUCCH,0 and an implicit PUCCH resource linked to the SCC-PDCCH may be allocated to n(1)PUCCH,1.

[0063] Table 8 is a mapping table for channel selection, defined in LTE-A when 2 CCs having the same UL-DL configuration are aggregated, M=1 and A=3.
[Table 8]
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2)

b(0)b(1)
ACK,ACK, ACK

1, 1
ACK,ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, NACK/DTX

0, 1
NACK/DTX,NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0
DTX, NACK/DTX, NACK/DTX No Transmission


[0064] Here, when the PCC is a MIMO CC and the SCC is a non-MIMO CC, an implicit PUCCH resource linked to the PCC-PDCCH can be allocated to n(1)PUCCH,0 and n(1)PUCCH,1, and an implicit PUCCH resource linked to the SCC-PDCCH or an explicit PUCCH resource reserved by RRC can be allocated to n(1)PUCCH,2 according to whether cross-CC scheduling is applied. If the PCC is a non-MIMO CC and the SCC is a MIMO CC, an implicit PUCCH resource linked to the PCC-PDCCH can be allocated to n(1)PUCCH,0, and an implicit PUCCH resource linked to the SCC-PDCCH or an explicit PUCCH resource reserved by RRC can be allocated to n(1)PUCCH,1 and n(1)PUCCH,2 according to whether cross-CC scheduling is applied.

[0065] Table 9 is a mapping table for channel selection, defined in LTE-A when 2 CCs having the same UL-DL configuration are aggregated, M≤2 and A=4.
[Table 9]
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK,ACK,ACK, ACK

1, 1
ACK,ACK,ACK, NACK/DTX

1, 1
ACK,ACK, NACK/DTX, ACK

1, 0
ACK,ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1, 0
ACK, NACK/DTX,NACK/DTX, ACK

0, 1
ACK, NACK/DTX,NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK,ACK, ACK

0, 0
NACK/DTX, ACK,ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX,NACK/DTX, ACK, ACK

0, 1
NACK/DTX,NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX,NACK/DTX,NACK/DTX, ACK

0, 0
NACK, NACK/DTX,NACK/DTX, NACK/DTX

0, 0
DTX, NACK/DTX,NACK/DTX, NACK/DTX No Transmission


[0066] Here, an implicit PUCCH resource linked to the PDCCH scheduling PCC (or PCell) (i.e. PCC-PDCCH) may be allocated to n(1)PUCCH,0 and n(1)PUCCH,1 irrespective of whether cross-CC scheduling is applied, and an implicit PUCCH resource linked to the PDCCH scheduling SCC (i.e. SCC-PDCCH) or an explicit PUCCH resource reserved by RRC may be allocated to n(1)PUCCH,2 and/or n(1)PUCCH,3 according to whether cross-CC scheduling is applied. For example, when cross-CC scheduling is applied and M=2, implicit PUCCH resources linked to PCC-PDCCHs of the first and second DL SFs may be respectively allocated to n(1)PUCCH,0 and n(1)PUCCH,1 and implicit PUCCH resources linked to SCC-PDCCHs of the first and second DL SFs may be respectively allocated to n(1)PUCCH,2 and n(1)PUCCH,3.

[0067] Table 10 shows transport blocks, HARQ-ACK(j) and PUCCH resources when M=1.
[Table 10]
AHARQ-ACK(j)
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
2 TB1 Primary cell TB1 Secondary cell NA NA
3 TB1 Primary cell TB1 Secondary cell TB2 Secondary cell NA
3 T81 Primary cell TB2 Primary cell TB1 Secondary cell NA
4 TB1 Primary cell TB2 Primary cell TB1 Secondary cell TB2 Secondary cell
*TB: transport block, NA: not available


[0068] Table 11 shows transport blocks, HARQ-ACK(j) and PUCCH resources when M=2.
[Table 11]
AHARQ-ACK(j)
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
4 The first subframe of Primary cell The second subframe of Primary cell The first subframe of Secondary cell The second subframe of Secondary cell


[0069] A channel selection scheme using PUCCH format 1b when M>2 in the UL subframe n for HARQ-ACK transmission will now be described. This channel selection scheme is similar to the channel selection scheme in case of M≤2. Specifically, the UE transmits an A/N signal using PUCCH format 1b in the UL subframe n according to Tables 12 and 13. When M>2 in the UL subframe n, n(1)PUCCH,0 and n(1)PUCCH,1 are associated with DL transmission(s) (e.g. PDSCH transmission(s)) on PCell and n(1)PUCCH,2 and n(1)PUCCH,3 are associated with DL transmission(s) (e.g. PDSCH transmission(s)) on SCell.

[0070] HARQ-ACK(i) for an arbitrary cell denotes an A/N response to a PDCCH (PDSCH corresponding thereto) on which DAI-c that schedules the cell is i+1. When a PDSCH w/o PDCCH is present, HARQ-ACK(0) may refer to an A/N response to the PDSCH w/o PDCCH and HARQ-ACK(1) may refer to an A/N response to a PDCCH (PDSCH corresponding thereto) on which DAI-c is i.

[0071] Table 12 is a mapping table for channel selection, defined in LTE-A when 2 CCs having the same UL-DL configuration are aggregated and M=3.
[Table 12]
Primary CellSecondary CellResourceConstellationRM Code Input Bits
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2)

b(0),b(1) o(0),o(1),o(2),o(3)
ACK,ACK, ACK ACK,ACK, ACK

1, 1 1,1,1, 1
ACK,ACK, NACK/DTX ACK,ACK, ACK

0, 0 1, 0, 1, 1
ACK, NACK/DTX, any ACK,ACK, ACK

1, 1 0, 1,1, 1
NACK/DTX, any, any ACK,ACK, ACK

0, 1 0,0, 1, 1
ACK,ACK, ACK ACK,ACK, NACK/DTX

1, 0 1,1,1, 0
ACK,ACK, NACK/DTX ACK,ACK, NACK/DTX

1, 0 1, 0, 1, 0
ACK, NACK/DTX, any ACK,ACK, NACK/DTX

0, 1 0, 1,1, 0
NACK/DTX, any, any ACK,ACK, NACK/DTX

0, 0 0,0, 1, 0
ACK,ACK, ACK ACK, NACK/DTX, any

1, 1 1,1, 0, 1
ACK,ACK, NACK/DTX ACK, NACK/DTX, any

0, 1 1, 0,0, 1
ACK, NACK/DTX, any ACK, NACK/DTX, any

1, 0 0, 1, 0, 1
NACK/DTX, any, any ACK, NACK/DTX, any

0, 0 0,0,0, 1
ACK,ACK, ACK NACK/DTX, any, any

1, 0 1,1, 0, 0
ACK,ACK, NACK/DTX NACK/DTX, any, any

0, 1 1, 0,0, 0
ACK, NACK/DTX, any NACK/DTX, any, any

1, 1 0, 1, 0, 0
NACK, any, any NACK/DTX, any, any

0, 0 0,0,0, 0
DTX, any, any NACK/DTX, any, any No Transmission 0,0,0, 0


[0072] Here, an implicit PUCCH resource linked to the PDCCH scheduling PCC (or PCell) (i.e. PCC-PDCCH) may be allocated to n(1)PUCCH,0 and/or n(1)PUCCH,1 irrespective of whether cross-CC scheduling is applied, and an implicit PUCCH resource linked to the PDCCH scheduling SCC (i.e. SCC-PDCCH) or an explicit PUCCH resource reserved by RRC may be allocated to n(1)PUCCH,2 and/or n(1)PUCCH,3 according to whether cross-CC scheduling is applied. For example, in a TDD situation, implicit PUCCH resources linked to PCC-PDCCHs respectively corresponding to DAI-c of 1 and DAI-c of 2 may be respectively allocated to n(1)PUCCH,0 and n(1)PUCCH,1 and implicit PUCCH resources linked to SCC-PDCCHs respectively corresponding to DAI-c of 1 and DAI-c of 2 may be respectively allocated to n(1)PUCCH,2 and n(1)PUCCH,3.

[0073] Table 13 is a mapping table for channel selection, defined in LTE-A when 2 CCs having the same UL-DL configuration are aggregated and M=4.
[Table 13]
Primary CellSecondary CellResourceConstellationRM Code Input Bits
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3) HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0),b(1) o-(0),o(1),o(2),o(3)
ACK,ACK,ACK, NACK/DTX ACK,ACK,ACK, NACK/DTX

1, 1 1,1,1, 1
ACK,ACK, NACK/DTX, any ACK,ACK,ACK, NACK/DTX

0, 0 1, 0, 1, 1
ACK, DTX,DTX, DTX ACK,ACK,ACK, NACK/DTX

1, 1 0, 1,1, 1
ACK,ACK,ACK, ACK ACK,ACK,ACK, NACK/DTX

1, 1 0, 1,1, 1
NACK/DTX, any,any, any ACK,ACK,ACK, NACK/DTX

0, 1 0,0, 1, 1
(ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) ACK,ACK,ACK, NACK/DTX

0, 1 0,0, 1, 1
ACK,ACK,ACK, NACK/DTX ACK,ACK, NACK/DTX, any

1, 0 1,1,1, 0
ACK,ACK, NACK/DTX, any ACK,ACK, NACK/DTX, any

1, 0 1, 0, 1, 0
ACK, DTX,DTX, DTX ACK,ACK, NACK/DTX, any

0, 1 0, 1,1, 0
ACK,ACK,ACK, ACK ACK,ACK, NACK/DTX, any

0, 1 0, 1,1, 0
NACK/DTX, any,any, any ACK,ACK, NACK/DTX, any

any
0, 0 0,0, 1, 0
(ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) ACK,ACK, NACK/DTX, any

0, 0 0,0, 1, 0
ACK,ACK,ACK, NACK/DTX ACK, DTX,DTX, DTX

1, 1 1,1, 0, 1
ACK,ACK,ACK, NACK/DTX ACK,ACK,ACK, ACK

1, 1 1,1, 0, 1
ACK,ACK, NACK/DTX, any ACK, DTX,DTX, DTX

0, 1 1, 0,0, 1
ACK,ACK, NACK/DTX, any ACK,ACK,ACK, ACK

0, 1 1, 0,0, 1
ACK, DTX,DTX, DTX ACK, DTX,DTX, DTX

1, 0 0, 1, 0, 1
ACK, DTX,DTX, DTX ACK,ACK,ACK, ACK

1, 0 0, 1, 0, 1
ACK,ACK,ACK, ACK ACK, DTX,DTX, DTX

1, 0 0, 1, 0, 1
ACK,ACK,ACK, ACK ACK,ACK,ACK, ACK

1, 0 0, 1, 0, 1
NACK/DTX, any,any, any ACK, DTX,DTX, DTX

0, 0 0,0,0, 1
NACK/DTX, any,any, any ACK,ACK,ACK, ACK

0, 0 0,0,0, 1
(ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) ACK, DTX,DTX, DTX

0, 0 0,0,0, 1
(ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) ACK,ACK,ACK, ACK

0, 0 0,0,0, 1
ACK,ACK,ACK, NACK/DTX NACK/DTX, any,any, any

1, 0 1,1, 0, 0
ACK,ACK,ACK, NACK/DTX (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX)

1, 0 1,1, 0, 0
ACK,ACK, NACK/DTX, any NACK/DTX, any,any, any

0, 1 1, 0,0, 0
ACK,ACK, NACK/DTX, any (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX)

0, 1 1, 0,0, 0
ACK, DTX,DTX, DTX NACK/DTX, any,any, any

1, 1 0, 1, 0, 0
ACK, DTX,DTX, DTX (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX )

1, 1 0, 1, 0, 0
ACK,ACK,ACK, ACK NACK/DTX, any,any, any

1, 1 0, 1, 0, 0
ACK,ACK,ACK, ACK (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX)

1, 1 0, 1, 0, 0
NACK, any,any, any NACK/DTX, any,any, any

0, 0 0,0,0, 0
NACK, any,any, any (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX)

0, 0 0,0,0, 0
(ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) NACK/DTX, any,any, any

0, 0 0,0,0, 0
(ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX)

0, 0 0,0,0, 0
DTX, any,any, any NACK/DTX, any,any, any No Transmission 0,0,0, 0
DTX, any,any, any (ACK, NACK/DTX, any, any), except for (ACK, DTX,DTX, DTX) No Transmission 0,0,0, 0


[0074] Here, n(1)PUCCH,0, n(1)PUCCH,1, n(1)PUCCH,2 and n(1)PUCCH,3 may be allocated as described in Table 12.

[0075] FIG. 10 illustrates an A/N transmission process in TDD CA. The A/N transmission process is based on the assumption that 2 CCs (e.g. PCC and SCC) having the same UL-DL configuration are aggregated.

[0076] Referring to FIG. 10, a UE generates a first set of HARQ-ACK for a first CC (or cell) and a second set of HARQ-ACK for a second CC (or cell) (S1302). Then, the UE checks whether a PUSCH is allocated to a subframe for A/N transmission (hereinafter, referred to as A/N subframe) (S1304). When a PUSCH is not allocated to the A/N subframe, the UE transmits A/N information by PUCCH format 1b and channel selection (refer to Tables 7 to 13). On the other hand, when a PUSCH is allocated to the A/N subframe, the UE multiplexes A/N bits to the PUSCH. Specifically, the UE generates an A/N bit sequence (e.g. o(0), o(1), o(2), o(3) in Tables 12 and 13) corresponding to the first set of HARQ-ACK and the second set of HARQ-ACK (S1308). The A/N bit sequence is subjected to channel coding (S170) and channel interleaving (S190) and then transmitted through the PUSCH (S1310). Channel coding includes RM (Reed-Muller) coding, Tail-biting convolutional coding, etc.

Embodiment: A/N channel selection for TDD CA



[0077] A beyond LTE-A system based on TDD may consider aggregation of a plurality of CCs having different UL-DL configurations. In this case, different A/N timings (i.e. UL SF timing at which A/N for DL data transmitted through each DL SF is transmitted) may be configured for PCC and SCC according to UL-DL configurations of the corresponding CCs. For example, UL SF timing at which A/N is transmitted for the same DL SF timing (DL data transmitted at the DL SF timing) may be configured differently for PCC and SCC, and a DL SF group for which A/N feedback is transmitted at the same UL SF timing may be configured differently for PCC and SCC. Furthermore, link directions (i.e. DL or UL) of PCC and SCC may be configured differently at the same SF timing. For example, SCC may be configured as UL SF at a specific SF timing, whereas PCC can be configured as DL SF at the same SF timing.

[0078] In addition, the beyond LTE-A system based on TDD may support cross-CC scheduling when CA is based on different TDD UL-DL configurations (for convenience, referred to as different TDD CA). In this case, UL grant timing (DL SF timing at which a UL grant for scheduling UL transmission is transmitted) and PHICH timing (DL SF timing at which PHICH is transmitted with respect to UL data) may be differently configured for MCC (monitoring CC) and SCC. For example, DL SFs in which UL grant/PHICH is transmitted with respect to the same UL SF may be configured differently for MCC and SCC. Furthermore, a UL SF group for which a UL grant or PHICH feedback is transmitted in the same DL SF may be configured differently for MCC and SCC. In this case, link directions of MCC and SCC may be configured differently at the same SF timing. For example, a specific SF timing may be configured as a DL SF in SCC, in which a UL grant/PHICH will be transmitted, whereas the SF timing may be configured as a UL SF in MCC.

[0079] When there is a SF timing at which link directions of PCC and SCC are different from each other due to different TDD CA configuration (hereinafter, referred to as collided SF), only a CC from among PCC and SCC, which has a specific link direction or has the same link direction as that of a specific CC (e.g. PCC), may be operated at the SF timing due to hardware configuration of the UE or for other reasons/purposes. For convenience, this scheme is called HD (Half-Duplex)-TDD CA. For example, when SF collision occurs because specific SF timing is configured as a DL SF in PCC and the SF timing is configured as a UL SF in SCC, only a PCC having DL direction at the SF timing (i.e. DL SF configured for PCC) is operated and an SCC having UL direction (i.e. UL SF configured for SCC) is not operated at the SF timing (and vice versa). In this situation, to transmit A/N feedback for DL data transmitted through DL SFs of all CCs through a PCC, identical or different A/N timings (configured by a specific UL-DL configuration) may be applied to each CC, or A/N timing configured by a specific UL-DL configuration may be commonly applied to all CCs. Here, the specific UL-DL configuration commonly applied to all CCs (referred to as a reference configuration or Ref-Cfg) may be the same as UL-DL configuration configured for PCC or SCC or may be determined as a UL-DL configuration other than the UL-DL configuration configured for PCC or SCC.

[0080] In case of HD-TDD CA, the number of DL SFs (referred to as A/N-DL SFs) for which A/N feedback is transmitted at one UL SF timing may be configured differently for PCC and SCC. In other words, when the number of DL SFs (A/N-DL SFs) corresponding to one UL SF is defined as M, M may be set differently/independently for each CC with respect to one PCC UL SF (M for each CC: Mc). When Ref-Cfg of a specific XCC (e.g. PCC or SCC) is not equal to the UL-DL configuration of PCC (i.e. PCC-Cfg), an A/N-DL SF index of the XCC at PCC UL SF timing may be different from an A/N-DL SF index for which A/N timing of the PCC-Cfg is applied. Particularly, when a PUCCH resource linked to a CCE resource of a PDCCH scheduling DL data is called an implicit PUCCH, an implicit PUCCH may not be defined (in a PCC UL SF in which A/N with respect to an XCC DL SF will be transmitted) for the XCC DL SF (through which PDCCH scheduling DL data to be transmitted through the XCC DL SF) even in a cross-CC scheduling situation.

[0081] FIG. 11 illustrates a HD-TDD CA structure. In the figure, shaded parts X show CCs that are restricted from being used in a collided SF and a dotted-line arrow represents a DL SF for which an implicit PUCCH is not linked to a PCC UL SF.

[0082] In the meantime, it may considered to permit simultaneous UL/DL transmission and reception in a collided SF in which link directions of PCC and SCC are different from each other. For convenience, this method is called FD (Full Duplex)-TDD CA. In case of FD-TDD CA, it is also possible to apply the same or different A/N timings (configured for Ref-Cfg) to CCs or commonly apply A/N timing configured for Ref-Cfg to all CCs in order to transmit A/N feedbacks for DL SFs of all CCs through one PCC UL SF. Ref-Cfg may be identical to PCC-Cfg or SCC-Cfg or may be configured as a UL-DL Cfg other than PCC-Cfg and SCC-Cfg. In a FD-TDD CA structure, M may also be set differently/independently for CCs with respect to one PCC UL SF and an implicit PUCCH may not be defined for an XCC DL SF (in a PCC UL SF corresponding to the SF) even in a cross-CC scheduling situation. FIG. 12 illustrates a FD-TDD CA structure. In FIG. 12, dotted-line arrows represent DL SFs for which an implicit PUCCH is not linked to the PCC UL SF.

[0083] A description will be given of an A/N state mapping and operating method for channel selection based A/N transmission when a plurality of CCs (having different TDD UL-DL configurations) are aggregated. To aid understanding of the present invention, the following description is based on the assumption that 2 CCs (i.e. a PCC and an SCC) are aggregated. In this case, the number of A/N-DL SFs (refer to the number of elements of set K in Table 5) of CC1 (e.g. PCC or SCC) and CC2 (e.g. SCC or PCC) which correspond to PCC UL SF n are respectively set to M1 and M2. Here, M1 and M2 may be set to different values by applying different TDD UL-DL configurations and/or Ref-Cfgs. In the following description, A denotes ACK, N denotes NACK, and D denotes data not received or PDCCH not received (i.e. DTX). D/N denotes NACK or DTX and "any" represents ACK, NACK or DTX. A maximum number of transport blocks that can be transmitted through a CC is defined as Ntb, for convenience. Furthermore, DL data transmitted without a PDCCH (e.g. PDSCH transmitted through SPS) is called DL data w/o PDCCH, for convenience. DL data may refer to a PDCCH/PDSCH that requires ACK/NACK feedback and may include a PDCCH indicating SPS release. In addition, a DL SF may include a special SF as well as a normal DL SF.

[0084] Prior to description of the present invention, the conventional TDD CA channel selection scheme will now be described. As described above with reference to FIGS. 7 to 13, LTE-A may employ channel selection for A/N transmission when 2 CCs (e.g. PCC and SCC) having the same TDD UL-DL configuration are aggregated. Specifically, LTE-A considers A/N state mapping for each CC when M = 1, 2, 3, 4 as follows.
▪ M = 1
∘ When Ntb = 1, ACK-rsp (1) is an A/N response to a corresponding TB.
[Table 14]
ACK-rsp(1)
A
N/D

∘ When Ntb = 2, ACK-rsp (i) is an A/N response to an i-th TB.
[Table 15]
ACK-rsp(1), ACK-rsp(2)
A, A
N/D, A
A, N/D
N/D, N/D

▪ M = 2
∘ ACK-rsp(i) is an A/N response to DL data transmitted through an i-th DL SF.
[Table 16]
ACK-rsp(1), ACK-rsp(2)
A, A
N/D, A
A, N/D
N/D, N/D

▪ M = 3

∘ Case in which DL data w/o PDCCH is not present
ACK-rsp(i) is an A/N response to DL data corresponding to a PDCCH with DAI=i.

∘ Case in which DL data w/o PDCCH is present
ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to PDCCH with DAI=i.

[Table 17]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3)Ref-state
A, A, A A, A
A, A, N/D N/D, A
A, N/D, any A, N/D
N/D, any, any N/D, N/D

▪ M = 4

∘ Case in which DL data w/o PDCCH is not present
ACK-rsp (i) is an A/N response to DL data corresponding to a PDCCH with DAI=i.

∘ Case in which DL data w/o PDCCH is present
ACK-rsp (1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to PDCCH with DAI=i.

[Table 18]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3), ACK-rsp(4)Ref-state
A, A, A, N/D A, A
A, A, N/D, any N/D, A
(A, D,D, D) or (A, A, A, A) A, N/D
(N/D, any,any, any) or (A, N/D, any, any), except for (A, D, D, D) N/D, N/D


[0085] To map an A/N state for each CC in Tables 14 to 18 into a combination of (PUCCH resource, QPSK symbol), the following method is employed according to M (hereinafter, referred to as a basic mapping rule).

▪ M = 1

∘ When Ntb = 1 for both CCs

  • HARQ-ACK(0) and HARQ-ACK(1) of Table 7 are respectively replaced by ACK-rsp(1) of PCC and ACK-rsp(1) of SCC.

∘ When Ntb = 1 for PCC and Ntb = 2 for SCC

  • HARQ-ACK(0), HARQ-ACK(1) and HARQ-ACK(2) of Table 8 are respectively replaced by ACK-rsp(1) of PCC, ACK-rsp(1) and ACK-rsp(2) of SCC.

∘ When Ntb = 2 for PCC and Ntb = 1 for SCC

  • HARQ-ACK(0), HARQ-ACK(1) and HARQ-ACK(2) of Table 8 are respectively replaced by ACK-rsp(1) and ACK-rsp(2) of PCC, and ACK-rsp(1) of SCC.

∘ When Ntb = 2 for both CCs

  • HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 9 are respectively replaced by ACK-rsp(1) and ACK-rsp(2) of PCC, ACK-rsp(1) and ACK-rsp(2) of SCC.

▪ M = 2

∘ HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 9 are respectively replaced by ACK-rsp(1) and ACK-rsp(2) of PCC, ACK-rsp(1) and ACK-rsp(2) of SCC.

  • For example, when ACK-rsp(1) and ACK-rsp(2) of PCC correspond to (A, N/D) and ACK-rsp(1) and ACK-rsp(2) of SCC correspond to (N/D, A), A/N transmission is performed using a combination of (PUCCH resource, QPSK symbol), which is selected when HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3) = (A, N/D, N/D, A) in Table 9, that is, (n(1)PUCCH,0, b(0)b(1)=0,1).

▪ M = 3

∘ In case of PCC, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), (2), (3), are replaced by ACK-rsp(1), (2), (3) corresponding to the Ref-state.

∘ In case of SCC, HARQ-ACK(2) and HARQ-ACK(3) of Table 9, whose A/N combination is identical to a Ref-state of corresponding to ACK-rsp(1), (2), (3), are replaced by ACK-rsp(1), (2), (3) corresponding to the Ref-state.

  • For example, it is assumed that ACK-rsp(1), (2), (3) = (A, A, A) and Ref-state corresponding thereto is (A, A) in case of PCC. Furthermore, it is assumed that ACK-rsp(1), (2), (3) = (A, N/D, any) and Ref-state corresponding thereto is (A, N/D) in case of SCC. In this case, A/N transmission is performed using a combination of (PUCCH resource, QPSK symbol), which is selected when HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3) = (A, A, A, N/D) in Table 9, that is, (n(1)PUCCH,2, b(0)b(1)=1,1).

∘ Final channel selection mapping obtained through the above-described process is identical to Table 12.

▪ M = 4

∘ In case of PCC, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), (2), (3), (4), are replaced by ACK-rsp(1), (2), (3), (4) corresponding to the Ref-state.

∘ In case of SCC, HARQ-ACK(2) and HARQ-ACK(3) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), (2), (3), (4), are replaced by ACK-rsp(1), (2), (3), (4) corresponding to the Ref-state.

  • For example, it is assumed that ACK-rsp(1), (2), (3), (4) = (A, A, A, any) and Ref-state corresponding thereto is (N/D, A) in case of PCC. Furthermore, it is assumed that ACK-rsp(1), (2), (3), (4) = (N/D, any, any, any) and Ref-state corresponding thereto is (N/D, N/D) in case of SCC. In this case, A/N transmission is performed using a combination of (PUCCH resource, QPSK symbol), which is selected when HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3) = (N/D, A, N/D, N/D) in Table 9, that is, (n(1)PUCCH,1, b(0)b(1)=0,1).

∘ Final channel selection mapping obtained through the above-described process is identical to Table 13.



[0086] A description will be given of a method for transmitting A/N information on uplink according to the present invention when TDD CA is employed and channel selection for A/N transmission is configured. The following two schemes may be considered.

First scheme



[0087] According to an A/N state mapping rule of the first scheme, HARQ-ACK(i) corresponding to an A/N response is generated using a value M of each CC. That is, CC1 generates HARQ-ACK(i) corresponding to an A/N response of CC1 on the basis of M1 and CC2 generates HARQ-ACK(i) corresponding to an A/N response of CC2 on the basis of M2 (refer to Tables 14 to 18). Then, HARQ-ACK(i) corresponding to the entire A/N states may be generated by concatenating HARQ-ACK(i) generated for respective CCs (e.g. PCC first, SCC last) with reference to the basic mapping rule, and A/N transmission with respect to a corresponding A/N state may be performed using a combination of (PUCCH resource, QPSK symbol) corresponding to the generated HARQ-ACK(i). According to the first scheme, it is possible to obtain optimized A/N feedback transmission performance according to M because HARQ-ACK(i) for each CC is generated in consideration of a value M of each CC. For reference, A/N feedback transmission performance increases as the A/N state mapping size decreases (that is, A/N feedback transmission performance is better in case of Table 8 rather than Table 9 and better in case of Table 7 rather than Table 8). For example, if M1<M2, better A/N feedback transmission performance can be obtained by generating HARQ-ACK(i) corresponding to the A/N response of CC1 on the basis of M1 instead of M2 (or a value larger than M1, which is commonly applied to CC1 and CC2) with respect to CC 1.

[0088] FIG. 13 illustrates an example of A/N transmission according to the first scheme. Although the figure illustrates A/N transmission performed by a UE, it is apparent that counterpart operations may be carried out by a base station.

[0089] Referring to FIG. 13, the UE aggregates a plurality of CCs (e.g. CC1 and CC2) having different UL-DL configurations (refer to Table 1) (S1302). CC1 may be PCC and CC2 may be SCC. However, CC1 and CC2 are not limited thereto. Then, upon receiving DL data (e.g. PDSCH, SPS release PDCCH or the like), the UE performs a process for transmitting A/N feedback for the DL data. Specifically, the UE may generate a first HARQ-ACK set based on M1 for CC1 (S1304) and generate a second HARQ-ACK set based on M2 for CC2 (S1306). Here, M1 represents the number of CC1 DL SFs (corresponding to the number of elements in set K in Table 5) corresponding to a PCC UL SF (e.g. UL SF n) for A/N transmission. Similarly, M2 represents the number of CC2 DL SFs (corresponding to the number of elements in set K in Table 5) corresponding to a PCC UL SF (e.g. UL SF n) for A/N transmission. The UE may transmit information corresponding to a third HARQ-ACK set including the first HARQ-ACK set and the second HARQ-ACK set to the base station (S1308). The information corresponding to the third HARQ-ACK set may be transmitted through a PUCCH or PUSCH based on channel selection.

[0090] Specifically, A/N state mapping for each CC according to a combination of (M1, M2) and a combination of (PUCCH resource, QPSK symbol) corresponding thereto may be determined as follows.
▪ In case of (M1, M2) = (1, 2)
∘ CC1: ACK-rsp(1) is a (spatially bundled) A/N response to DL data transmitted through CC1.
[Table 19]
ACK-rsp(1)
A
N/D

∘ CC2: ACK-rsp(i) is an A/N response to DL data transmitted through an i-th DL SF of CC2.
[Table 20]
ACK-rsp(1), ACK-rsp(2)Ref-state
A, A A, A
N/D, A N/D, A
A, N/D A, N/D
N/D, N/D N/D, N/D

∘ When CC1 = PCC
  • HARQ-ACK(0), HARQ-ACK(1) and HARQ-ACK(2) of Table 8 are respectively replaced by ACK-rsp(1) of CC1, ACK-rsp(1) and ACK-rsp(2) of CC2, and mapped.

∘ When CC2 = PCC
  • HARQ-ACK(0), HARQ-ACK(1) and HARQ-ACK(2) of Table 8 are respectively replaced by ACK-rsp(1) and ACK-rsp(2) of CC2 and ACK-rsp(1) of CC1, and mapped.

∘ When Ntb=2 for CC1, spatial bundling may not be applied to CC1.
  • In this case, A/N responses ACK-rsp(1) and ACK-rsp(2) to each TB of DL data transmitted through CC1 and ACK-rsp(1) and ACK-rsp(2) of CC2 are concatenated according to a rule (e.g. (PCC first, SCC last)), and then are replaced into HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 9, and mapped.

▪ In case of (M1, M2) = (1, 3) [Alt 1]
∘ CC1: ACK-rsp(1) is a (spatially bundled) A/N response to DL data transmitted through CC1.
[Table 21]
ACK-rsp(1)
A
N/D

∘ CC2: ACK-rsp(i) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is not present), or ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is present).
[Table 22]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3)Ref-state
A,A, A A, A
A,A, N/D N/D, A
A, N/D, any A, N/D
N/D, any, any N/D, N/D

∘ Here, ACK-rsp(1), (2), (3) = (N, any, any) may correspond to Ref-state (N, N) or Ref state (N, N/D), and ACK-rsp(1), (2), (3) = (D, any, any) may correspond to Ref-state (D, D) or Ref-state (D, N/D).
∘ When CC1 = PCC
  • In case of CC1, HARQ-ACK(0) of Table 8 is replaced by ACK-rsp(1), and mapped.
  • In case of CC2, HARQ-ACK(1) and HARQ-ACK(2) of Table 8, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3), are replaced by ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) corresponding to the Ref-state, and mapped.

∘ When CC2 = PCC
  • In case of CC1, HARQ-ACK(2) of Table 8 is replaced by ACK-rsp(1), and mapped.
  • In case of CC2, HARQ-ACK(0) and HARQ-ACK(1) of Table 8, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3), are replaced by ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) corresponding to the Ref-state, and mapped.

∘ Meanwhile, when Ntb = 2 for CC1, spatial bundling may not be applied to CC1.
  • In this case, A/N responses ACK-rsp(1) and ACK-rsp(2) to each TB of DL data transmitted through CC1 and ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) of CC2 are concatenated according to the basic mapping rule and concatenation rule (e.g. (PCC first, SCC last)), and then are replaced into HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 9, and mapped.

▪ In case of (M1, M2) = (1, 3) [Alt 2]
∘ CC1: ACK-rsp(1) is a (spatially bundled) A/N response to DL data transmitted through CC1.
[Table 23]
ACK-rsp(1)
A
N/D

∘ CC2: ACK-rsp(i) is an A/N response to DL data transmitted through the i-th DL SF of CC2.
[Table 24]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3)
A,A, A
A,A, N/D
A, N/D, A
A, N/D, N/D
N/D, A, A N/D, A, N/D
N/D,N/D, A
N/D,N/D, N/D

∘ When CC1 = PCC
  • HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 9 are respectively replaced by ACK-rsp(1) of CC1, ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) of CC2, and mapped.

∘ When CC2 = PCC
  • HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 9 are respectively replaced by ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) of CC2 and ACK-rsp(1) of CC1, and mapped.

▪ In case of (M1, M2) = (1, 4)
∘ CC1: ACK-rsp(1) is a (spatially bundled) A/N response to DL data transmitted through CC1.
[Table 25]
ACK-rsp(1)
A
N/D

∘ CC2: ACK-rsp(i) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is not present), or ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is present).
[Table 26]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3), ACK-rsp(4)Ref-state
A,A,A, N/D A, A
A,A, N/D, any N/D, A
(A, D,D, D) or (A, A,A, A) A, N/D
(N/D, any,any, any) or (A, N/D, any, any), except for (A, D,D, D) N/D, N/D

∘ Here, ACK-rsp(1), (2), (3), (4) = (N, any, any, any) or (A, N/D, any, any) except for (A, D, D, D) may correspond to Ref-state (N, N) or Ref state (N, N/D), and ACK-rsp(1), (2), (3), (4) = (D, any, any, any) may correspond to Ref-state (D, D) or Ref-state (D, N/D).
∘ When CC1 = PCC
  • In case of CC1, HARQ-ACK(0) of Table 9 is replaced by ACK-rsp(1), and mapped.
  • In case of CC2, HARQ-ACK(1) and HARQ-ACK(2) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.

∘ When CC2 = PCC
  • In case of CC1, HARQ-ACK(2) of Table 9 is replaced by ACK-rsp(1), and mapped.
  • In case of CC2, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.

∘ When Ntb = 2 for CC1, spatial bundling may not be applied to CC1.
  • In this case, A/N responses ACK-rsp(1) and ACK-rsp(2) to each TB of DL data transmitted through CC1 and ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) of CC2 are concatenated according to the basic mapping rule and concatenation rule (e.g. (PCC first, SCC last)), and then are replaced into HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) of Table 10, and mapped.

▪ In case of (M1, M2) = (2, 3)
∘ CC1: ACK-rsp(i) is an A/N response to DL data transmitted through the i-th DL SF of CC1.
[Table 27]
ACK-rsp(1), ACK-rsp(2)
A, A
N/D, A
A, N/D
N/D, N/D

∘ CC2: ACK-rsp(i) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is not present), or ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is present).
[Table 28]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3)Ref-state
A,A, A A, A
A,A, N/D N/D, A
A, N/D, any A, N/D
N/D, any, any N/D, N/D

∘ Here, ACK-rsp(1), (2), (3) = (N, any, any) may correspond to Ref-state (N, N) or Ref state (N, N/D) and ACK-rsp(1), (2), (3) = (D, any, any) may correspond to Ref-state (D, D) or Ref-state (D, N/D).
∘ When CC1 = PCC
  • In case of CC1, HARQ-ACK(0) and HARQ-ACK(1) of Table 9 are respectively replaced by ACK-rsp(1) and ACK-rsp(2), and mapped.
  • In case of CC2, HARQ-ACK(2) and HARQ-ACK(3) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3), are replaced by ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) corresponding to the Ref-state, and mapped.

∘ When CC2 = PCC
  • In case of CC1, HARQ-ACK(2) and HARQ-ACK(3) of Table 9 are respectively replaced by ACK-rsp(1) and ACK-rsp(2), and mapped.
  • In case of CC2, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3), are replaced by ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) corresponding to the Ref-state, and mapped.

▪ In case of (M1, M2) = (2, 4)
∘ CC1: ACK-rsp(i) is an A/N response to DL data transmitted through the i-th DL SF of CC1.
[Table 29]
ACK-rsp(1), ACK-rsp(2)
A, A
N/D, A
A, N/D
N/D, N/D

∘ CC2: ACK-rsp(i) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is not present), or ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is present).
[Table 30]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3), ACK-rsp(4)Ref-state
A,A,A, N/D A, A
A,A, N/D, any N/D, A
(A, D,D, D) or (A, A,A, A) A, N/D
(N/D, any,any, any) or (A, N/D, any, any), except for (A, D,D, D) N/D, N/D

∘ Here, ACK-rsp(1), (2), (3), (4) = (N, any, any, any) or (A, N/D, any, any) except for (A, D, D, D) may correspond to Ref-state (N, N) or Ref state (N, N/D) and ACK-rsp(1), (2), (3), (4) = (D, any, any, any) may correspond to Ref-state (D, D) or Ref-state (D, N/D).
∘ When CC1 = PCC
  • In case of CC1, HARQ-ACK(0) and HARQ-ACK(1) of Table 9 are respectively replaced by ACK-rsp(1) and ACK-rsp(2), and mapped.
  • In case of CC2, HARQ-ACK(2) and HARQ-ACK(3) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.

∘ When CC2 = PCC
  • In case of CC1, HARQ-ACK(2) and HARQ-ACK(3) of Table 9 are respectively replaced by ACK-rsp(1) and ACK-rsp(2), and mapped.
  • In case of CC2, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.

▪ In case of (M1, M2) = (3, 4)
∘ CC1: ACK-rsp(i) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is not present), or ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is present).
[Table 31]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3)Ref-state
A,A, A A, A
A,A, N/D N/D, A
A, N/D, any A, N/D
N/D, any, any N/D, N/D

∘ Here, ACK-rsp(1), (2), (3) = (N, any, any) may correspond to Ref-state (N, N) or Ref state (N, N/D), and ACK-rsp(1), (2), (3) = (D, any, any) may correspond to Ref-state (D, D) or Ref-state (D, N/D).
∘ CC2: ACK-rsp(i) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is not present), or ACK-rsp(1) is an A/N response to DL data w/o PDCCH and ACK-rsp(i+1) is an A/N response to DL data corresponding to DAI=i (when DL data w/o PDCCH is present).
[Table 32]
ACK-rsp(1), ACK-rsp(2), ACK-rsp(3), ACK-rsp(4)Ref-state
A,A,A, N/D A, A
A,A, N/D, any N/D, A
(A, D,D, D) or (A, A,A, A) A, N/D
(N/D, any,any, any) or (A, N/D, any, any), except for (A, D,D, D) N/D, N/D

∘ Here, ACK-rsp(1), (2), (3), (4) = (N, any, any, any) or (A, N/D, any, any) except for (A, D, D, D) may correspond to Ref-state (N, N) or Ref state (N, N/D), and ACK-rsp(1), (2), (3), (4) = (D, any, any, any) may correspond to Ref-state (D, D) or Ref-state (D, N/D).
∘ When CC1 = PCC
  • In case of CC1, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3), are replaced by ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3) corresponding to the Ref-state, and mapped.
  • In case of CC2, HARQ-ACK(2) and HARQ-ACK(3) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.

∘ When CC2 = PCC
  • In case of CC1, HARQ-ACK(2) and HARQ-ACK(3) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.
  • In case of CC2, HARQ-ACK(0) and HARQ-ACK(1) of Table 9, whose A/N combination is identical to a Ref-state of ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4), are replaced by ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4) corresponding to the Ref-state, and mapped.

Second scheme



[0091] Alternatively, it is possible to consider a scheme for mapping A/N states by commonly applying the basic mapping rule and concatenation rule (e.g. (PCC first, SCC last)) to CC1 and CC2 on the basis of M = max(M1, M2) and determining a combination of (PUCCH resource, QPSK symbol) corresponding thereto. Specifically, HARQ-ACK(i) corresponding to A/N responses of respective CCs may be generated and concatenated on the basis of a common value of M (by applying the basis mapping rule intact) to generate HARQ-ACK(i) for all A/N states. Preferably, ACK-rsp(i) with respect to each CC may be given in the same manner as defined according to M (refer to Tables 14 to 18). Accordingly, when M1<M2, an A/N response to CC1 is given as ACK-rsp(i) (i = 1 to M2) (HARQ-ACK(i) corresponding thereto) based on M2. However, since there is no actual DL data transmission corresponding to ACK-rsp(i) (i= Ml+1 to M2) (HARQ-ACK(i) corresponding thereto), they may be handled as DTX. Then, A/N transmission may be performed using combinations of (PUCCH resource, QPSK symbol) corresponding to the entire A/N states. In other words, definition of A/N state mapping and HARQ-ACK(i) relating thereto in Tables 7, 8, 9, 12 and 13, definition of PUCCH resource, etc. may be commonly applied to CC1 and CC2 according to M = max(M1, M2).

[0092] According to scheme 1, while improved A/N feedback transmission performance can be achieved, it is necessary to newly define A/N state mapping (definition of HARQ-ACK(i) related to A/N state mapping and a PUCCH resource allocation scheme are diversified) for every case in which M1 and M2 are different from each other, and thus system complexity may increase and the existing A/N state mapping rule cannot be reused. According to the second scheme, it is advantageous in that system complexity can be reduced by applying a common value of M to a plurality of CCs and the existing A/N state mapping scheme can be reused without newly configuring an A/N state mapping scheme for each combination of (M1, M2).

[0093] FIG. 14 illustrates an example of A/N transmission according to the second scheme. Although the figure illustrates A/N transmission as being performed by a UE, it is apparent that counterpart operations may be carried out by a BS.

[0094] Referring to FIG. 14, the UE aggregates a plurality of CCs (e.g. CC1 and CC2) having different UL-DL configurations (refer to Table 1) (S1402). CC1 may be PCC and CC2 may be SCC. However, CC1 and CC2 are not limited thereto. Then, upon receiving DL data (e.g. PDSCH, SPS release PDCCH or the like), the UE performs a process for transmitting A/N feedback for the DL data. Specifically, the UE may generate a first HARQ-ACK set for CC1 based on a value M (S1404) and generate a second HARQ-ACK set for CC2 based on the same value M (S1406). Here, M1 represents the number of CC1 DL SFs (corresponding to the number of elements in set K in Table 5) corresponding to a PCC UL SF (e.g. UL SF n) for A/N transmission. Similarly, M2 represents the number of CC2 DL SFs (corresponding to the number of elements in set K in Table 5) corresponding to a PCC UL SF (e.g. UL SF n) for A/N transmission. M is given by M = max(M1, M2). max(M1, M2) represents a value that is not a smaller one between M1 and M2. That is, an A/N state for each CC is generated on the basis of the common value of M applied to both CC1 and CC2. Specifically, the A/N state for each CC may be given according to Tables 14 to 18. When M1<M2, the first HARQ-ACK set for CC1 may comprise M2 HARQ-ACK responses (i.e. HARQ-ACK(0) to HARQ-ACK(M2-1)) and M2-M1 HARQ-ACK responses (i.e. HARQ-ACK(M1) to HARQ-ACK(M2-1)) following the first HARQ-ACK set may be set as DTX. When M1>M2, similar principles are applied. The UE may transmit information corresponding to a third HARQ-ACK set (refer to Tables 7, 8, 9, 12 and 13) including the first HARQ-ACK set and the second HARQ-ACK set to a base station (S1408). The information corresponding to the third HARQ-ACK set may be transmitted through a PUCCH or PUSCH based on channel selection.

[0095] When the scheme based on M = max(M1, M2) is applied to (M1, M2) = (2, 3), significant A/N states (i.e., ACK-rsp(1), ACK-rsp(2) and ACK-rsp(3)) for CC1 correspond to (A, A, N/D) and (A, N/D, any). Referring to Table 17, while A/N states for each CC correspond to {(A, A, A), (A, A, N/D), (A, N/D, any), (N/D, any, any)} when M=3, the third A/N response is D in CC1, and thus significant A/N states for CC1 are (A, A, N/D) and (A, N/D, any) because (A, A, A) is not available and the second A/N state of (N/D, any, any) cannot be known. In other words, only information about (A, A) and (A, N/D) from among all A/N states {(A, A), (A, N/D), (N/D, A), (N/D, N/D)} regarding DL data corresponding to DAI=1 and DAI=2 (or DL data w/o PDCCH and DAI=1) that may be present on CC1 is available for A/N transmission. When the scheme based on M = max(M1, M2) is applied to (M1, M2) = (2, 4), significant A/N states (ACK-rsp(1), ACK-rsp(2), ACK-rsp(3) and ACK-rsp(4)) for CC1 correspond to only (A, A, N/D, any) and (A, D, D, D). Referring to Table 18, while A/N states for each CC correspond to {(A, A, A, N/D), (A, A, N/D, any), [(A, A, A, A) or (A, D, D, D)], [(N/D, any, any, any) or (A, N/D, any, any) except for (A, D, D, D)]} when M=4, the third and fourth A/N responses are all D in CC1, and thus significant A/N states for CC1 are (A, A, N/D, any) and (A, D, D, D) because A/N states other than (A, A, N/D, any) and (A, D, D, D) are unavailable or unknown. In other words, only information about (A, A) and (A, D) from among all A/N states regarding DL data corresponding to DAI=1 and DAI=2 (or DL data w/o PDCCH and DAI=1) that may be present on CC1 is available for A/N transmission. Accordingly, in case of mapping based on M=4, some A/N information (i.e. (A, N)) about CC1 may be unnecessarily lost due to overlapped A/N state mapping.

[0096] Therefore, when the scheme based on M=max(M1, M2) is applied to (M1, M2) = (2, 4), A/N mapping may be modified to reduce unnecessary A/N information loss (with respect to CC1) caused by overlapped A/N state in mapping based on M=4. Specifically, (A, N/D) from among A/N states corresponding to DAI=1 and DAI=2 on CC1 (or DL data w/o PDCCH and DAI=1) may be mapped to ACK-rsp(1), (2), (3), (4) = "(A, D, D, D) or (A, A, A, A)" in Table 18 and A/N transmission may be performed using a corresponding combination of (PUCCH resource, QPSK symbol) in Table 13 (that is, A/N transmission is performed by considering that HARQ-ACK(1), (2), (3), (4) = "(A, D, D, D) or (A, A, A, A)" in Table 13). Accordingly, only (N/D, A) and (N/D, N/D) from among A/N states corresponding to DAI=1 and DAI=2 on CC1 (or DL data w/o PDCCH and DAI=1) may be mapped to ACK-rsp(1), (2), (3), (4) = "(N/D, any, any, any) or (A, N/D, any, any), except for (A, D, D, D)" in Table 18 (that is, HARQ-ACK(1), (2), (3), (4) are regarded as "(N/D, any, any, any) or (A, N/D, any, any), except for (A, D, D, D) in mapping based on M=4 of Table 13).

[0097] The above-described A/N state mapping scheme may be equally applied to a case in which (M1, M2) = (2, 4) and A/N is piggybacked on PUSCH, a case in which a UL DAI value corresponding to PUSCH is 4, and/or a case in which a UL DAI corresponding to PUSCH is not present (e.g. SPS based PUSCH). Specifically, RM code input bits corresponding to A/N piggyback information may be generated according to the proposed A/N state mapping scheme based on M=4 (refer to Tables 12 and 13) and transmitted through PUSCH. Here, the UL DAI is signaled through a UL grant PDCCH that schedules PUSCH.

[0098] When (M1, M2) = (L, 0) (L is a positive integer not equal to 0), it is also possible to consider the method of generating and concatenating HARQ-ACK(i) corresponding to A/N responses of CCs on the basis of a value of M=L (=max(M1, M2)) to generate HARQ-ACK(i) for all A/N states and determining a combination of (PUCCH resource, QPSK symbol) corresponding thereto. ACK-rsp(i) of each CC is the same as defined according to a value M (=L), and ACK-rsp(i) (HARQ-ACK(i) corresponding thereto) with respect to CC2 when M2=0 may be handled as DTX because it is not defined.

[0099] In case of (M1, M2) = (L, 0), when the above-described concatenation rule (PCC first, SCC last) is applied to an A/N response (HARQ-ACK(i) corresponding thereto) generated for each CC without modification in order to configure the entire A/N states (HARQ-ACK(i) corresponding thereto), throughput and/or A/N feedback performance may be deteriorated in a specific situation. For example, if (CC1, CC2) = (SCC, PCC), (M1, M2) = (L=1, 0) and Ntb = 1, A/N feedback transmission may be performed when an A/N response to the SCC is ACK, whereas A/N feedback transmission cannot be performed when the A/N response to the SCC is NACK (not DTX). This is because all available A/N states are (PCC, SCC) = (DTX, NACK), since ACK-rsp(i) (HARQ-ACK(i) corresponding thereto) for the PCC is always DTX, and thus a combination of (PUCCH resource, QPSK symbol) corresponding to (DTX, NACK) in Table 7 is not present (that is, no transmission).

[0100] Accordingly, the present invention additionally proposes a method of generating HARQ-ACK(i) for all A/N states by applying a modified concatenation rule (CC1 first, CC2 last) to the A/N response (HARQ-ACK(i) corresponding thereto) generated for each CC on the basis of the value M = L (= max(M1, M2)) when (M1, M2) = (L, 0) (by employing the basic mapping rule intact). Here, CC1 denotes a CC where the number of A/N-DL SFs (i.e. Mc) is not 0, and CC2 denotes a CC where the number of A/N-DL SFs (i.e. Mc) is 0. In this case, an A/N state corresponding to PCC and a PUCCH resource linked thereto in Tables 7, 8, 9, 12 and 13 may be mapped to an A/N state corresponding to CC1 and a PUCCH resource linked thereto, and a combination of (PUCCH resource, QPSK symbol) corresponding to all A/N states is determined on the basis of the A/N state and the PUCCH resource. Here, an A/N state and PUCCH resource corresponding to SCC in Tables 7, 8, 9, 12 and 13 may be mapped to an A/N state (i.e. DTX) and PUCCH resource (which is not present) corresponding to CC2. That is, an A/N response to a CC having a number of A/N-DL SFs (i.e. Mc), which is not 0, is arranged first in all A/N states and the combination of (PUCCH resource, QPSK symbol) corresponding to the entire A/N states is determined based thereon.

[0101] Preferably, The present invention proposes that ACK-rsp(i)-to-Ref-state mapping is configured only for CC1 based on Table 16, 17 and 18 when (M1, M2) = (L, 0) and L = 2, 3, 4, and an A/N combination identical to a Ref-state of HARQ-ACK(0) and HARQ(1) of Table 7 is replaced by ACK-rsp(i) corresponding to the Ref-state and mapped. Here, n(1)PUCCCH,0, and n(1)PUCCH,1 may be allocated to PUCCH resources linked/corresponding to CC1. For example, the PUCCH resources linked/corresponding to CC1 include PUCCH resources linked to DL data transmitted through first and second DL SFs of CC1 when L = 2, or include PUCCH resources linked to DL data corresponding to DAI = 1, 2 (or DL data w/o PDCCH, DAI = 1) when L = 3, 4.

[0102] In addition, the present invention proposes that a value of Ntb of CC2 is regarded as 1 all the time irrespective of a transmission mode configured for CC2, i.e. the maximum number of transmittable TBs, when (M1, M2) = (L, 0) and L = 1 (without spatial bundling). This scheme is based on the fact that A/N feedback transmission performance is improved as the size of A/N state mapping decreases (that is, better A/N feedback transmission performance is achieved in case of Table 8 rather than Table 9 and better A/N feedback transmission performance is achieved in case of Table 7 rather than Table 8). Accordingly, A/N feedback information can be mapped to an A/N state where HARQ-ACK(0) or HARQ-ACK(0) and HARQ-ACK(1) always correspond to CC1 in Table 10.

[0103] Alternatively, when (M1, M2) = (L, 0), it is possible to configure A/N states using PUCCH format 1a/1b (L = 1) (without application of spatial bundling) or using Table 7 (L = 2), Table 8 (L = 3) or Table 9 (L = 4) (with application of spatial bundling) only for CC1 according to a value L and determine combinations of (PUCCH resource, QPSK symbol) corresponding to the A/N states. In this case, HARQ-ACK(i) and n(1)PUCCH,i in Tables 7, 8 and 9 respectively denote an A/N response to DL data transmitted through an (i+1)th DL SF of CC1 and a PUCCH resource linked/corresponding thereto. Spatial bundling may not be applied when L = 2, and Tables 7 and 9 may be respectively applied to 2-bit A/N in case of Ntb = 1 and 4-bit A/N in case of Ntb = 2. Here, HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) and HARQ-ACK(3) may respectively denote A/N responses to a first TB transmitted through the first DL SF on CC1, a second TB transmitted through the first DL SF, a first TB transmitted through the second DL SF on CC1, and a second TB transmitted through the second DL SF.

[0104] A special SF (S SF) in which DwPTS period comprises less than or equal to N (e.g. N=3) OFDM symbols (e.g., corresponding to S SF configuration #0 in Table 2) may be allocated. In this case, when the S SF is configured for PCC (i.e. PCell), a PDCCH indicating SPS release (which requires only 1-bit A/N feedback) may be transmitted through the S SF. On the contrary, when the S SF is configured for SCC (i.e. SCell), any PDCCH/DL data that requires A/N feedback may not be transmitted through the S SF. Accordingly, when a S SF having a short DwPTS period (for convenience, referred to as a shortest S SF) is configured for PCell, A/N corresponding to the shortest S SF may be allocated to 1 bit all the time irrespective of a value of Ntb configured for the PCell, or the shortest S SF may be excluded from A/N-DL SFs for determining M. In this case, the UE can consider that a PDCCH indicating SPS release is not transmitted through the S SF (and thus a PDCCH monitoring process (e.g. blind decoding) may be skipped in the PCell S SF). When the shortest S SF is configured for SCell, the S SF may be excluded from A/N-DL SFs for determining M. Alternatively, in case of PCell, Ntb-bit (e.g. in case of M=1) according to a value of Ntb configured for the PCell or 1-bit (e.g. in case of M>1) when spatial bundling is applied may be allocated to A/N corresponding to the shortest S SF. In case of SCell, the shortest S SF may be excluded from A/N-DL SFs for determining M.

[0105] In addition, it may be assumed that 1-bit is always allocated to A/N corresponding to the shortest S SF configured for PCell irrespective of a value of Ntb configured for PCell without excluding the shortest S SF from A/N-DL SFs. In this case, the following A/N bit allocation scheme may be performed for a specific value of M when PCell is configured as Ntb = 2. For convenience, values of M for PCell and SCell are respectively defined as Mp and Ms. In addition, the numbers of A/N bits corresponding to PCell and SCell are respectively defined as Np and Ns. It is assumed that at least A/N-DL-SFs corresponding to Mp include the shortest S SF.
  1. 1) When Mp = 1
    1. A. Np = 1
    2. B. Ntb of PCell is regarded as 1 only for Mp, and then the proposed method for (M1, M2) = (1, 0), (1, 1), (1, 2), (1, 3) or (1, 4) is applied.
  2. 2) When Mp = 2 and Ms = 0 (option 1)
    1. A. Np = 2 (spatial bundling is applied) and Ns = 0
    2. B. The proposed method for (M1, M2) = (2, 0) is applied.
  3. 3) When Mp = 2 and Ms = 0 (option 2)
    1. A. Np = 3 (1 bit for the shortest S SF and 2 bits for a normal DL SF) and Ns = 0
    2. B. Channel selection for 3-bit A/N is employed using Table 8 without applying spatial bundling.
  4. 4) When Mp = 2, Ms = 1 and Ntb = 1 for SCell (option 1)
    1. A. Np = 2 (spatial bundling is applied) and Ns = 1
    2. B. The proposed method for (M1, M2) = (1, 2) is applied.
  5. 5) When Mp = 2, Ms = 1 and SCell is configured as Ntb = 1 (option 2)
    1. A. Np = 3 (1 bit for the shortest S SF and 2 bits for a normal DL SF) and Ns = 1
    2. B. Channel selection for 4-bit A/N is employed using Table 9 without applying spatial bundling.
  6. 6) When Mp = 2, Ms = 1 and SCell is configured as Ntb = 2 (option 1)
    1. A. Np = 2 (spatial bundling is applied) and Ns = 1 (spatial bundling is applied)
    2. B. The proposed method for (M1, M2) = (1, 2) is applied.
  7. 7) When Mp = 2, Ms = 1 and SCell is configured as Ntb = 2 (option 2)
    1. A. Np = 2 (spatial bundling is applied) and Ns = 2
    2. B. The proposed method for (M1, M2) = (1, 2) is applied.


[0106] Even when the PCell and SCell have the same TDD DL-UL configuration, the proposed methods may be applied on the basis of the above-described scheme (that is, A/N corresponding to the shortest S SF is allocated to 1 bit all the time, or the shortest S SF is excluded from A/N-DL SFs (when M is determined)) when the shortest S SF is configured.

[0107] FIG. 15 illustrates a base station and a user equipment applicable to an embodiment of the present invention. When a wireless communication system includes a relay, the base station or the user equipment may be replaced by the relay as necessary.

[0108] Referring to FIG. 15, an RF communication system includes a base station (BS) 110 and a user equipment (UE) 120. The BS 110 includes a processor 112, a memory 114 and a radio frequency (RF) unit 116. The processor 112 may be configured to implement the procedures and/or methods proposed by the present invention. The memory 114 is connected to the processor 112 and stores various types of information relating to operations of the processor 112. The RF unit 116 is connected to the processor 112 and transmits and/or receives RF signals. The UE 120 includes a processor 122, a memory 124 and an RF unit 126. The processor 122 may be configured to implement the procedures and/or methods proposed by the present invention. The memory 124 is connected to the processor 122 and stores various types of information relating to operations of the processor 122. The RF unit 126 is connected to the processor 122 and transmits and/or receives RF signals. The BS 110 and the UE 120 may have a single antenna or multiple antennas.

[0109] The embodiments of the present invention described hereinbelow are combinations of elements and features of the present invention. The elements or features may be considered selective unless otherwise mentioned. Each element or feature may be practiced without being combined with other elements or features. Further, an embodiment of the present invention may be constructed by combining parts of the elements and/or features. Operation orders described in embodiments of the present invention may be rearranged. Some constructions of any one embodiment may be included in another embodiment and may be replaced with corresponding constructions of another embodiment. It is obvious to those skilled in the art that claims that are not explicitly cited in each other in the appended claims may be presented in combination as an embodiment of the present invention or included as a new claim by subsequent amendment after the application is filed.

[0110] In the embodiments of the present invention, a description is given, centering on a data transmission and reception relationship between a BS and a UE. In some cases, a specific operation described as performed by the BS may be performed by an upper node of the BS. Namely, it is apparent that, in a network comprised of a plurality of network nodes including a BS, various operations performed for communication with an MS may be performed by the BS, or network nodes other than the BS. The term 'Base Station (BS)' may be replaced with the term 'fixed station', 'Node B', 'eNode B (eNB)' , 'access point', etc. The term 'UE (User Equipment)' may be replaced with the term 'Mobile Station (MS)', 'Mobile Subscriber Station (MSS)', 'mobile terminal', etc.

[0111] The embodiments of the present invention may be achieved by various means, for example, hardware, firmware, software, or a combination thereof. In a hardware configuration, the methods according to the embodiments of the present invention may be achieved by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, etc.

[0112] In a firmware or software configuration, the embodiments of the present invention may be implemented in the form of a module, a procedure, a function, etc. For example, software code may be stored in a memory unit and executed by a processor. The memory unit is located at the interior or exterior of the processor and may transmit and receive data to and from the processor via various known means.

[0113] Those skilled in the art will appreciate that the present invention may be carried out in other specific ways than those set forth herein without departing from the essential characteristics of the present invention. The above embodiments are therefore to be construed in all aspects as illustrative and not restrictive. The scope of the invention should be determined by the appended claims, not by the above description, and all changes coming within the meaning of the appended claims are intended to be embraced therein.

[Industrial Applicability]



[0114] The present invention is applicable to wireless communication apparatuses such as a user equipment, a relay, a base station, etc.


Claims

1. A method for transmitting uplink control information by a user equipment, UE, (120) in a wireless communication system supporting carrier aggregation, the UE (120) being configured with a plurality of cells including a first cell and a second cell and configured to transmit a hybrid automatic repeat request-acknowledgment, HARQ-ACK, response, the first cell and the second cell having different uplink-downlink, UL-DL, configurations and operating in time division duplex, TDD, the method comprising:

determining a value M as a largest value of M1 or M2;

determining HARQ-ACK responses for the first cell and the second cell based on the value M;

determining bit values and a physical uplink control channel, PUCCH, resource corresponding to the determined HARQ-ACK responses; and

transmitting the bit values using the PUCCH resource in an uplink subframe,

wherein M1 represents a number of downlink sub frames corresponding to the uplink subframe in the first cell and M2 represents a number of downlink subframes corresponding to the uplink subframe in the second cell.


 
2. The method according to claim 1, wherein the bit values and the PUCCH resource are determined based on the following table:
HARQ-ACK(0), HARQ-ACK(1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0

where HARQ-ACK(0) and HARQ-ACK(1) represent the HARQ-ACK responses for the first cell and the second cell,

represents the PUCCH resource, and b(0)b(1) represents the bit values, and

where ACK represents an acknowledgement, NACK represents a negative acknowledgement, and DTX represents a discontinuous transmission.


 
3. The method according to claim 1 or 2, wherein the bit values and the PUCCH resource are determined based on the following table:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2)

b(0)b(1)
ACK, ACK, ACK

1, 1
ACK, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0

where HARQ-ACK(0), HARQ-ACK(1), and HARQ-ACK(2) represent the HARQ-ACK responses for the first cell and the second cell,

represents the PUCCH resource, and b(0)b(1) represents the bit values, and

where ACK represents an acknowledgement, NACK represents a negative acknowledgement, and DTX represents a discontinuous transmission.


 
4. The method according to any one of claims 1 to 3, wherein the bit values and the PUCCH resource are determined based on the following table:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK, ACK, ACK, ACK

1, 1
ACK, ACK, ACK, NACK/DTX

1, 1
ACK, ACK, NACK/DTX, ACK

1, 0
ACK, ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, NACK/DTX, ACK

0, 1
ACK, NACK/DTX, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK, ACK

0, 0
NACK/DTX, ACK, ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK, ACK

0, 1
NACK/DTX, NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX, NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX, NACK/DTX

0, 0

where HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3) represent the HARQ-ACK responses for the first cell and the second cell,

represents the PUCCH resource, and b(0)b(1) represents the bit values, and

where ACK represents an acknowledgement, NACK represents a negative acknowledgement, and DTX represents a discontinuous transmission.


 
5. The method according to any one of claims 1 to 4, wherein, when M=1, the HARQ-ACK responses for the first cell and the second cell include at least two of HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3), and
wherein the at least two of HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3) are determined based on the following table:
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
TB1 first cell TB2 second cell    
TB1 first cell TB2 first cell TB3 second cell  
TB1 first cell TB2 first cell TB3 second cell TB4 second cell
where TB1 represents a HARQ-ACK response to a first transport block, TB2 represents a HARQ-ACK response to a second transport block, TB3 represents a HARQ-ACK response to a third transport block, and TB4 represents a HARQ-ACK response to a fourth transport block.
 
6. The method according to any one of claims 1 to 5, wherein, when M=2, the HARQ-ACK responses for the first cell and the second cell include HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3), and
wherein HARQ-ACK(0) indicates a HARQ-ACK response to a downlink signal received in a first subframe of the first cell, HARQ-ACK(1) indicates a HARQ-ACK response to a downlink signal received in a second subframe of the first cell, HARQ-ACK(2) indicates a HARQ-ACK response to a downlink signal received in a first subframe of the second cell, and HARQ-ACK(3) indicates a HARQ-ACK response to a downlink signal received in a second subframe of the second cell.
 
7. The method according to any one of claims 1 to 6, wherein the first cell is a primary cell, PCell, and the second cell is a secondary cell, SCell.
 
8. The method according to any one of claims 1 to 7, wherein, based on M being greater than M1, (M-M1) HARQ-ACK responses for the first cell are set to DTX.
 
9. The method according to any one of claims 1 to 8, wherein, based on M being greater than M2, (M-M2) HARQ-ACK responses for the second cell are set to DTX.
 
10. A communication apparatus (120) configured to transmit uplink control information in a wireless communication system supporting carrier aggregation, the communication apparatus (120) being configured with a plurality of cells including a first cell and a second cell and configured to transmit a hybrid automatic repeat request-acknowledgment, HARQ-ACK, response, the first cell and the second cell having different uplink-downlink, UL-DL, configurations and operating in time division duplex, TDD, the communication apparatus (120) comprising:

a radio frequency, RF, transceiver (126); and

a processor (122) configured to:

determine a value M as a largest value of M1 or M2,

determine HARQ-ACK responses for the first cell and the second cell based on the value M,

determine bit values and a physical uplink control channel, PUCCH, resource corresponding to the determined HARQ-ACK responses, and

transmit the bit values using the PUCCH resource in an uplink subframe,

wherein M1 represents a number of downlink subframes corresponding to the uplink subframe in the first cell and M2 represents a number of downlink subframes corresponding to the uplink subframe in the second cell.


 
11. The communication apparatus according to claim 10, wherein the bit values and the PUCCH resource are determined based on the following table:
HARQ-ACK(0), HARQ-ACK(1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0

where HARQ-ACK(0) and HARQ-ACK(1) represent the HARQ-ACK responses for the first cell and the second cell,

represents the PUCCH resource, and b(0)b(1) represents the bit values, and

where ACK represents an acknowledgement, NACK represents a negative acknowledgement, and DTX represents a discontinuous transmission.


 
12. The communication apparatus according to claim 10 or 11, wherein the bit values and the PUCCH resource are determined based on the following table:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2)

b(0)b(1)
ACK, ACK, ACK

1, 1
ACK, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0

where HARQ-ACK(0), HARQ-ACK(1), and HARQ-ACK(2) represent the HARQ-ACK responses for the first cell and the second cell,

represents the PUCCH resource, and b(0)b(1) represents the bit values, and

where ACK represents an acknowledgement, NACK represents a negative acknowledgement, and DTX represents a discontinuous transmission.


 
13. The communication apparatus according to any one of claims 10 to 12, wherein the bit values and the PUCCH resource are determined based on the following table:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK, ACK, ACK, ACK

1, 1
ACK, ACK, ACK, NACK/DTX

1, 1
ACK, ACK, NACK/DTX, ACK

1,0
ACK, ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1,0
ACK, NACK/DTX, NACK/DTX, ACK

0, 1
ACK, NACK/DTX, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK, ACK

0, 0
NACK/DTX, ACK, ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK, ACK

0, 1
NACK/DTX, NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX, NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX, NACK/DTX

0, 0

where HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3) represent the HARQ-ACK responses for the first cell and the second cell,

represents the PUCCH resource, and b(0)b(1) represents the bit values, and

where ACK represents an acknowledgement, NACK represents a negative acknowledgement, and DTX represents a discontinuous transmission.


 
14. The communication apparatus according to any one of claims 10 to 13, wherein, when M=1, the HARQ-ACK responses for the first cell and the second cell include at least two of HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3), and
wherein the at least two of HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), and HARQ-ACK(3) are determined based on the following table:
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
TB1 first cell TB2 second cell    
TB1 first cell TB2 first cell TB3 second cell  
TB1 first cell TB2 first cell TB3 second cell TB4 second cell
where TB1 represents a HARQ-ACK response to a first transport block, TB2 represents a HARQ-ACK response to a second transport block, TB3 represents a HARQ-ACK response to a third transport block, and TB4 represents a HARQ-ACK response to a fourth transport block.
 
15. The communication apparatus according to any one of claims 10 to 14, wherein the first cell is a primary cell, PCell, and the second cell is a secondary cell, SCell.
 


Ansprüche

1. Verfahren zum Senden von Uplink-Steuerinformationen von einem Nutzergerät, UE, (120) in einem drahtlosen Kommunikationssystem, das eine Carrier-Aggregation unterstützt, wobei das UE (120) mit einer Mehrzahl von Zellen konfiguriert ist, die eine erste Zelle und eine zweite Zelle beinhaltet und dazu konfiguriert ist, eine hybrid-automatische Wiederholungsaufforderungs-Bestätigungsantwort HARQ-ACK (hybrid automatic repeat request acknowledgement) zu senden, wobei die erste Zelle und die zweite Zelle unterschiedliche Uplink-Downlink-Konfigurationen (UL-DL) aufweisen und im Time-Division-Duplex TDD arbeiten, wobei das Verfahren umfasst:

Bestimmen eines Wertes M als größten Wert von M1 oder M2;

Bestimmen der HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle, ausgehend vom Wert M;

Bestimmen von Bitwerten und einer physikalischen Uplink-Steuerkanal-Ressource (uplink control channel) PUCCH, die den ermittelten HARQ-ACK-Antworten entspricht, und

Senden der Bitwerte mittels der PUCCH-Ressource in einem Uplink-Subframe,

wobei M1 eine Anzahl von Downlink-Subframes angibt, die dem Uplink-Subframe in der ersten Zelle entspricht, und M2 eine Anzahl von Downlink-Subframes angibt, die dem Uplink-Subframe in der zweiten Zelle entspricht.


 
2. Verfahren nach Anspruch 1, wobei die Bitwerte und die PUCCH-Ressource auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0), HARQ-ACK(1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0

wobei HARQ-ACK(0) und HARQ-ACK(1) die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle angeben,

die PUCCH-Ressource angibt und b(0)b(1) die Bitwerte angibt, und

wobei ACK eine Empfangsbestätigung angibt, NACK eine negative Empfangsbestätigung und DTX eine unterbrochene Sendung angibt.


 
3. Verfahren nach Anspruch 1 oder 2, wobei die Bitwerte und die PUCCH-Ressource auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2)

b(0)b(1)
ACK, ACK, ACK

1, 1
ACK, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0

wobei HARQ-ACK(0), HARQ-ACK(1) und HARQ-ACK(2) die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle angeben,

die PUCCH-Ressource angibt und b(0)b(1) die Bitwerte angibt, und

wobei ACK eine Empfangsbestätigung angibt, NACK eine negative Empfangsbestätigung und DTX eine unterbrochene Sendung angibt.


 
4. Verfahren nach Anspruch einem der Ansprüche 1 bis 3, wobei die Bitwerte und die PUCCH-Ressource auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK, ACK, ACK, ACK

1, 1
ACK, ACK, ACK, NACK/DTX

1, 1
ACK, ACK, NACK/DTX, ACK

1, 0
ACK, ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, NACK/DTX, ACK

0, 1
ACK, NACK/DTX, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK, ACK

0, 0
NACK/DTX, ACK, ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK, ACK

0, 1
NACK/DTX, NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX, NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX, NACK/DTX

0, 0

wobei HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) und HARQ-ACK(3) die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle angeben,

die PUCCH-Ressource angibt und b(0)b(1) die Bitwerte angibt, und

wobei ACK eine Empfangsbestätigung angibt, NACK eine negative Empfangsbestätigung und DTX eine unterbrochene Sendung angibt.


 
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei dann, wenn M=1, die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle wenigstens zwei der Folgenden beinhalten: HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) und HARQ-ACK(3), und
wobei die wenigstens zwei von HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), und HARQ-ACK(3) auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
TB1 erste Zelle TB2 zweite Zelle    
TB1 erste Zelle TB2 erste Zelle TB3 zweite Zelle  
TB1 erste Zelle TB2 erste Zelle TB3 zweite Zelle TB4 zweite Zelle
wobei TB1 eine HARQ-ACK-Antwort auf einen ersten Transportblock angibt, TB2 eine HARQ-ACK-Antwort auf einen zweiten Transportblock angibt, TB3 eine HARQ-ACK-Antwort auf einen dritten Transportblock angibt und TB4 einen HARQ-ACK-Antwort auf einen vierten Transportblock angibt.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei dann, wenn M=2, die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) und HARQ-ACK(3) beinhalten, und
wobei HARQ-ACK(0) eine HARQ-ACK-Antwort auf ein Downlink-Signal angibt, das in einem ersten Subframe der ersten Zelle empfangen wird, HARQ-ACK(1) eine HARQ-ACK-Antwort auf ein Downlink-Signal angibt, das in einem zweiten Subframe der ersten Zelle empfangen wird, HARQ-ACK(2) eine HARQ-ACK-Antwort auf ein Downlink-Signal angibt, das in einem ersten Subframe der zweiten Zelle empfangen wird, und HARQ-ACK(3) eine HARQ-ACK-Antwort auf ein Downlink-Signal angibt, das in einem zweiten Subframe der zweiten Zelle empfangen wird.
 
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die erste Zelle eine Primärzelle, PCell, ist und die zweite Zelle eine Sekundärzelle, SCell, ist.
 
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei davon ausgehend, dass M größer ist als M1, die (M-M1)-HARQ-ACK-Antworten für die erste Zelle auf DTX eingestellt sind.
 
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei davon ausgehend, dass M größer ist als M21, die (M-M2)-HARQ-ACK-Antworten für die zweite Zelle auf DTX eingestellt sind.
 
10. Kommunikationsgerät (120), das zum Senden von Uplink-Steuerinformationen in einem drahtlosen Kommunikationssystem konfiguriert ist, das eine Carrier-Aggregation unterstützt, wobei das Kommunikationsgerät (120) mit einer Mehrzahl von Zellen konfiguriert ist, die eine erste Zelle und eine zweite Zelle beinhaltet und dazu konfiguriert ist, eine hybrid-automatische Wiederholungsaufforderungs-Bestätigungsantwort HARQ-ACK zu senden, wobei die erste Zelle und die zweite Zelle unterschiedliche Uplink-Downlink-Konfigurationen (UL-DL) aufweisen und im Time-Division-Duplex TDD arbeiten, wobei das Kommunikationsgerät (120) umfasst:

eine Funkfrequenz-RF-Sendeempfänger (126) und

einen Prozessor (122), der dazu konfiguriert ist:

einen Wert M als größten Wert von M1 oder M2 zu bestimmen;

HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle ausgehend vom Wert M zu bestimmen;

Bitwerte und eine physikalischen Uplink-Steuerkanal-Ressource PUCCH zu bestimmen, die den ermittelten HARQ-ACK-Antworten entspricht, und

die Bitwerte mittels der PUCCH-Ressource in einem Uplink-Subframe zu senden,

wobei M1 eine Anzahl von Downlink-Subframes angibt, die dem Uplink-Subframe in der ersten Zelle entspricht, und M2 eine Anzahl von Downlink-Subframes angibt, die dem Uplink-Subframe in der zweiten Zelle entspricht.


 
11. Kommunikationsgerät nach Anspruch 10, wobei die Bitwerte und die PUCCH-Ressource auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0), HARQ-ACK( 1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0

wobei HARQ-ACK(0) und HARQ-ACK(1) die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle angeben,

die PUCCH-Ressource angibt und b(0)b(1) die Bitwerte angibt, und

wobei ACK eine Empfangsbestätigung angibt, NACK eine negative Empfangsbestätigung und DTX eine unterbrochene Sendung angibt.


 
12. Kommunikationsgerät nach Anspruch 10 oder 11, wobei die Bitwerte und die PUCCH-Ressource auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2)

b(0)b(1)
ACK, ACK. ACK

1, 1
ACK, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0

wobei HARQ-ACK(0), HARQ-ACK(1) und HARQ-ACK(2) die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle angeben,

die PUCCH-Ressource angibt und b(0)b(1) die Bitwerte angibt, und

wobei ACK eine Empfangsbestätigung angibt, NACK eine negative Empfangsbestätigung und DTX eine unterbrochene Sendung angibt.


 
13. Kommunikationsgerät nach einem der Ansprüche 10 bis 12, wobei die Bitwerte und die PUCCH-Ressource auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK, ACK, ACK, ACK

1, 1
ACK, ACK, ACK, NACK/DTX

1, 1
ACK, ACK, NACK/DTX, ACK

1, 0
ACK, ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, NACK/DTX, ACK

0, 1
ACK, NACK/DTX, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK, ACK

0, 0
NACK/DTX, ACK, ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK, ACK

0, 1
NACK/DTX, NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX, NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX, NACK/DTX

0, 0

wobei HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) und HARQ-ACK(3) die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle angeben,

die PUCCH-Ressource angibt und b(0)b(1) die Bitwerte angibt, und

wobei ACK eine Empfangsbestätigung angibt, NACK eine negative Empfangsbestätigung und DTX eine unterbrochene Sendung angibt.


 
14. Kommunikationsgerät nach einem der Ansprüche 1 bis 13, wobei dann, wenn M=1, die HARQ-ACK-Antworten für die erste Zelle und die zweite Zelle wenigstens zwei der Folgenden beinhalten: HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) und HARQ-ACK(3), und
wobei die wenigstens zwei von HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), und HARQ-ACK(3) auf der Grundlage der folgenden Tabelle bestimmt werden:
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
TB1 erste Zelle TB2 zweite Zelle    
TB1 erste Zelle TB2 erste Zelle TB3 zweite Zelle  
TB1 erste Zelle TB2 erste Zelle TB3 zweite Zelle TB4 zweite Zelle
wobei TB1 eine HARQ-ACK-Antwort auf einen ersten Transportblock angibt, TB2 eine HARQ-ACK-Antwort auf einen zweiten Transportblock angibt, TB3 eine HARQ-ACK-Antwort auf einen dritten Transportblock angibt und TB4 einen HARQ-ACK-Antwort auf einen vierten Transportblock angibt.
 
15. Kommunikationsgerät nach einem der Ansprüche 10 bis 14, wobei die erste Zelle eine Primärzelle, PCell, ist und die zweite Zelle eine Sekundärzelle, SCell, ist.
 


Revendications

1. Procédé de transmission d'informations de commande de liaison montante par un équipement utilisateur, EU, (120) dans un système de communication sans fil prenant en charge une agrégation de porteuses, l'EU (120) étant configuré avec une pluralité de cellules incluant une première cellule et une deuxième cellule et configuré pour transmettre une réponse d'accusé de réception de demande de répétition automatique hybride, HARQ-ACK, la première cellule et la deuxième cellule ayant des configurations de liaison montante-liaison descendante, UL-DL, différentes et fonctionnant en duplex par répartition dans le temps, TDD, le procédé comprenant :

la détermination d'une valeur M comme étant la valeur la plus grande de M1 ou M2 ;

la détermination de réponses de HARQ-ACK pour la première cellule et la deuxième cellule sur la base de la valeur M ;

la détermination de valeurs binaires et d'une ressource de canal de commande de liaison montante physique, PUCCH, correspondant aux réponses de HARQ-ACK déterminées ; et

la transmission des valeurs binaires en utilisant la ressource de PUCCH dans une sous-trame de liaison montante,

dans lequel M1 représente un nombre de sous-trames de liaison descendante correspondant à la sous-trame de liaison montante dans la première cellule et M2 représente un nombre de sous-trames de liaison descendante correspondant à la sous-trame de liaison montante dans la deuxième cellule.


 
2. Procédé selon la revendication 1, dans lequel les valeurs binaires et la ressource de PUCCH sont déterminées sur la base du tableau suivant :
HARQ-ACK(0), HARQ-ACK(1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0

où HARQ-ACK(0) et HARQ-ACK(1) représentent les réponses de HARQ-ACK pour la première cellule et la deuxième cellule,

représente la ressource de PUCCH, et b(0)b(1) représente les valeurs binaires, et

où ACK représente un accusé de réception, NACK représente un accusé de réception négatif, et DTX représente une transmission discontinue.


 
3. Procédé selon la revendication 1 ou 2, dans lequel les valeurs binaires et la ressource de PUCCH sont déterminées sur la base du tableau suivant :
HARQ-ACK(0), MARQ-ACK( 1), HARQ-ACK(2)

b(0)b(1)
ACK, ACK, ACK

1, 1
ACK, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0

où HARQ-ACK(0), HARQ-ACK(1) et HARQ-ACK(2) représentent les réponses de HARQ-ACK pour la première cellule et la deuxième cellule,

représente la ressource de PUCCH, et b(0)b(1) représente les valeurs binaires, et

où ACK représente un accusé de réception, NACK représente un accusé de réception négatif, et DTX représente une transmission discontinue.


 
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les valeurs binaires et la ressource de PUCCH sont déterminées sur la base du tableau suivant :
UARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK, ACK, ACK, ACK

1, 1
ACK, ACK, ACK, NACK/DTX

1, 1
ACK, ACK, NACK/DTX, ACK

1, 0
ACK, ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, NACK/DTX, ACK

0, 1
ACK, NACK/DTX, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK, ACK

0, 0
NACK/DTX, ACK, ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK, ACK

0, 1
NACK/DTX, NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX, NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX, NACK/DTX

0, 0

où HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3) représentent les réponses de HARQ-ACK pour la première cellule et la deuxième cellule,

représente la ressource de PUCCH, et b(0)b(1) représente les valeurs binaires, et

où ACK représente un accusé de réception, NACK représente un accusé de réception négatif, et DTX représente une transmission discontinue.


 
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel, lorsque M = 1, les réponses de HARQ-ACK pour la première cellule et la deuxième cellule incluent au moins deux de HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3), et
dans lequel les au moins deux de HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3) sont déterminés sur la base du tableau suivant :
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
TB1 première cellule TB2 deuxième cellule    
TB1 première cellule TB2 première cellule TB3 deuxième cellule  
TB1 première cellule TB2 première cellule TB3 deuxième cellule TB4 deuxième cellule
où TB1 représente une réponse de HARQ-ACK à un premier bloc de transport, TB2 représente une réponse de HARQ-ACK à un deuxième bloc de transport, TB3 représente une réponse de HARQ-ACK à un troisième bloc de transport, et TB4 représente une réponse de HARQ-ACK à un quatrième bloc de transport.
 
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel, lorsque M = 2, les réponses de HARQ-ACK pour la première cellule et la deuxième cellule incluent HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3), et dans lequel HARQ-ACK(0) indique une réponse de HARQ-ACK à un signal de liaison descendante reçu dans une première sous-trame de la première cellule, HARQ-ACK(1) indique une réponse de HARQ-ACK à un signal de liaison descendante reçu dans une deuxième sous-trame de la première cellule, HARQ-ACK(2) indique une réponse de HARQ-ACK à un signal de liaison descendante reçu dans une première sous-trame de la deuxième cellule, et HARQ-ACK(3) indique une réponse de HARQ-ACK à un signal de liaison descendante reçu dans une deuxième sous-trame de la deuxième cellule.
 
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la première cellule est une cellule primaire, PCell, et la deuxième cellule est une cellule secondaire, SCell.
 
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel, sur la base du fait que M soit supérieur à M1, les (M-M1) réponses de HARQ-ACK pour la première cellule sont réglées en tant que DTX.
 
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel, sur la base du fait que M soit supérieur à M2, les (M-M2) réponses de HARQ-ACK pour la deuxième cellule sont réglées en tant que DTX.
 
10. Appareil de communication (120) configuré pour transmettre des informations de commande de liaison montante dans un système de communication sans fil prenant en charge une agrégation de porteuses, l'appareil de communication (120) étant configuré avec une pluralité de cellules incluant une première cellule et une deuxième cellule et configuré pour transmettre une réponse d'accusé de réception de demande de répétition automatique hybride, HARQ-ACK, la première cellule et la deuxième cellule ayant des configurations de liaison montante-liaison descendante, UL-DL, différentes et fonctionnant en duplex par répartition dans le temps, TDD, l'appareil de communication (120) comprenant :

un émetteur-récepteur de radiofréquences, RF (126) ; et

un processeur (122) configuré pour :

déterminer une valeur M comme étant la valeur la plus grande de M1 ou M2,

déterminer des réponses de HARQ-ACK pour la première cellule et la deuxième cellule sur la base de la valeur M,

déterminer des valeurs binaires et une ressource de canal de commande de liaison montante physique, PUCCH, correspondant aux réponses de HARQ-ACK déterminées, et

transmettre les valeurs binaires en utilisant la ressource de PUCCH dans une sous-trame de liaison montante,

dans lequel M1 représente un nombre de sous-trames de liaison descendante correspondant à la sous-trame de liaison montante dans la première cellule et M2 représente un nombre de sous-trames de liaison descendante correspondant à la sous-trame de liaison montante dans la deuxième cellule.


 
11. Appareil de communication selon la revendication 10, dans lequel les valeurs binaires et la ressource de PUCCH sont déterminées sur la base du tableau suivant :
HARQ-ACK(0), HARQ-ACK(1)

b(0)b(1)
ACK, ACK

1, 0
ACK, NACK/DTX

1, 1
NACK/DTX, ACK

0, 1
NACK, NACK/DTX

0, 0

où HARQ-ACK(0) et HARQ-ACK(1) représentent les réponses de HARQ-ACK pour la première cellule et la deuxième cellule,

représente la ressource de PUCCH, et b(0)b(1) représente les valeurs binaires, et

où ACK représente un accusé de réception, NACK représente un accusé de réception négatif, et DTX représente une transmission discontinue.


 
12. Appareil de communication selon la revendication 10 ou 11, dans lequel les valeurs binaires et la ressource de PUCCH sont déterminées sur la base du tableau suivant :
HARQ-ACK(0), HARQ-ACK( 1), HARQ-ACK(2)

b(0)b(1)
ACK, ACK, ACK

1, 1
ACK, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, ACK

1, 0
ACK, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK

0, 1
NACK/DTX, ACK, MACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX

0, 0

où HARQ-ACK(0), HARQ-ACK(1) et HARQ-ACK(2) représentent les réponses de HARQ-ACK pour la première cellule et la deuxième cellule,

représente la ressource de PUCCH, et b(0)b(1) représente les valeurs binaires, et

où ACK représente un accusé de réception, NACK représente un accusé de réception négatif, et DTX représente une transmission discontinue.


 
13. Appareil de communication selon l'une quelconque des revendications 10 à 12, dans lequel les valeurs binaires et la ressource de PUCCH sont déterminées sur la base du tableau suivant :
HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2), HARQ-ACK(3)

b(0)b(1)
ACK, ACK, ACK, ACK

1, 1
ACK, ACK, ACK, NACK/DTX

1, 1
ACK, ACK, NACK/DTX, ACK

1, 0
ACK, ACK, NACK/DTX, NACK/DTX

1, 0
ACK, NACK/DTX, ACK, ACK

1, 1
ACK, NACK/DTX, ACK, NACK/DTX

1, 0
ACK, NACK/DTX, NACK/DTX, ACK

0, 1
ACK, NACK/DTX, NACK/DTX, NACK/DTX

1, 1
NACK/DTX, ACK, ACK, ACK

0, 0
NACK/DTX, ACK, ACK, NACK/DTX

0, 1
NACK/DTX, ACK, NACK/DTX, ACK

1, 0
NACK/DTX, ACK, NACK/DTX, NACK/DTX

0, 1
NACK/DTX, NACK/DTX, ACK, ACK

0, 1
NACK/DTX, NACK/DTX, ACK, NACK/DTX

0, 0
NACK/DTX, NACK/DTX, NACK/DTX, ACK

0, 0
NACK, NACK/DTX, NACK/DTX, NACK/DTX

0, 0

où HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3) représentent les réponses de HARQ-ACK pour la première cellule et la deuxième cellule,

représente la ressource de PUCCH, et b(0)b(1) représente les valeurs binaires, et

où ACK représente un accusé de réception, NACK représente un accusé de réception négatif, et DTX représente une transmission discontinue.


 
14. Appareil de communication selon l'une quelconque des revendications 10 à 13, dans lequel, lorsque M = 1, les réponses de HARQ-ACK pour la première cellule et la deuxième cellule incluent au moins deux de HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3), et
dans lequel les au moins deux de HARQ-ACK(0), HARQ-ACK(1), HARQ-ACK(2) et HARQ-ACK(3) sont déterminés sur la base du tableau suivant :
HARQ-ACK(0)HARQ-ACK(1)HARQ-ACK(2)HARQ-ACK(3)
TB1 première cellule TB2 deuxième cellule    
TB1 première cellule TB2 première cellule TB3 deuxième cellule  
TB1 première cellule TB2 première cellule TB3 deuxième cellule TB4 deuxième cellule
où TB1 représente une réponse de HARQ-ACK à un premier bloc de transport, TB2 représente une réponse de HARQ-ACK à un deuxième bloc de transport, TB3 représente une réponse de HARQ-ACK à un troisième bloc de transport, et TB4 représente une réponse de HARQ-ACK à un quatrième bloc de transport.
 
15. Appareil de communication selon l'une quelconque des revendications 10 à 14, dans lequel la première cellule est une cellule primaire, PCell, et la deuxième cellule est une cellule secondaire, SCell.
 




Drawing