(19)
(11)EP 3 185 984 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 14897326.6

(22)Date of filing:  22.07.2014
(51)International Patent Classification (IPC): 
B01D 45/08(2006.01)
(86)International application number:
PCT/CA2014/050696
(87)International publication number:
WO 2016/004505 (14.01.2016 Gazette  2016/02)

(54)

PHASE SEPARATOR USING PRESSURE DIFFERENTIAL

PHASENTRENNER MITTELS DRUCKDIFFERENZ

SÉPARATEUR DE PHASE UTILISANT UN DIFFÉRENTIEL DE PRESSION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.07.2014 US 201462023294 P

(43)Date of publication of application:
05.07.2017 Bulletin 2017/27

(73)Proprietor: Maelstrom Gas Technology Ltd.
Calgary, AB T2P 3H3 (CA)

(72)Inventor:
  • MCKENZIE, Robert
    Wetaskiwin, Alberta T9A 1X1 (CA)

(74)Representative: Miller, James Lionel Woolverton et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
US-A- 2 349 944
US-A- 4 187 089
US-A- 5 512 088
US-B1- 6 419 730
US-A- 2 812 034
US-A- 4 978 373
US-A- 5 919 284
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This relates to a liquid/gas separator, such as may be used to separate liquid and gases in a stream of production fluids from a hydrocarbon well.

    BACKGROUND



    [0002] In order to process production fluids from a hydrocarbon well, it is often necessary to separate the various phases, such as liquid and gases. The separation strategies will depend on the type of well and the composition of the production fluids. However, generally speaking there will be sand, water liquid hydrocarbons, and gas hydrocarbons. Small amounts of other components may be present as well but are not considered here.

    [0003] In fluid streams that are primarily gas, strategies are often used to knock out the liquid from the gas stream. One common apparatus is a horizontal tank that is filled with particulate matter, such as gravel, and that has alternating baffles to increase turbulence and increase the flow path. Referring to FIG. 4, a prior art separator 100 is shown, where a gas stream flows into an inlet 102 of separator 100. Separator 100 includes vertical baffles 104 and is at least partially filled with particulate matter (not shown). Vertical baffles 104 increase the flow path of the gas stream, come into contact with the gas stream, and redirect the gas stream to create turbulence, each of which reduces the amount of moisture in the gas stream. Baffles 104 generally alternate between being open on the top or bottom of separator 100. Fluids are collected at the bottom of the tank and removed via a liquid outlet 106. The gas stream then exits via outlet 108. US 6 419 730 B1, US 4 187 089 A, US 5 919 284 A and US 2 349 944 A show different separators.

    SUMMARY



    [0004] According to an aspect, there is provided a separator for a gas stream comprising a horizontal tank having a fluid inlet, a fluid outlet spaced horizontally along the tank from the fluid inlet, and a flow path defined by the horizontal tank between the fluid inlet and the fluid outlet. A flow barrier is disposed within the tank and distributed along the flow path between the inlet and the outlet. One or more sets of liquid ports are in fluid communication with the tank and positioned at a bottom surface of the tank. Each set of liquid outlets comprises a first port and a second port, the first port being positioned upstream along the flow path relative to the second port. A fluid passage is in fluid communication with the first port and the second port. The fluid passage defines a secondary flow path adjacent to the horizontal tank, where the first port acts as a draft inlet to the secondary flow path and the second port acts as a draft outlet from the secondary flow path to the tank.

    [0005] The flow barrier comprises at least one of particulate matter and vertical baffles that redirect the flow path through the tank.

    [0006] According to another aspect, the flow barrier comprises at least one vertical baffle, the at least one vertical baffle being spaced from each set of liquid ports such that the vertical baffle does not separate the first and second port.

    [0007] According to another aspect, an inner diameter of the first port is at least two times or four time larger than an inner diameter of the second port.

    [0008] The secondary flow path comprises at least one collecting tank that collects liquid and has a liquid drain.

    [0009] The secondary flow path comprises a first collecting tank in communication with the first port and a second collecting tank in communication with the second port, the fluid passage connecting the first collecting tank and the second collecting tank. The fluid passage may have a passage inlet in the first tank and a passage outlet in the second tank, and wherein at least one of the passage inlet and the passage outlet are oriented downward. The first port may comprise a pipe section that extends downward into the first tank. Each of the first tanks and the second tank may comprise a liquid drain.

    [0010] There is provided a method of extracting liquid from a gas stream having entrained liquids, comprising the steps of, providing: a horizontal tank having a fluid inlet, a fluid outlet spaced horizontally along the horizontal tank from the fluid inlet, the horizontal tank defining a flow path within the tank between the fluid inlet and the fluid outlet and having a flow barrier disposed within the tank and distributed along the flow path between the inlet and the outlet; and one or more sets of liquid ports in fluid communication with the tank and positioned at a bottom surface of the tank, each set of liquid outlets comprising a first port and a second port, the first port being positioned upstream along the flow path relative to the second port, and a fluid passage in fluid communication with the first port and the second port, the fluid passage defining a secondary flow path adjacent to the horizontal tank, where the first port acts as a draft inlet to the secondary flow path and the second port acts as a draft outlet from the secondary flow path to the tank; pumping gas having entrained liquid to pass through the horizontal tank from the fluid inlet to the fluid outlet; and causing a portion of the gas to flow from the horizontal tank through the first port, through the fluid passage and re-enter the horizontal tank through the second port such that a portion of the entrained liquid separates from the gas.

    [0011] According to another aspect, the flow barrier comprises at least one of particulate matter and vertical baffles that redirect the flow path through the tank.

    [0012] According to another aspect, the flow barrier comprises at least one vertical baffle, the at least one vertical baffle being spaced from each set of liquid ports such that the vertical baffle does not separate the first and second port.

    [0013] According to another aspect, an inner diameter of the first port is at least two times or four times larger than an inner diameter of the second port.

    [0014] According to another aspect, the secondary flow path comprises at least one collecting tank that collects liquid and has a liquid drain.

    [0015] According to another aspect, the secondary flow path comprises a first collecting tank in communication with the first port and a second collecting tank in communication with the second port, the fluid passage connecting the first collecting tank and the second collecting tank. The fluid passage may have a passage inlet in the first tank and a passage outlet in the second tank, and wherein at least one of the passage inlet and the passage outlet are oriented downward. The first port may comprise a pipe section that extends downward into the first tank. Each of the first tanks and the second tank ma comprise a liquid drain.

    [0016] These and other aspects that are apparent from the drawings and description herein may be combined in any reasonable combination as will be recognised by those skilled in the art.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:

    FIG. 1 is a side elevation view in section of a separator tank.

    FIG. 2 is a side elevation view in section of an alternate separator tank.

    FIG. 3 is a side elevation view in section of a not claimed separator tank.

    FIG. 4 is a prior art horizontal separator.


    DETAILED DESCRIPTION



    [0018] A separator tank generally identified by reference numeral 10 will now be described with reference to FIG. 1 through 3.

    [0019] Referring to FIG. 1, separator 10 is intended to be used with a gas stream that has entrained liquids to be removed. In the case of gas from a hydrocarbon well, the gas is primarily a hydrocarbon gas and entrains liquids such as water, liquid hydrocarbons, etc. In some situations, the fluid flow from a hydrocarbon well may have already passed through other separation vessels or apparatuses, such as to remove some solid and liquids prior to passing the fluid flow through separator 10. In some circumstances, the gas and liquid may be from a difference source other than a well that may also have a gas flow with entrained fluids. The design of separator 10 is intended to enhance the removal of entrained liquids compared to other types of horizontal separators, such as the prior art design shown in FIG. 3.

    [0020] Separator 10 has a horizontal tank 12 with a fluid inlet 14 and a fluid outlet 16 at the other end of tank 12. As shown, tank 12 is preferably a cylindrical tank with rounded ends with an axis that is oriented horizontally as is common in the art, although it will be understood that the actual design of tank 12 may be varied. As such, inlet 14 and outlet 16, which are positioned at either end of tank 12, will be spaced horizontally from each other. Tank 12 defines a flow path between fluid inlet 14 and fluid outlet 16. One or more flow barriers are disposed within tank 12 and distributed along the flow path between inlet 14 and outlet 16. As shown, the flow barriers preferably include a particulate material 18 that fills tank 12, such as gravel, and vertical baffles 20 that extend alternatingly from the top and bottom of tank 12 to create a serpentine flow path. While both are shown in the preferred embodiment, it will be understood that one or both may be used, or other types of barriers could also be included. By providing these flow barriers, the pressure in tank 12 is reduced along its length, creating a pressure gradient between inlet 14 and outlet 16. In addition, flow barriers 18 and 20 also help remove any entrained liquids.

    [0021] There are preferably a number, but at least one, set of liquid ports, generally indicated by reference numeral 22. Sets of liquid ports 22 are in fluid communication with tank 12 and positioned on the bottom of tank 12. This allows them to remove any liquids from tank 12 that are knocked out of the gas flow. Each set of liquid outlets 22 includes a first port 24 and a second port 26. First port 24 is positioned upstream along the flow path of second port 26 and a fluid passage 28 is in fluid communication between first port 24 and second port 26. Fluid passage 28 defines a secondary flow path that is adjacent and in parallel with horizontal tank 12 for a short distance. It will be understood that the secondary flow path may not be parallel in the entirety of its flow, but rather with respect to first and second ports 24 and 26 being common start and end points. As first and second ports 24 and 26 are in communication with tank 12 and by fluid passage 28, the pressure differential along the length of tank 12 induces a draft between first and second ports 24 and 26, where first port 24 is at a higher pressure than second port 26, and does not have the same flow barriers as are found in tank 12. In one embodiment, a travel distance of about 6 feet between ports 24 and 26 provided adequate results.

    [0022] As designed, first port 24 acts as a draft inlet for a certain amount of gas flow to be drawn off the bottom of tank 12, flow through fluid passage 28 and re-enter tank 12 through second port 26 which acts as a draft outlet for the secondary flow path. In order to facilitate this, first port 24 is preferably larger than second port 26. For example, first port 24 may be at least twice as large, or four times as large, as second port 26. In one embodiment, beneficial results were achieved where the size of first port 24 was 2 inches and second port 26 was 3/8 inches as in the embodiment of FIG. 2. However, referring to FIG. 1, an adjustable valve 40 may be included, which will allow a user to adjust the size of second port 26. While not shown, it may also be desirable to provide first port 24 with an adjustable valve. In some embodiments, as shown in FIG. 2, vertical baffles 20 may be spaced from ports 24 and 26 such that they are not positioned between any particular pair of ports. In other embodiments, vertical baffles 20 may be positioned between ports 24 and 26. This increases the travel distance between ports 24 and 26 and therefore increase the pressure differential, which may be desirable in some circumstances. In addition, as port 24 acts as a draft inlet, this may help remove liquid that falls out of the fluid stream before the respective baffle 20.

    [0023] As shown, each fluid passage 28 only connects one pair of ports 24 and 26. If this were not so, it would change the characteristics of the draft and parallel flow that is otherwise achieved. In FIG. 1 and 2, there are collection tanks 30 associated with each port 24 and 26. In a not claimed alternative there may only be one tank 30, or it may be a single pipe 42, as shown in FIG. 3. Referring to FIG. 1, as the main collection points for liquid, collection tanks 30 also have liquid drains 32, which may be opened as necessary to withdraw any collected liquid. Liquid drains 32 are preferably dump valves that prevent gas flowing into tanks 30 from below, as known in the art. The liquid removed through drains 32 may be treated further as is known in the art. Using collection tanks 30, which have a larger cross-sectional flow area than inlet port 24, the fluid flow along the secondary flow path is slowed further. In addition, inlet port 24 extends downward into the first collection tank 30 and fluid passage 28 has a passage inlet port 34 and passage outlet port 36 that face downward, such that the flow path along the secondary flow path is more circuitous, as can be seen. These design features are intended to slow and redirect the direction of fluid flow to increase the opportunity for liquid to be removed from the gas flow to be collected in collection tanks 30. In another embodiment, referring to FIG. 2, the portion of inlet port 34 that extends into collection tank 30 includes a perforated section 38 to also attempt to increase the dispersion of the fluid flow.

    [0024] Once the gas flow has traversed tank 12 and set of liquid ports 22, it exits tank 12 and may then be


    Claims

    1. A separator for a gas stream, comprising:

    a horizontal tank (12) having a fluid inlet (14), a fluid outlet (16) spaced horizontally along the tank from the fluid inlet, the horizontal tank (12) defining a flow path within the horizontal tank (12) between the fluid inlet (14) and the fluid outlet (16);

    characterized in that:

    a flow barrier (18/20) disposed within the horizontal tank (12) and distributed along the flow path between the fluid inlet (14) and the fluid outlet (16), the flow barrier (18/20) comprising particulate matter (18), vertical baffles (20), or particulate matter (18) and vertical baffles (20) in combination, the vertical baffles (20) redirecting the flow path through the horizontal tank (12);

    one or more sets of liquid ports in fluid communication with the horizontal tank (12) and positioned at a bottom surface of the horizontal tank (12), each set of liquid ports comprising:

    a first port (24) and a second port (26), the first port (24) being positioned upstream along the flow path relative to the second port (26); and

    a fluid passage (28) in fluid communication with the first port (24) and the second port (26), the fluid passage (28) defining a secondary flow path adjacent to the horizontal tank (12), the fluid passage (28) defining a gas flow path between the first port (24) and the second port (26), the fluid passage (28) having a drain (32) for draining liquid to maintain the gas flow path, such that the first port (24) acts as a draft inlet to the secondary flow path and the second port (26) acts as a draft outlet from the secondary flow path to the horizontal tank (12);

    wherein the secondary flow path comprises a first collecting tank (30) in communication with the first port (24) and a second collecting tank (30) in communication with the second port (26), the fluid passage (28) connecting the first collecting tank (30) and the second collecting tank (30); and

    wherein the first port (24) comprises a pipe section that extends downward into the first collecting tank (30) and the second collecting tank (30) comprises a liquid drain (32).


     
    2. The separator of claim 1, wherein the flow barrier (18/20) comprises at least one vertical baffle (20), the at least one vertical baffle (20) being spaced from each set of liquid ports (24/26) such that the vertical baffle (20) does not separate the first port (24) and the second port (26).
     
    3. The separator of claim 1, wherein an inner diameter of the first port (24) is at least two times or at least four time larger than an inner diameter of the second port (26).
     
    4. The separator of claim 1, wherein the secondary flow path comprises at least one collecting tank (30) that collects liquid and has a liquid drain (32).
     
    5. The separator of claim 1, wherein the fluid passage has a passage inlet (34) in the first tank (30) and a passage outlet (36) in the second tank (30), and wherein at least one of the passage inlet (34) and the passage outlet (36) are oriented downward.
     
    6. A method of extracting liquid from a gas stream having entrained liquids, comprising:

    providing:

    a horizontal tank (12) having a fluid inlet (14), a fluid outlet (16) spaced horizontally along the horizontal tank (12) from the fluid inlet (14), the horizontal tank (12) defining a flow path within the horizontal tank (12) between the fluid inlet (14) and the fluid outlet (16) and having a flow barrier (18/20) disposed within the horizontal tank (12) and distributed along the flow path between the fluid inlet (14) and the fluid outlet (16); and

    one or more sets of liquid ports in fluid communication with the horizontal tank (12) and positioned at a bottom surface of the horizontal tank (12), each set of liquid ports comprising a first port (24) and a second port (26), the first port (24) being positioned upstream along the flow path relative to the second port (26), and a fluid passage (28) in fluid communication with the first port (24) and the second port (26), the fluid passage (28) defining a secondary flow path adjacent to the horizontal tank (12), where the first port (24) acts as a draft inlet to the secondary flow path and the second port (26) acts as a draft outlet from the secondary flow path to the horizontal tank (12);

    pumping gas having entrained liquid to pass through the horizontal tank (12) from the fluid inlet (14) to the fluid outlet (16);

    causing a portion of the gas to flow from the horizontal tank (12) through the first port (24), through the fluid passage (28) and re-enter the horizontal tank (12) through the second port (26) such that a portion of the entrained liquid separates from the gas; and

    draining the separated liquid from the secondary flow passage and continuing to cause the portion of the gas to flow through the fluid passage (28);

    wherein the flow barrier (18/20) comprises particulate matter (18), vertical baffles (20), or particulate matter (18) and vertical baffles (20) in combination, the vertical baffles (20) redirecting the flow path through the horizontal tank (12);

    wherein the secondary flow path comprises a first collecting tank (30) in communication with the first port (24) and a second collecting tank (30) in communication with the second port (26), the fluid passage (28) connecting the first collecting tank (30) and the second collecting tank (30);

    wherein the first port (24) comprises a pipe section that extends downward into the first collecting tank (30) and the second collecting tank (30) comprises a liquid drain (32).


     
    7. The method of claim 6, wherein the flow barrier (18/20) comprises at least one vertical baffle (20), the at least one vertical baffle (20) being spaced from each set of liquid ports such that the vertical baffle (20) does not separate the first port (24) and second port (26).
     
    8. The method of claim 6, wherein an inner diameter of the first port (24) is at least two times or at least four times larger than an inner diameter of the second port (26).
     
    9. The method of claim 6, wherein the secondary flow path comprises at least one collecting tank (30) that collects liquid and has a liquid drain (32).
     
    10. The method of claim 6, wherein the fluid passage has a passage inlet (34) in the first collecting tank (30) and a passage outlet (36) in the second collecting tank (30), and wherein at least one of the passage inlet (34) and the passage outlet (36) are oriented downward.
     
    11. The method of claim 6, wherein the flow barrier (18/20) comprises particulate matter (18).
     


    Ansprüche

    1. Abscheider für einen Gasstrom, umfassend:

    einen horizontalen Tank (12) mit einem Fluideinlass (14), einem Fluidauslass (16), der horizontal entlang des Tanks von dem Fluideinlass beabstandet ist, wobei der horizontale Tank (12) einen Durchflussweg in dem horizontalen Tank (12) zwischen dem Fluideinlass (14) und dem Fluidauslass (16) definiert;

    gekennzeichnet durch:

    eine Durchflussbarriere (18/20), die in dem horizontalen Tank (12) angeordnet und entlang des Durchflusswegs zwischen dem Fluideinlass (14) und dem Fluidauslass (16) verteilt ist, wobei die Durchflussbarriere (18/20) Feststoffteilchen (18), vertikale Leitbleche (20) oder Feststoffteilchen (18) und vertikale Leitbleche (20) in Kombination umfasst, wobei die vertikalen Leitbleche (20) den Durchflussweg durch den horizontalen Tank (12) umlenken;

    einen oder mehrere Sätze von Flüssigkeitsöffnungen, die in Fluidverbindung mit dem horizontalen Tank (12) und an einer unteren Fläche des horizontalen Tanks (12) positioniert sind, wobei jeder Satz von Flüssigkeitsöffnungen umfasst:

    eine erste Öffnung (24) und eine zweite Öffnung (26), wobei die erste Öffnung (24) relativ zu der zweiten Öffnung (26) stromaufwärts entlang des Durchflusswegs positioniert ist; und

    einen Fluiddurchgang (28) in Fluidverbindung mit der ersten Öffnung (24) und der zweiten Öffnung (26), wobei der Fluiddurchgang (28) einen zweiten Durchflussweg angrenzend an den horizontalen Tank (12) definiert, wobei der Fluiddurchgang (28) einen Gasdurchflussweg zwischen der ersten Öffnung (24) und der zweiten Öffnung (26) definiert, wobei der Fluiddurchgang (28) einen Ablass (32) zum Ablassen von Flüssigkeit zum Aufrechterhalten des Gasdurchflusswegs aufweist, so dass die erste Öffnung (24) als ein Strömungseinlass zu dem zweiten Durchflussweg dient und die zweite Öffnung (26) als ein Strömungsauslass von dem zweiten Durchflussweg zu dem horizontalen Tank (12) dient;

    wobei der zweite Durchflussweg einen ersten Sammeltank (30) in Verbindung mit der ersten Öffnung (24) und einen zweiten Sammeltank (30) in Verbindung mit der zweiten Öffnung (26) umfasst, wobei der Fluiddurchgang (28) den ersten Sammeltank (30) und den zweiten Sammeltank (30) verbindet; und

    wobei die erste Öffnung (24) einen Rohrabschnitt umfasst, der sich nach unten in den ersten Sammeltank (30) erstreckt, und der zweite Sammeltank (30) einen Flüssigkeitsablass (32) umfasst.


     
    2. Abscheider nach Anspruch 1, wobei die Durchflussbarriere (18/20) mindestens ein vertikales Leitblech (20) umfasst, wobei das mindestens eine vertikale Leitblech (20) von jedem Satz von Flüssigkeitsöffnungen (24/26) derart beabstandet ist, dass das vertikale Leitblech (20) nicht die erste Öffnung (24) und die zweite Öffnung (26) trennt.
     
    3. Abscheider nach Anspruch 1, wobei ein Innendurchmesser der ersten Öffnung (24) mindestens zweimal oder mindestens viermal größer als ein Innendurchmesser der zweiten Öffnung (26) ist.
     
    4. Abscheider nach Anspruch 1, wobei der zweite Durchflussweg mindestens einen Sammeltank (30) umfasst, der Flüssigkeit sammelt und einen Flüssigkeitsablass (32) aufweist.
     
    5. Abscheider nach Anspruch 1, wobei der Fluiddurchgang einen Durchgangseinlass (34) in dem ersten Tank (30) und einen Durchgangsauslass (36) in dem zweiten Tank (30) aufweist, und wobei mindestens einer des Durchgangseinlasses (34) und des Durchgangsauslasses (36) nach unten ausgerichtet ist.
     
    6. Verfahren zum Extrahieren von Flüssigkeit aus einem Gasstrom mit mitgeführten Flüssigkeiten, umfassend:

    Bereitstellen:

    eines horizontalen Tanks (12), der einen Fluideinlass (14), einen Fluidauslass (16), der horizontal entlang des horizontalen Tanks (12) von dem Fluideinlass (14) beabstandet ist, aufweist, wobei der horizontale Tank (12) einen Durchflussweg in dem horizontalen Tank (12) zwischen dem Fluideinlass (14) und dem Fluidauslass (16) definiert, und der eine Durchflussbarriere (18/20) aufweist, die in dem horizontalen Tank (12) angeordnet und entlang des Durchflusswegs zwischen dem Fluideinlass (14) und dem Fluidauslass (16) verteilt ist; und

    eines oder mehrerer Sätze von Flüssigkeitsöffnungen, die in Fluidverbindung mit dem horizontalen Tank (12) und an einer unteren Fläche des horizontalen Tanks (12) positioniert sind, wobei jeder Satz von Flüssigkeitsöffnungen eine erste Öffnung (24) und eine zweite Öffnung (26), wobei die erste Öffnung (24) relativ zu der zweiten Öffnung (26) stromaufwärts entlang des Durchflusswegs positioniert ist, und einen Fluiddurchgang (28) in Fluidverbindung mit der ersten Öffnung (24) und der zweiten Öffnung (26) umfasst, wobei der Fluiddurchgang (28) einen zweiten Durchflussweg angrenzend an den horizontalen Tank (12) definiert, wobei die erste Öffnung (24) als ein Strömungseinlass zu dem zweiten Durchflussweg dient und die zweite Öffnung (26) als ein Strömungsauslass von dem zweiten Durchflussweg zu dem horizontalen Tank (12) dient;

    Pumpen von Gas mit mitgeführter Flüssigkeit derart, dass es durch den horizontalen Tank (12) von dem Fluideinlass (14) zu dem Fluidauslass (16) strömt;

    Veranlassen eines Teils des Gases, von dem horizontalen Tank (12) durch die erste Öffnung (24), durch den Fluiddurchgang (28) zu fließen und wieder in den horizontalen Tank (12) durch die zweite Öffnung (26) einzutreten, so dass sich ein Teil der mitgeführten Flüssigkeit von dem Gas abscheidet; und

    Ablassen der abgeschiedenen Flüssigkeit von dem zweiten Durchflussdurchgang und Fortfahren mit Veranlassen des Teils des Gases, durch den Fluiddurchgang (28) zu fließen;

    wobei die Durchflussbarriere (18/20) Feststoffteilchen (18), vertikale Leitbleche (20) oder Feststoffteilchen (18) und vertikale Leitbleche (20) in Kombination umfasst, wobei die vertikalen Leitbleche (20) den Durchflussweg durch den horizontalen Tank (12) umlenken;

    wobei der zweite Durchflussweg einen ersten Sammeltank (30) in Verbindung mit der ersten Öffnung (24) und einen zweiten Sammeltank (30) in Verbindung mit der zweiten Öffnung (26) umfasst, wobei der Fluiddurchgang (28) den ersten Sammeltank (30) und den zweiten Sammeltank (30) verbindet;

    wobei die erste Öffnung (24) einen Rohrabschnitt umfasst, der sich nach unten in den ersten Sammeltank (30) erstreckt, und der zweite Sammeltank (30) einen Flüssigkeitsablass (32) umfasst.


     
    7. Verfahren nach Anspruch 6, wobei die Durchflussbarriere (18/20) mindestens ein vertikales Leitblech (20) umfasst, wobei das mindestens eine vertikale Leitblech (20) von jedem Satz von Flüssigkeitsöffnungen derart beabstandet ist, dass das vertikale Leitblech (20) nicht die erste Öffnung (24) und die zweite Öffnung (26) trennt.
     
    8. Verfahren nach Anspruch 6, wobei ein Innendurchmesser der ersten Öffnung (24) mindestens zweimal oder mindestens viermal größer als ein Innendurchmesser der zweiten Öffnung (26) ist.
     
    9. Verfahren nach Anspruch 6, wobei der zweite Durchflussweg mindestens einen Sammeltank (30) umfasst, der Flüssigkeit sammelt und einen Flüssigkeitsablass (32) aufweist.
     
    10. Verfahren nach Anspruch 6, wobei der Fluiddurchgang einen Durchgangseinlass (34) in dem ersten Sammeltank (30) und einen Durchgangsauslass (36) in dem zweiten Sammeltank (30) aufweist, und wobei mindestens einer des Durchgangseinlasses (34) und des Durchgangsauslasses (36) nach unten ausgerichtet ist.
     
    11. Verfahren nach Anspruch 6, wobei die Durchflussbarriere (18/20) Feststoffteilchen (18) umfasst.
     


    Revendications

    1. Séparateur pour un courant de gaz, comprenant :

    un réservoir horizontal (12) équipé d'une entrée de fluide (14), d'une sortie de fluide (16) espacée horizontalement le long du réservoir par rapport à l'entrée de fluide, le réservoir horizontal (12) définissant un trajet d'écoulement à l'intérieur du réservoir horizontal (12) entre l'entrée de fluide (14) et la sortie de fluide (16) ;

    caractérisé en ce que :

    une barrière d'écoulement (18/20) disposée à l'intérieur du réservoir horizontal (12) et répartie le long du trajet d'écoulement entre l'entrée de fluide (14) et la sortie de fluide (16), la barrière d'écoulement (18/20) comprenant des matières particulaires (18), des déflecteurs verticaux (20), ou des matières particulaires (18) et des déflecteurs verticaux (20) en combinaison, les déflecteurs verticaux (20) redirigeant le trajet d'écoulement à travers le réservoir horizontal (12) ;

    un ou plusieurs ensembles d'orifices pour liquide en communication fluidique avec le réservoir horizontal (12) et positionnés au niveau d'une surface de fond du réservoir horizontal (12), chaque ensemble d'orifices pour liquides comprenant :

    un premier orifice (24) et un second orifice (26), le premier orifice (24) étant positionné en amont le long du trajet d'écoulement par rapport au second orifice (26) ; et

    un passage de fluide (28) en communication fluidique avec le premier orifice (24) et le second orifice (26), le passage de fluide (28) définissant un trajet d'écoulement secondaire adjacent au réservoir horizontal (12), le passage de fluide (28) définissant un trajet d'écoulement de gaz entre le premier orifice (24) et le second orifice (26), le passage de fluide (28) ayant un drain (32) pour drainer le liquide afin de maintenir le trajet d'écoulement de gaz, de telle sorte que le premier orifice (24) agit comme une entrée d'aspiration vers le trajet d'écoulement secondaire et le second orifice (26) agit comme une sortie d'aspiration du trajet d'écoulement secondaire vers le réservoir horizontal (12) ;

    dans lequel le trajet d'écoulement secondaire comprend un premier réservoir collecteur (30) en communication avec le premier orifice (24) et un second réservoir collecteur (30) en communication avec le second orifice (26), le passage de fluide (28) reliant le premier réservoir collecteur (30) et le second réservoir collecteur (30) ; et

    dans lequel le premier orifice (24) comprend une section de tuyau qui s'étend vers le bas dans le premier réservoir de collecte (30) et le second réservoir de collecte (30) comprend un drain de liquide (32).


     
    2. Séparateur selon la revendication 1, dans lequel la barrière d'écoulement (18/20) comprend au moins un déflecteur vertical (20), l'au moins un déflecteur vertical (20) étant espacé de chaque ensemble d'orifices de liquide (24/26) de telle sorte que le déflecteur vertical (20) ne sépare pas le premier orifice (24) et le second orifice (26).
     
    3. Séparateur selon la revendication 1, dans lequel un diamètre intérieur du premier orifice (24) est au moins deux fois ou au moins quatre fois plus grand qu'un diamètre intérieur du second orifice (26).
     
    4. Séparateur selon la revendication 1, dans lequel le trajet d'écoulement secondaire comprend au moins un réservoir de collecte (30) qui recueille le liquide et possède un drain de liquide (32).
     
    5. Séparateur selon la revendication 1, dans lequel le passage de fluide comporte une entrée de passage (34) dans le premier réservoir (30) et une sortie de passage (36) dans le second réservoir (30), et dans lequel au moins l'une parmi l'entrée de passage (34) et la sortie de passage (36) est orientée vers le bas.
     
    6. Procédé d'extraction de liquide d'un courant de gaz ayant des liquides entraînés, comprenant :

    la fourniture :

    d'un réservoir horizontal (12) équipé d'une entrée de fluide (14), d'une sortie de fluide (16) espacée horizontalement le long du réservoir horizontal (12) par rapport à l'entrée de fluide (14), le réservoir horizontal (12) définissant un trajet d'écoulement à l'intérieur du réservoir horizontal (12) entre l'entrée de fluide (14) et la sortie de fluide (16) et ayant une barrière d'écoulement (18/20) disposée à l'intérieur du réservoir horizontal (12) et répartie le long du trajet d'écoulement entre l'entrée de fluide (14) et la sortie de fluide (16) ; et

    d'un ou plusieurs ensembles d'orifices pour liquides en communication fluidique avec le réservoir horizontal (12) et positionnés sur une surface de fond du réservoir horizontal (12), chaque ensemble d'orifices pour liquides comprenant un premier orifice (24) et un second orifice (26), le premier orifice (24) étant positionné en amont le long du trajet d'écoulement par rapport au second orifice (26), et un passage de fluide (28) en communication fluidique avec le premier orifice (24) et le second orifice (26), le passage de fluide (28) définissant un trajet d'écoulement secondaire adjacent au réservoir horizontal (12), le premier orifice (24) agissant comme une entrée d'aspiration vers le trajet d'écoulement secondaire et le second orifice (26) agissant comme une sortie d'aspiration du trajet d'écoulement secondaire vers le réservoir horizontal (12) ;

    le pompage d'un gaz ayant entraîné un liquide pour passer à travers le réservoir horizontal (12) de l'entrée du fluide (14) à la sortie du fluide (16) ;

    l'écoulement d'une partie du gaz du réservoir horizontal (12) à travers le premier orifice (24), à travers le passage de fluide (28) et sa réintroduction dans le réservoir horizontal (12) à travers le second orifice (26), de sorte qu'une partie du liquide entraîné se sépare du gaz ; et

    le drainage du liquide séparé du passage d'écoulement secondaire et la poursuite de l'écoulement de la partie du gaz dans le passage de fluide (28) ;

    la barrière d'écoulement (18/20) comprenant des matières particulaires (18), des déflecteurs verticaux (20), ou des matières particulaires (18) et des déflecteurs verticaux (20) en combinaison, les déflecteurs verticaux (20) redirigeant le trajet d'écoulement à travers le réservoir horizontal (12) ;

    le trajet d'écoulement secondaire comprenant un premier réservoir collecteur (30) en communication avec le premier orifice (24) et un second réservoir collecteur (30) en communication avec le second orifice (26), le passage de fluide (28) reliant le premier réservoir collecteur (30) et le second réservoir collecteur (30) ;

    dans lequel le premier orifice (24) comprend une section de tuyau qui s'étend vers le bas dans le premier réservoir de collecte (30) et le second réservoir de collecte (30) comprend un drain de liquide (32).


     
    7. Procédé selon la revendication 6, dans lequel la barrière d'écoulement (18/20) comprend au moins un déflecteur vertical (20), l'au moins un déflecteur vertical (20) étant espacé de chaque ensemble d'orifices de liquide de telle sorte que le déflecteur vertical (20) ne sépare pas le premier orifice (24) et le second orifice (26) .
     
    8. Procédé selon la revendication 6, dans lequel un diamètre intérieur du premier orifice (24) est au moins deux fois ou au moins quatre fois plus grand qu'un diamètre intérieur du second orifice (26).
     
    9. Procédé selon la revendication 6, dans lequel le trajet d'écoulement secondaire comprend au moins un réservoir de collecte (30) qui collecte le liquide et possède un drain de liquide (32).
     
    10. Procédé selon la revendication 6, dans lequel le passage de fluide présente une entrée de passage (34) dans le premier réservoir collecteur (30) et une sortie de passage (36) dans le second réservoir collecteur (30), et dans lequel au moins l'une parmi l'entrée de passage (34) et la sortie de passage (36) est orientée vers le bas.
     
    11. Procédé selon la revendication 6, dans lequel la barrière d'écoulement (18/20) comprend des matières particulaires (18).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description