(19)
(11)EP 3 192 984 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 16150983.1

(22)Date of filing:  13.01.2016
(51)Int. Cl.: 
F01K 3/00  (2006.01)
F01K 7/22  (2006.01)
F01K 3/06  (2006.01)
F01K 3/02  (2006.01)
F01K 7/40  (2006.01)

(54)

METHOD FOR OPERATING A STEAM POWER PLANT AND STEAM POWER PLANT FOR CONDUCTING SAID METHOD

VERFAHREN ZUM BETRIEB EINER DAMPFKRAFTANLAGE UND DAMPFKRAFTANLAGE ZUR DURCHFÜHRUNG DES VERFAHRENS

PROCÉDÉ POUR FAIRE FONCTIONNER UNE CENTRALE THERMIQUE À VAPEUR ET CENTRALE THERMIQUE À VAPEUR POUR LA MISE EN OEUVRE DUDIT PROCÉDÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
19.07.2017 Bulletin 2017/29

(73)Proprietor: General Electric Technology GmbH
5400 Baden (CH)

(72)Inventors:
  • Kirchner, Julia
    64579 Gernsheim (DE)
  • Schuele, Volker
    69181 Leimen (DE)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
DE-A1- 2 360 870
JP-A- S57 119 116
DE-C- 898 001
JP-A- S60 187 705
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention relates to a steam power plant. It refers to a method for operating a steam power plant according to the preamble of claim 1.

    [0002] It further refers to a steam power plant for conducting said method.

    PRIOR ART



    [0003] In the past various attempts have been made to store energy in a steam power plant in order to use it during certain operational conditions.

    [0004] Document EP 2 333 254 B1 suggests a steam power having, parallel to the low pressure preheater passage, a heat reservoir, which is loaded with preheated condensate in weak-load times. This preheated condensate is taken from the heat reservoir for generating peak-load and inserted downstream of the preheater passage into the condensate line resp. the feed water tank. Thus it is possible to quickly control the power generation of the power plant in a wide range without significantly having to change the heating output of the boiler of the steam generator. A steam power plant equipped according to the invention can thus be operated with bigger load modifications and also provide more control energy.

    [0005] Document EP 2 589 761 A1 describes an extension to EP 2 333 254 B1 mentioned before. Again, a steam power plant has, parallel to the low-pressure passage, a heat reservoir which is loaded with preheated condensate in weak-load times. This preheated condensate is taken from the heat reservoir for generating peak-load and inserted downstream of the low-pressure preheater passage into the condensate line resp. the feed water tank. An additional heat exchanger is provided to increase the temperature of the hot water sent to the storage Thus it is possible to quickly control the power generation of the power plant in a wide range without significantly having to change the heating output of the boiler of the steam generator. A steam power plant equipped according to the invention can thus be operated with bigger load modifications and also provide more control energy.

    [0006] Document EP 2 589 760 A1 describes the integration of hot water energy storage parallel to the HP feed water preheaters. In this case the storage is at higher temperatures and pressures than in EP 2 333 254 B1 mentioned before.

    [0007] Document DE 10 2012 213 976 A1 discloses a method involving extracting a portion of a steam mass flow from a boiler connected to a water-steam circuit of a steam turbine into an external storage. The steam is released from the external storage and supplied to the steam turbine process when needed. The steam is extracted into the external storage, when the power plant is operated at partial load or when a rapid power reduction is required. The steam turbine is operated in modified variable pressure, and the boiler is filled with the steam while the steam is released from the external storage. Here, during charging the storage is fed by steam from the boiler.

    [0008] For power plants, where no storage is already installed, EP 2 333 254 B1 and EP 2 589 761 A1 provide the best solutions. But when a power plant has already a steam storage installed but not dedicated to use it to provide additional power, it is the most cost-effective solution to integrate the existing steam storage in a different way.

    [0009] JPS60187705A discloses a method of operating a steam turbine plant provided with a turbine bypass device. DE898001C discloses a device for controlling steam power plants with storage tank and extraction turbine In combined power generation and heating plants, whose tanks are to be protected against rapid load fluctuations,

    SUMMARY OF THE INVENTION



    [0010] It is an object of the present invention to provide a method for operating a steam power plant, which is capable of storing energy in order to utilize the fluctuation of the electricity price to earn additional revenues (arbitration).

    [0011] It is a further object of the present invention to provide a steam power plant for conducting said method.

    [0012] These objectives are obtained by a method according to one of Claims 1-3, and a steam power plant according to Claim 5.

    [0013] The inventive method for operating a steam power plant is based on a steam power plant comprising all features of appended independent claim 5, inter alia comprising: a main water-steam-cycle with a high pressure (HP) steam turbine, an intermediate pressure (IP) steam turbine and a low pressure (LP) steam turbine, a condenser, and a feed water tank, wherein low pressure heaters are arranged between said condenser and said feed water tank and wherein a plurality of high pressure heaters are arranged downstream of said feed water tank, whereby said low pressure heaters, said feed water tank and said plurality of high pressure heaters are supplied with steam from a plurality of extractions at said steam turbines.

    [0014] The inventive method comprises the steps defined in one of appended independent claims 1-3, inter alia the steps of: (a) providing a steam storage means within said steam power plant, (b) storing during a first operation period of said steam power plant steam in said steam storage means, and (c) discharging during a second operation period of said steam power plant steam stored in said steam storage means into the main water steam cycle to save steam extracted from said plurality of extractions at said steam turbines.

    [0015] The inventive method as defined by appended independent claim 1 comprises that during said first operation period steam extracted from said high pressure (HP) steam turbine is stored in said steam storage means, a first of said plurality of high pressure heaters is supplied with steam extracted from said intermediate pressure (IP) steam turbine, and steam is discharged into said first of said plurality of high pressure heaters from said steam storage means during said second operation period of said steam power plant.

    [0016] Said steam discharged from said steam storage means into said first of said plurality of high pressure heaters during said second operation period is, in one alternative, superheated with steam extracted from said high pressure (HP) steam turbine.

    [0017] Alternatively, said steam discharged from said steam storage means into said first of said plurality of high pressure heaters during said second operation period is superheated with hot reheat steam, which is available at the inlet of said intermediate pressure (IP) steam turbine.

    [0018] Alternatively, said steam discharged from said steam storage means into said first of said plurality of high pressure heaters during said second operation period is superheated with steam, which is extracted from said intermediate pressure (IP) steam turbine for supplying said first of said plurality of high pressure heaters.

    [0019] Another embodiment of the inventive method, as defined by appended independent claim 2, comprises inter alia that during said first operation period steam extracted from said high pressure (HP) steam turbine is stored in said steam storage means, said feed water tank is supplied with steam extracted from said intermediate pressure (IP) steam turbine, and steam is discharged into said feed water tank from said steam storage means during said second operation period of said steam power plant.

    [0020] Said steam discharged from said steam storage means into said feed water tank is, in one alternative, superheated with steam extracted from said high pressure (HP) steam turbine.

    [0021] Alternatively, said steam discharged from said steam storage means into said feed water tank is superheated with hot reheat steam, which is available at an inlet of said intermediate pressure (IP) steam turbine.

    [0022] Alternatively, in an inventive method as defined by appended independent claim 3, inter alia a first of said plurality of high pressure heaters is supplied with steam extracted from said intermediate pressure (IP) steam turbine, and said steam discharged from said steam storage means into said feed water tank may be superheated with steam, which is extracted from said intermediate pressure (IP) steam turbine for supplying said first of said plurality of high pressure heaters.

    [0023] Alternatively, in the inventive method as defined by appended independent claim 2, said steam discharged from said steam storage means into said feed water tank is superheated with steam extracted from said intermediate pressure (IP) steam turbine for being supplied to said feed water tank.

    [0024] According to a more detailed embodiment of the inventive method said steam storage means is a steam storage tank.

    [0025] A steam power plant according to the invention, as defined by appended independent claim 5 and for conducting said inventive method inter alia comprises: a steam-water-cycle with a high pressure steam turbine, an intermediate pressure steam turbine and a low pressure steam turbine, a condenser, and a feed water tank, wherein low pressure heaters are arranged between said condenser and said feed water tank and wherein first and second high pressure heaters are arranged downstream of said feed water tank, whereby said low pressure heaters, said feed water tank and said high pressure heaters are supplied with steam from a plurality of extractions at said steam turbines.

    [0026] A steam storage means is provided with an input for receiving steam and an output for discharging steam is provided at said steam power plant, that said input of said steam storage means is operationally connected to a steam extraction at said high pressure steam turbine, and that said output of said steam storage means is operationally connected to said first high pressure heater.

    [0027] Furthermore, said output of said steam storage means is operationally connected to said feed water tank.

    [0028] Means are provided to superheat steam extracted from said steam storage means with steam extracted from said high pressure (HP) steam turbine or hot reheat steam, which is available at the inlet of said intermediate pressure (IP) steam turbine, or steam, which is extracted from said intermediate pressure (IP) steam turbine for supplying said first of said high pressure heaters. Furthermore means may be provided to superheat steam extracted from said steam storage means with steam extracted from said intermediate pressure (IP) steam turbine for being supplied to said feed water tank.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0029] The present invention is now to be explained more closely by means of different embodiments and with reference to the attached drawings.
    Fig. 1
    shows a prior art basic water-steam-cycle arrangement;
    Fig. 2
    shows a steam storage integration at a high pressure heater, in a water-steam-cycle arrangement as shown in Fig. 1 according to an embodiment of the invention; and
    Fig. 3
    shows a steam storage integration at the feed water tank, in a water-steam-cycle arrangement as shown in Fig. 1 according to another embodiment of the invention;

    DETAILED DESCRIPTION OF DIFFERENT EMBODIMENTS OF THE INVENTION



    [0030] The main objective is the integration of thermal energy storage (steam storage) into a steam power plant. During discharging of the steam storage means or tank, the steam is fed to the main water-steam cycle to save extraction steam. By doing this, the power output of the plant can be increased.

    [0031] The basis is a prior art steam power plant shown in Fig. 1. The steam power plant 10 of Fig. 1 comprises a high pressure (HP) steam turbine 11, intermediate pressure (IP) steam turbines 12 and low pressure (LP) steam turbines 13, which drive a generator 14. Life steam 25 is supplied to high pressure steam turbine from a boiler (or heat recovery steam generator HRSG) not shown. After expansion in high pressure steam turbine 11 steam is fed back to cold reheat 24 of the boiler. Hot reheat 26 steam from the boiler is then supplied to intermediate pressure (IP) steam turbines 12 the exits of which are connected to the inlet of low pressure (LP) steam turbines 13.

    [0032] Steam from the low pressure (LP) steam turbines 13 flows into condenser 15. The resulting condensate is pumped by condensate pump 16 through heat exchanger 17 and a series of low pressure heaters (LPH) 18 to feed water tank 19. From feed water tank 19 a feed water pump 20 pumps feed water through high pressure heaters (HPH) 21a and 21b and desuperheater (DeSH) 22 to an economizer 23 of a boiler/ heat recovery steam generator (not shown).

    [0033] The low pressure heaters 18 are supplied with steam extracted at various points of low pressure steam turbines 13 and intermediate pressure steam turbines 12 (extractions E1 to E4). Feed water tank 19 receives steam from extraction E5 of intermediate pressure steam turbines 12, while first high pressure heater 21a and desuperheater 22 are connected to extraction E6 of intermediate pressure steam turbines 12. Second high pressure heater 21b receives steam from extraction E7, i.e. directly from the outlet of high pressure steam turbine 11.

    [0034] An HP extraction is not shown in the drawing of Fig. 1, but can also be possible.

    [0035] Now, in general, the higher the pressure of the extraction steam, the longer is the path in the steam turbine where the steam can deliver "work". If the mass flows were similar, this would be true. But for a steam storage, the lower the minimum pressure, the more mass can be extracted from the storage and so, integration of a steam storage at a lower stage can result in even higher electrical power output increase.

    [0036] When the maximum storage pressure is the cold reheat (CRH) pressure at 24, the storage cannot be connected to the second high pressure heater 21b (in Fig. 1), as the pressure decreases when extracting steam from the storage. Therefore, the first possible feed water preheater in descending order is the first high pressure heater 21a. If there are several high pressure feed water preheaters, the storage can be connected to either of them, which has a pressure lower than the storage pressure.

    [0037] Depending on the source of superheating steam, it can occur that the steam pressure from the storage is a little bit below the original extraction pressure (depending on pressure drops in the system).

    [0038] Fig. 2 now shows an embodiment of the invention, where a steam storage means with storage tank 27 is integrated at high pressure heater 21a.

    [0039] If this high pressure heater 21a is connected to the IP steam turbine 12 (extraction E6), it will have a high temperature (approx. 400°C and more) and a pressure lower than the cold reheat pressure at 24 (approx. 25 bars).

    [0040] There are different ways to superheat the steam from storage tank 27.

    [0041] According to a first superheat option 29 (valve 30), the steam from storage tank 27 can be superheated with cold reheat 24 from the exit of high pressure steam turbine 11.

    [0042] According to a second superheat option 31 (valve 32), the steam from storage tank 27 can be superheated with hot reheat 26, i.e. steam supplied to the inlet of intermediate pressure steam turbines 12.

    [0043] According to a third superheat option 33 (valve 34) the steam from storage tank 27 can be superheated with steam from extraction E6 at intermediate pressure steam turbine 12 to high pressure heater 21a. Further valves 28, 35 and 36 are provided to complete the described functionality.

    [0044] If the degree of superheating of the steam is rather low, it only makes sense to shut off the desuperheater 22 of that high pressure preheater 21a and introduce the steam from the storage tank 27 directly at the condensing part. If there is no non-return valve between desuperheater 22 and the condensing part (valve 35), it must be retrofitted. Third superheat option 33 has the highest storage efficiency of the three superheating variants explained above.

    [0045] Furthermore, a throttle valve (valve 28) controls the pressure to the pressure of the high pressure heater 21a.

    [0046] Another embodiment of the invention is shown in Fig. 3. According to Fig. 3 the steam storage means with storage tank 27 is integrated at feed water tank 19. When integrating the steam from the storage tank 27 at feed water tank 19, which is at a pressure level of approx. 10 bars, more steam can be extracted from the storage tank 27. A throttle valve 28 downstream the storage tank 27 will also be necessary.

    [0047] To superheat the storage steam, the three superheating options explained above are possible.

    [0048] A fourth option 39, using steam from the extraction E5 of the feed water tank 19 is possible. This solution delivers a higher electrical power increase, but has slightly slower storage efficiency than when integrating at high pressure heater 21a.

    [0049] The throttle valve 28 controls the pressure to the feed water tank pressure. With a closed stop valve 38, the original extraction steam flow cannot enter the feed water tank 19. Valves 37 and 40 are provided to complete the described functionality.

    [0050] Although the disclosure has been herein shown and described in what is conceived to be the most practical exemplary embodiment, the present disclosure can be embodied in other specific forms. For example, the exemplary power plant may only has two low pressure heaters, and/or a feed water tank connected to a lower extraction, and/or more than two high pressure heaters. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the disclosure is indicated by the appended claims rather that the foregoing description.

    LIST OF REFERENCE NUMERALS



    [0051] 
    10
    steam power plant
    10a,b
    steam power plant
    11
    high pressure (HP) steam turbine
    12
    intermediate pressure (IP) steam turbine
    13
    low pressure (LP) steam turbine
    14
    generator
    15
    condenser
    16
    condensate pump
    17
    heat exchanger
    18
    low pressure heater (LPH)
    19
    feed water tank
    20
    feed water pump
    21a,b
    high pressure heater (HPH)
    22
    desuperheater (DeSH)
    23
    (to) economizer
    24
    (to) cold reheat
    25
    (from) life steam
    26
    (from) hot reheat
    27
    steam storage tank
    27a
    input (steam storage tank)
    27b
    output (steam storage tank)
    28,30,32
    valve
    29,31,33,39
    superheat (SH) option
    34-38,40
    valve
    E1-E7
    extraction (of steam)



    Claims

    1. A method for operating a steam power plant (10a, 10b), said steam power plant comprising:

    a main water steam cycle with

    a high pressure (HP) steam turbine (11),

    an intermediate pressure (IP) steam turbine (12) and

    a low pressure (LP) steam turbine (13);

    a condenser (15); and

    a feed water tank (19),

    wherein a plurality of low pressure heaters (18) are arranged between said condenser (15) and said feed water tank (19) and

    wherein a plurality of high pressure heaters (21a, 21b) are arranged downstream of said feed water tank (19),

    whereby said low pressure heaters (18), said feed water tank (19) and said plurality of high pressure heaters (21a, 21b) are supplied with steam from a plurality of extractions (E1-E7) of said steam turbines (11, 12, 13), said method comprising the steps of:

    a. providing a steam storage means (27) within said steam power plant (10a, 10b);

    b. storing, during a first operation period of said steam power plant (10a, 10b), steam in said steam storage means (27); and

    c. discharging, during a second operation period of said steam power plant (10a, 10b), steam stored in said steam storage means (27), during said first operation period, into the main water steam cycle to save steam extracted from said plurality of extractions (E1-E7) at said steam turbines (11, 12, 13),

    wherein during said first operation period:

    steam extracted from said high pressure (HP) steam turbine (11) is stored in said steam storage means (27);

    a first (21a) of said plurality of high pressure heaters (21a, 21b) is supplied with steam extracted from said intermediate pressure (IP) steam turbine (12); and

    steam is discharged into said first (21a) of said plurality of high pressure heaters (21a, 21b) from said steam storage means (27) during said second operation period of said steam power plant (10a, 10b), and wherein said steam discharged from said steam storage means (27) into said first (21a) of said plurality of high pressure heaters (21a, 21b) during said second operation period is superheated

    with a steam extracted from said high pressure (HP) steam turbine (11) or

    with a hot reheat steam, which is available at an inlet of said intermediate pressure (IP) steam turbine (12) or

    with steam, which is extracted from said intermediate pressure (IP) steam turbine (12) for supplying said first (21a) of said plurality of high pressure heaters (21a, 21b).


     
    2. A method for operating a steam power plant (10a, 10b), said steam power plant comprising:

    a main water steam cycle with a high pressure (HP) steam turbine (11),

    an intermediate pressure (IP) steam turbine (12) and

    a low pressure (LP) steam turbine (13);

    a condenser (15); and

    a feed water tank (19),

    wherein a plurality of low pressure heaters (18) are arranged between said condenser (15) and said feed water tank (19) and

    wherein a plurality of high pressure heaters (21 a, 21 b) are arranged downstream of said feed water tank (19),

    whereby said low pressure heaters (18), said feed water tank (19) and

    said plurality of high pressure heaters (21 a, 21 b) are supplied with steam from a plurality of extractions (E1-E7) of said steam turbines (11, 12, 13),

    said method comprising the steps of:

    a. providing a steam storage means (27) within said steam power plant (10a, 10b);

    b. storing, during a first operation period of said steam power plant (10a, 10b), steam in said steam storage means (27); and

    c. discharging, during a second operation period of said steam power plant (10a, 10b), steam stored in said steam storage means (27), during said first operation period, into the main water steam cycle to save steam extracted from said plurality of extractions (E1-E7) at said steam turbines (11, 12, 13),

    wherein during said first operation period:

    steam extracted from said high pressure (HP) steam turbine (11) is stored in said steam storage means (27), said feed water tank (19) is supplied with steam extracted from said intermediate pressure (IP) steam turbine (12), and steam is discharged into said feed water tank (19) from said steam storage means (27) during said second operation period of said steam power plant (10a, 10b),

    wherein said steam discharged from said steam storage means (27) into said feed water tank (19) is superheated

    with a steam extracted from said high pressure (HP) steam turbine (11) or with a hot reheat steam, which is available at an inlet of said intermediate pressure (IP) steam turbine (12) or

    with steam extracted from said intermediate pressure (IP) steam turbine (12) for being supplied to said feed water tank (19).


     
    3. A method for operating a steam power plant (10a, 10b), said steam power plant comprising:

    a main water steam cycle with a high pressure (HP) steam turbine (11),

    an intermediate pressure (IP) steam turbine (12) and

    a low pressure (LP) steam turbine (13);

    a condenser (15); and

    a feed water tank (19),

    wherein a plurality of low pressure heaters (18) are arranged between said condenser (15) and said feed water tank (19) and

    wherein a plurality of high pressure heaters (21 a, 21 b) are arranged downstream of said feed water tank (19),

    whereby said low pressure heaters (18), said feed water tank (19) and

    said plurality of high pressure heaters (21 a, 21 b) are supplied with steam from a plurality of extractions (E1-E7) of said steam turbines (11, 12, 13),

    said method comprising the steps of:

    a. providing a steam storage means (27) within said steam power plant (10a, 10b);

    b. storing, during a first operation period of said steam power plant (10a, 10b), steam in said steam storage means (27); and

    c. discharging, during a second operation period of said steam power plant (10a, 10b), steam stored in said steam storage means (27), during said first operation period, into the main water steam cycle to save steam extracted from said plurality of extractions (E1-E7) at said steam turbines (11, 12, 13),

    wherein during said first operation period:
    steam extracted from said high pressure (HP) steam turbine (11) is stored in said steam storage means (27), said feed water tank (19) is supplied with steam extracted from said intermediate pressure (IP) steam turbine (12), and steam is discharged into said feed water tank (19) from said steam storage means (27) during said second operation period of said steam power plant (10a, 10b), wherein a first (21a) of said plurality of high pressure heaters (21a, 21b) is supplied with steam extracted from said intermediate pressure (IP) steam turbine (12), and said steam discharged from said steam storage means (27) into said feed water tank (19) is superheated with a steam, which is extracted from said intermediate pressure (IP) steam turbine (12) for supplying said first (21a) of said plurality of high pressure heaters (21a, 21b).


     
    4. The method of claims 1-3, wherein said steam storage means (27) is a steam storage tank.
     
    5. A steam power plant (10a, 10b) for conducting said method according to any one of the claims 1 to 4, comprising:

    a steam-water-cycle with:

    a high pressure steam turbine (11);

    an intermediate pressure steam turbine (12); and

    a low pressure steam turbine (13);

    a condenser (15); and

    a feed water tank (19),

    wherein low pressure heaters (18) are arranged between said condenser (15) and said feed water tank (19) and wherein first and second high pressure heaters (21a, 21b) are arranged downstream of said feed water tank (19), whereby said low pressure heaters (18), said feed water tank (19) and said first and second high pressure heaters (21a, 21b) are supplied with steam from a plurality of extractions (E1-E7) at said steam turbines (11, 12, 13),

    characterized in that a steam storage means (27) with an input (27a) for receiving steam and an output (27b) for discharging steam is provided at said steam power plant (10a, 10b), that said input (27a) of said steam storage means (27) is operationally connected to a steam extraction (E7) at said high pressure (HP) steam turbine (11), and that said output (27b) of said steam storage means (27) is operationally connected to said first high pressure heater (21a) or said feed water tank (19), wherein said steam storage means (27) is operationally connected to said feed water tank (19), and wherein means are provided to superheat steam extracted from said steam storage means (27) with steam extracted from said high pressure (HP) steam turbine (11) or hot reheat steam, which is available at an inlet of said intermediate pressure (IP) steam turbine (12), or steam, which is extracted from said intermediate pressure (IP) steam turbine (12) for supplying said first (21a) of said plurality of high pressure heaters (21a, 21b).


     
    6. The steam power plant (10a, 10b) of claim 5, wherein means are provided to superheat steam extracted from said steam storage means (27) with steam extracted from said intermediate pressure (IP) steam turbine (12) for being supplied to said feed water tank (19).
     


    Ansprüche

    1. Verfahren zum Betreiben eines Dampfkraftwerks (10a, 10b), wobei das Dampfkraftwerk umfasst:

    einen Hauptwasserdampfkreislauf mit

    einer Hochdruck-Dampfturbine (HP-Dampfturbine) (11),

    einer Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) und

    einer Niederdruck-Dampfturbine (LP-Dampfturbine) (13);

    einen Kondensator (15); und

    einen Speisewassertank (19),

    wobei eine Vielzahl von Niederdruckerhitzern (18) zwischen dem Kondensator (15) und dem Speisewassertank (19) angeordnet sind und wobei eine Vielzahl von Hochdruckerhitzern (21a, 21b) stromabwärts des Speisewassertanks (19) angeordnet sind,

    wobei die Niederdruckerhitzer (18), der Speisewassertank (19) und die Vielzahl von Hochdruckerhitzern (21a, 21b) mit Dampf aus einer Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) versorgt werden, wobei das Verfahren die Schritte umfasst:

    a. Bereitstellen einer Dampfspeichereinrichtung (27) innerhalb des Dampfkraftwerks (10a, 10b);

    b. Speichern von Dampf in der Dampfspeichereinrichtung (27) während einer ersten Betriebsdauer des Dampfkraftwerks (10a, 10b); und

    c. Entladen während einer zweiten Betriebsdauer des Dampfkraftwerks (10a, 10b) von Dampf, der während der ersten Betriebsdauer in der Dampfspeichereinrichtung (27) gespeichert wurde, in den Hauptwasserdampfkreislauf, um Dampf zu sammeln, der aus der Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) entnommen wird, wobei während der ersten Betriebsdauer:

    Dampf, der aus der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) entnommen wird, in der Dampfspeichereinrichtung (27) gespeichert wird;

    ein erster (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) mit Dampf versorgt wird, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) entnommen wird; und

    Dampf während der zweiten Betriebsdauer des Dampfkraftwerks (10a, 10b) aus der Dampfspeichereinrichtung (27) in den ersten (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) entladen wird, und wobei der Dampf, der während der zweiten Betriebsdauer aus der Dampfspeichereinrichtung (27) in den ersten (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) entladen wird,

    mit einem aus der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) entnommenen Dampf oder mit einem heißen Wiedererhitzungsdampf, der an einem Einlass der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) verfügbar ist, oder

    mit Dampf, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) zur Versorgung des ersten (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) entnommen wird, überhitzt wird.


     
    2. Verfahren zum Betreiben eines Dampfkraftwerks (10a, 10b), wobei das Dampfkraftwerk umfasst:

    einen Hauptwasserdampfkreislauf mit einer Hochdruck-Dampfturbine (HP-Dampfturbine) (11),

    einer Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) und

    einer Niederdruck-Dampfturbine (LP-Dampfturbine) (13);

    einen Kondensator (15); und

    einen Speisewassertank (19),

    wobei eine Vielzahl von Niederdruckerhitzern (18) zwischen dem Kondensator (15) und dem Speisewassertank (19) angeordnet sind und

    wobei eine Vielzahl von Hochdruckerhitzern (21a, 21b) stromabwärts des Speisewassertanks (19) angeordnet sind,

    wobei die Niederdruckerhitzer (18), der Speisewassertank (19) und die Vielzahl von Hochdruckerhitzern (21a, 21b) mit Dampf aus einer Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) versorgt werden, wobei das Verfahren die Schritte umfasst:

    a. Bereitstellen einer Dampfspeichereinrichtung (27) innerhalb des Dampfkraftwerks (10a, 10b);

    b. Speichern von Dampf in der Dampfspeichereinrichtung (27) während einer ersten Betriebsdauer des Dampfkraftwerks (10a, 10b); und

    c. Entladen während einer zweiten Betriebsdauer des Dampfkraftwerks (10a, 10b) von Dampf, der während der ersten Betriebsdauer in der Dampfspeichereinrichtung (27) gespeichert wurde, in den Hauptwasserdampfkreislauf, um Dampf zu sammeln, der aus der Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) entnommen wird,

    wobei während der ersten Betriebsdauer:

    Dampf, der aus der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) entnommen wird, in der Dampfspeichereinrichtung (27) gespeichert wird, der Speisewassertank (19) mit Dampf versorgt wird, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) entnommen wird, und Dampf während der zweiten Betriebsdauer des Dampfkraftwerks (10a, 10b) aus der Dampfspeichereinrichtung (27) in den Speisewassertank (19) entladen wird,

    wobei der aus der Dampfspeichereinrichtung (27) in den Speisewassertank (19) entladene Dampf

    mit einem aus der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) entnommenen Dampf oder mit einem heißen Wiedererhitzungsdampf, der an einem Einlass der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) verfügbar ist, oder

    mit Dampf, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) zum Versorgen des Speisewassertanks (19) entnommen wird, überhitzt wird.


     
    3. Verfahren zum Betreiben eines Dampfkraftwerks (10a, 10b), wobei das Dampfkraftwerk umfasst:

    einen Hauptwasserdampfkreislauf mit einer Hochdruck-Dampfturbine (HP-Dampfturbine) (11),

    einer Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) und

    einer Niederdruck-Dampfturbine (LP-Dampfturbine) (13);

    einen Kondensator (15); und

    einen Speisewassertank (19),

    wobei eine Vielzahl von Niederdruckerhitzern (18) zwischen dem Kondensator (15) und dem Speisewassertank (19) angeordnet sind und

    wobei eine Vielzahl von Hochdruckerhitzern (21a, 21b) stromabwärts des Speisewassertanks (19) angeordnet sind,

    wobei die Niederdruckerhitzer (18), der Speisewassertank (19) und die Vielzahl von Hochdruckerhitzern (21a, 21b) mit Dampf aus einer Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) versorgt werden, wobei das Verfahren die Schritte umfasst:

    a. Bereitstellen einer Dampfspeichereinrichtung (27) innerhalb des Dampfkraftwerks (10a, 10b);

    b. Speichern von Dampf in der Dampfspeichereinrichtung (27) während einer ersten Betriebsdauer des Dampfkraftwerks (10a, 10b); und

    c. Entladen während einer zweiten Betriebsdauer des Dampfkraftwerks (10a, 10b) von Dampf, der während der ersten Betriebsdauer in der Dampfspeichereinrichtung (27) gespeichert wurde, in den Hauptwasserdampfkreislauf, um Dampf zu sammeln, der aus der Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) entnommen wird,

    wobei während der ersten Betriebsdauer:

    Dampf, der aus der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) entnommen wird, in der Dampfspeichereinrichtung (27) gespeichert wird, der Speisewassertank (19) mit Dampf versorgt wird, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) entnommen wird, und Dampf während der zweiten Betriebsdauer des Dampfkraftwerks (10a, 10b) aus der Dampfspeichereinrichtung (27) in den Speisewassertank (19) entladen wird,

    wobei ein erster (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) mit Dampf versorgt wird, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) entnommen wird, und der Dampf, der aus der Dampfspeichereinrichtung (27) in den Speisewassertank (19) entladen wird, mit einem Dampf überhitzt wird, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) zur Versorgung des ersten (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) entnommen wird.


     
    4. Verfahren nach den Ansprüchen 1 bis 3, wobei die Dampfspeichereinrichtung (27) ein Dampfspeichertank ist.
     
    5. Dampfkraftwerk (10a, 10b) zum Durchführen des Verfahrens nach einem der Ansprüche 1 bis 4, umfassend:
    einen Dampfwasserkreislauf mit:

    einer Hochdruck-Dampfturbine (11);

    einer Zwischendruck-Dampfturbine (12); und

    einer Niederdruck-Dampfturbine (13);

    einen Kondensator (15); und

    einen Speisewassertank (19),

    wobei Niederdruckerhitzer (18) zwischen dem Kondensator (15) und dem Speisewassertank (19) angeordnet sind und wobei erste und zweite Hochdruckerhitzer (21a, 21b) stromabwärts des Speisewassertanks (19) angeordnet sind, wobei die Niederdruckerhitzer (18), der Speisewassertank (19) und die ersten und zweiten Hochdruckerhitzer (21a, 21b) mit Dampf aus einer Vielzahl von Entnahmen (E1-E7) an den Dampfturbinen (11, 12, 13) versorgt werden,

    dadurch gekennzeichnet, dass eine Dampfspeichereinrichtung (27) mit einem Eingang (27a) zum Aufnehmen von Dampf und einem Ausgang (27b) zum Entladen von Dampf an dem Dampfkraftwerk (10a, 10b) bereitgestellt ist, dass der Eingang (27a) der Dampfspeichereinrichtung (27) betriebsmäßig mit einer Dampfentnahme (E7) an der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) verbunden ist und dass der Ausgang (27b) der Dampfspeichereinrichtung (27) betriebsmäßig mit dem ersten Hochdruckerhitzer (21a) oder dem Speisewassertank (19) verbunden ist, wobei die Dampfspeichereinrichtung (27) betriebsmäßig mit dem Speisewassertank (19) verbunden ist, und wobei Einrichtungen bereitgestellt sind, um Dampf, der aus der Dampfspeichereinrichtung (27) entnommen wird, mit Dampf zu überhitzen, der aus der Hochdruck-Dampfturbine (HP-Dampfturbine) (11) entnommen wird, oder heißem Wiedererhitzungsdampf, der an einem Einlass der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) verfügbar ist, oder mit Dampf, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) entnommen wird, um den ersten (21a) der Vielzahl von Hochdruckerhitzern (21a, 21b) zu versorgen.


     
    6. Dampfkraftwerk (10a, 10b) nach Anspruch 5, wobei Einrichtungen bereitgestellt sind, um Dampf, der aus der Dampfspeichereinrichtung (27) entnommen wird, mit Dampf zu überhitzen, der aus der Zwischendruck-Dampfturbine (IP-Dampfturbine) (12) entnommen wird, um den Speisewassertank (19) zu versorgen.
     


    Revendications

    1. Procédé d'exploitation d'une centrale thermique à vapeur (10a, 10b), ladite centrale thermique à vapeur comprenant :

    un cycle principal de vapeur d'eau avec

    une turbine à vapeur haute pression (HP) (11),

    une turbine à vapeur à pression intermédiaire (IP) (12) et

    une turbine à vapeur basse pression (LP) (13) ;

    un condenseur (15) ; et

    un réservoir d'eau d'alimentation (19),

    dans lequel une pluralité d'éléments chauffants basse pression (18) sont agencés entre ledit condenseur (15) et ledit réservoir d'eau d'alimentation (19) et dans lequel une pluralité d'éléments chauffants haute pression (21a, 21b) sont agencés en aval dudit réservoir d'eau d'alimentation (19).

    moyennant quoi lesdits éléments chauffants basse pression (18), ledit réservoir d'eau d'alimentation (19) et ladite pluralité d'éléments chauffants haute pression (21a, 21b) sont alimentés en vapeur à partir d'une pluralité d'extractions (E1 -E7) desdites turbines à vapeur (11, 12, 13), ledit procédé comprenant les étapes consistant à :

    a. fournir un moyen de stockage de vapeur (27) à l'intérieur de ladite centrale thermique à vapeur (10a, 10b) ;

    b. stocker, pendant une première période d'activité de ladite centrale thermique à vapeur (10a, 10b), de la vapeur dans ledit moyen de stockage de vapeur (27) ; et

    c. décharger, pendant une deuxième période d'activité de ladite centrale thermique à vapeur (10a, 10b), de la vapeur stockée dans ledit moyen de stockage de vapeur (27), pendant ladite première période d'activité, dans le cycle de vapeur d'eau principal pour sauvegarder la vapeur extraite de ladite pluralité d'extractions (E1 -E7) au niveau desdites turbines à vapeur (11, 12, 13), dans lequel pendant ladite première période d'activité :

    de la vapeur extraite à partir de ladite turbine à vapeur haute pression (HP) (11) est stockée dans ledit moyen de stockage de vapeur (27) ;

    un premier (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b) est alimenté en vapeur extraite à partir de ladite turbine à vapeur à pression intermédiaire (IP) (12) ; et

    de la vapeur est déchargée dans ledit premier (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b) à partir dudit moyen de stockage de vapeur (27) pendant ladite deuxième période d'activité de ladite centrale thermique à vapeur (10a, 10b), et dans laquelle ladite vapeur déchargée à partir dudit moyen de stockage de vapeur (27) dans ledit premier (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b) pendant ladite deuxième période d'activité est surchauffée

    avec une vapeur extraite de ladite turbine à vapeur haute pression (HP) (11) ou avec une vapeur chaude de réchauffage, qui est disponible au niveau d'une entrée de ladite turbine à vapeur à pression intermédiaire (IP) (12) ou

    avec de la vapeur, qui est extraite de ladite turbine à vapeur à pression intermédiaire (IP) (12) pour alimenter lesdits premiers (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b).


     
    2. Procédé d'exploitation d'une centrale thermique à vapeur (10a, 10b), ladite centrale thermique à vapeur comprenant :

    un cycle principal de vapeur d'eau avec une turbine à vapeur haute pression (HP) (11),

    une turbine à vapeur à pression intermédiaire (IP) (12) et

    une turbine à vapeur basse pression (LP) (13) ;

    un condenseur (15) ; et

    un réservoir d'eau d'alimentation (19),

    dans lequel une pluralité d'éléments chauffants basse pression (18) sont agencés entre ledit condenseur (15) et ledit réservoir d'eau d'alimentation (19) et

    dans lequel une pluralité d'éléments chauffants haute pression (21 a, 21 b) sont agencés en aval dudit réservoir d'eau d'alimentation (19).

    moyennant quoi lesdits éléments chauffants basse pression (18), ledit réservoir d'eau d'alimentation (19) et ladite pluralité d'éléments chauffants haute pression (21 a, 21 b) sont alimentés en vapeur à partir d'une pluralité d'extractions (E1 -E7) desdites turbines à vapeur (11, 12, 13), ledit procédé comprenant les étapes consistant à :

    a. fournir un moyen de stockage de vapeur (27) à l'intérieur de ladite centrale thermique à vapeur (10a, 10b) ;

    b. stocker, pendant une première période d'activité de ladite centrale thermique à vapeur (10a, 10b), de la vapeur dans ledit moyen de stockage de vapeur (27) ; et

    c. décharger, pendant une deuxième période d'activité de ladite centrale thermique à vapeur (10a, 10b), de la vapeur stockée dans ledit moyen de stockage de vapeur (27), pendant ladite première période d'activité, dans le cycle principal de vapeur d'eau pour sauvegarder la vapeur extraite à partir de ladite pluralité d'extractions (E1 -E7) au niveau desdites turbines à vapeur (11, 12, 13),

    dans lequel pendant ladite première période d'activité :

    de la vapeur extraite de ladite turbine à vapeur haute pression (HP) (11) est stockée dans ledit moyen de stockage de vapeur (27), ledit réservoir d'eau d'alimentation (19) est alimenté avec de la vapeur extraite de ladite turbine à vapeur à pression intermédiaire (IP) (12), et de la vapeur est déchargée dans ledit réservoir d'eau d'alimentation (19) à partir dudit moyen de stockage de vapeur (27) pendant ladite deuxième période d'activité de ladite centrale thermique à vapeur (10a, 10b).

    dans lequel ladite vapeur déchargée dudit moyen de stockage de vapeur (27) dans ledit réservoir d'eau d'alimentation (19) est surchauffée

    avec une vapeur extraite de ladite turbine à vapeur haute pression (HP) (11) ou avec une vapeur chaude de réchauffage, qui est disponible au niveau d'une entrée de ladite turbine à vapeur à pression intermédiaire (IP) (12) ou

    avec de la vapeur extraite à partir de ladite turbine à vapeur à pression intermédiaire (IP) (12) pour être fournie audit réservoir d'eau d'alimentation (19).


     
    3. Procédé d'exploitation d'une centrale électrique à vapeur (10a, 10b), ladite centrale électrique à vapeur comprenant :

    un cycle principal de vapeur d'eau avec une turbine à vapeur haute pression (HP) (11),

    une turbine à vapeur à pression intermédiaire (IP) (12) et

    une turbine à vapeur basse pression (LP) (13) ;

    un condenseur (15) ; et

    un réservoir d'eau d'alimentation (19),

    dans lequel une pluralité d'éléments chauffants basse pression (18) sont agencés entre ledit condenseur (15) et ledit réservoir d'eau d'alimentation (19) et

    dans lequel une pluralité d'éléments chauffants haute pression (21 a, 21 b) sont agencés en aval dudit réservoir d'eau d'alimentation (19).

    moyennant quoi lesdits éléments chauffants basse pression (18), ledit réservoir d'eau d'alimentation (19) et ladite pluralité d'éléments chauffants haute pression (21 a, 21 b) sont alimentés en vapeur à partir d'une pluralité d'extractions (E1 -E7) desdites turbines à vapeur (11, 12, 13), ledit procédé comprenant les étapes consistant à :

    a. fournir un moyen de stockage de vapeur (27) à l'intérieur de ladite centrale électrique à vapeur (10a, 10b) ;

    b. stocker, pendant une première période d'activité de ladite centrale thermique à vapeur (10a, 10b), de la vapeur dans ledit moyen de stockage de vapeur (27) ; et

    c. décharger, pendant une deuxième période d'activité de ladite centrale thermique à vapeur (10a, 10b), de la vapeur stockée dans ledit moyen de stockage de vapeur (27), pendant ladite première période d'activité, dans le cycle principal de vapeur d'eau pour sauvegarder la vapeur extraite à partir de ladite pluralité d'extractions (E1 -E7) au niveau desdites turbines à vapeur (11, 12, 13),

    dans lequel pendant ladite première période d'activité :

    de la vapeur extraite de ladite turbine à vapeur haute pression (HP) (11) est stockée dans ledit moyen de stockage de vapeur (27), ledit réservoir d'eau d'alimentation (19) est alimentée avec de la vapeur extraite de ladite turbine à vapeur à pression intermédiaire (IP) (12), et de la vapeur est déchargée dans ledit réservoir d'eau d'alimentation (19) à partir dudit moyen de stockage de vapeur (27) pendant ladite deuxième période d'activité de ladite centrale thermique à vapeur (10a, 10b).

    dans lequel un premier (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b) est alimenté en vapeur extraite de ladite turbine à vapeur à pression intermédiaire (IP) (12) et ladite vapeur déchargée dudit moyen de stockage de vapeur (27) dans ledit réservoir d'eau d'alimentation (19) est surchauffée avec une vapeur, qui est extraite à partir de ladite turbine à vapeur à pression intermédiaire (IP) (12) pour alimenter ledit premier (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b).


     
    4. Procédé selon les revendications 1 à 3, dans lequel ledit moyen de stockage de vapeur (27) est un réservoir de stockage de vapeur.
     
    5. Centrale thermique à vapeur (10a, 10b) pour la mise en Ĺ“uvre dudit procédé selon l'une quelconque des revendications 1 à 4, comprenant :

    un cycle d'eau de vapeur avec :

    une turbine à vapeur haute pression (11) ;

    une turbine à vapeur à pression intermédiaire (12) ; et

    une turbine à vapeur basse pression (13) ;

    un condenseur (15) ; et

    un réservoir d'eau d'alimentation (19),

    les éléments chauffants basse pression (18) étant agencés entre ledit condenseur (15) et ledit réservoir d'eau d'alimentation (19) et lesdits premier et deuxième éléments chauffants haute pression (21a, 21b) étant agencés en aval dudit réservoir d'eau d'alimentation (19), moyennant quoi lesdits éléments chauffants basse pression (18), ledit réservoir d'eau d'alimentation (19) et lesdits premier et deuxième éléments chauffants haute pression (21a, 21b) sont alimentés en vapeur à partir d'une pluralité d'extractions (E1 -E7) au niveau desdites turbines à vapeur (11, 12, 13),

    caractérisé en ce qu'un moyen de stockage de vapeur (27) avec une entrée (27a) pour recevoir la vapeur et une sortie (27b) pour décharger la vapeur est fourni au niveau de ladite centrale thermique à vapeur (10a, 10b), que ladite entrée (27a) dudit moyen de stockage de vapeur (27) est relié fonctionnellement à une extraction de vapeur (E7) au niveau de ladite turbine à vapeur haute pression (HP) (11), et en ce que ladite sortie (27b) dudit moyen de stockage de vapeur (27) est reliée fonctionnellement audit premier élément chauffant haute pression (21a) ou audit réservoir d'eau d'alimentation (19), ledit moyen de stockage de vapeur (27) étant relié fonctionnellement audit réservoir d'eau d'alimentation (19), et des moyens étant fournis pour surchauffer la vapeur extraite à partir dudit moyen de stockage de vapeur (27) avec de la vapeur extraite à partir de la turbine à vapeur haute pression (HP) (11) ou de la vapeur chaude de réchauffage, qui est disponible au niveau d'une entrée de ladite turbine à vapeur à pression intermédiaire (IP) (12), ou de la vapeur, qui est extraite à partir de ladite turbine à vapeur à pression intermédiaire (IP) (12) pour alimenter ledit premier (21a) de ladite pluralité d'éléments chauffants haute pression (21a, 21b).


     
    6. Centrale thermique à vapeur (10a, 10b) selon la revendication 5, dans laquelle des moyens sont prévus pour surchauffer la vapeur extraite dudit moyen de stockage de vapeur (27) avec de la vapeur extraite à partir de ladite turbine à vapeur à pression intermédiaire (IP) (12) pour être fournie audit réservoir d'eau d'alimentation (19).
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description