(19)
(11)EP 3 193 016 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 17151886.3

(22)Date of filing:  17.01.2017
(51)International Patent Classification (IPC): 
F04B 35/04(2006.01)
F04B 41/02(2006.01)
F04B 39/14(2006.01)

(54)

IMPROVED AIR COMPRESSOR

VERBESSERTER LUFTKOMPRESSOR

COMPRESSEUR D'AIR AMÉLIORÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.01.2016 TW 105101447

(43)Date of publication of application:
19.07.2017 Bulletin 2017/29

(73)Proprietor: Chou, Wen-San
Tainan City (TW)

(72)Inventor:
  • Chou, Wen-San
    Tainan City (TW)

(74)Representative: Lang, Christian 
LangPatent Anwaltskanzlei Ingolstädter Straße 5
80807 München
80807 München (DE)


(56)References cited: : 
EP-A2- 2 930 361
US-A1- 2015 285 237
DE-U1-202015 102 573
US-A1- 2015 377 230
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    (a) Technical Field of the Invention



    [0001] The present invention relates to an air compressor and, more particularly, to an improved air compressor which includes a cylinder being fitted with a piston body and defining a plurality of exit holes, and a main frame for mounting a motor, wherein the cylinder and frame are made of plastic, the cylinder is formed integrally with the main frame, and the compressed air produced in the cylinder may quickly enter an air storage container, so that the piston body can conduct reciprocating motion more smoothly and thus the performance of the air compressor can be increased.

    (b) Description of the Prior Art



    [0002] Currently, an air compressor basically has a cylinder which allows a piston body to conduct reciprocating motion therein to produce compressed air which can overcome a valve mechanism, so that the compressed air can flow through an exit hole of the cylinder to enter the inner space of an air storage container or an air tank. The air storage container is provided with outlets for delivering the compressed air to an object to be inflated.

    [0003] In conventional air compressors, there is only one exit hole defined at the cylinder for communicating with the air storage container. The exit hole of the cylinder is controlled by a valve mechanism, which generally includes a plug and a compression spring, so that the exit hole can be opened or closed properly according to the pressure of the compressed air. In operation, the compressed air produced in the cylinder can overcome the compressive force of the compression spring to enter the inner space of the air compressor. However, the compressed air stored in the air storage container can exert a back force on the plug, thus restraining the plug from being moved away from the exit hole. As a result, the piston body, which conducts reciprocating motion in relation to the cylinder, will be subjected to greater resistance. Therefore, the piston body may not move smoothly in relation to the cylinder, and thus the speed of inflating an object will become slow. Furthermore, the motor of the air compressor may become too hot, thus decreasing the performance of the motor. Even worse, the motor may be under the risk of burning out.

    [0004] Form patent application publications US 2015/0377230 A1 and EP 2930361 A2 air compressors are known that have a single opening in the top wall of the cylinder in which a piston moves for creating pressurized air.

    [0005] In view of the foregoing, the applicant intends to develop an improved air compressor which can solve the shortcomings of conventional air compressors.

    SUMMARY OF THE INVENTION



    [0006] According to the present invention an improved air compressor with the features of claim 1is provided. Further embodiments are subject-matter of the dependent claims. In particular, the air compressor according to the invention has a cylinder with a top wall that defines a plurality of exit holes.

    [0007] The cylinder is formed integrally with a main frame by a plastic material which can be used for mounting a motor.

    [0008] According to one feature of the present invention, the cylinder defines a plurality of exit hole, so that a large amount of compressed air produced in the cylinder may enter an air storage container in a short time.

    [0009] Other objects, advantages, and novel features of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 shows a 3-dimensional view of a cylinder used in an air compressor of the present invention, wherein the cylinder is formed integrally with a main frame.

    FIG. 2 shows a 3-dimensional view of the cylinder formed integrally with the main frame, which is viewed from a different angle.

    FIG. 3 shows an exploded view of a first embodiment of the air compressor of the present invention.

    FIG. 4 shows a plan view of the first embodiment of the air compressor, wherein a plurality of exit holes defined at the cylinder are revealed.

    FIG. 5 shows a plan view of the first embodiment of the air compressor, wherein a plurality of plugs being used to seal the exit holes are revealed.

    FIG. 6 shows a plan view of the first embodiment of the air compressor, wherein an air storage container is assembled onto the cylinder.

    FIG. 7 shows a sectional view of the first embodiment of the air compressor taken along line A-A in FIG 6.

    FIG. 8 shows a plan view of the first embodiment of the air compressor, wherein a gear and a piston body used in the air compressor are revealed.

    FIG. 9 shows an exploded view of a second embodiment of the air compressor of the present invention.

    FIG. 10 shows a plan view of the second embodiment of the air compressor, wherein a plurality of exit holes defined at the cylinder and the associated O-rings are revealed.

    FIG. 11 shows a plan view of the second embodiment of the air compressor, wherein a resilient sheet being used to seal the exit holes is revealed.

    FIG. 12 shows a plan view of a third embodiment of the air compressor, wherein a plurality of exit holes with different diameters defined at the cylinder are revealed.

    FIG. 13 shows a plan view of the third embodiment of the air compressor, wherein a resilient sheet being used to seal the exit holes is revealed.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0011] Referring to FIGS. 1 through 3, an air compressor according to a first embodiment of the present invention is shown, which generally comprises a cylinder 2 fitted with a piston body 14, and a main frame 11 for mounting a motor 12, wherein the cylinder 2 is formed integrally with the main frame 11 so that the cylinder 1 and the main frame 11 are made as a single body, the cylinder 2 and the main frame 11 are made of plastic material. The cylinder 2 has an open end 20, into which the piston body 14 can be fitted, and a top wall 21 opposite to the open end 20. The frame 11 defines an upper hole 111, through which the motor 12 can be mounted to the main frame 11, and a lower hole 112 for mounting a gear 13. The motor 12 can rotate the gear 13 to drive the piston body 14 to conduct reciprocating motion in relation to the cylinder 2, so that compressed air can be produced in the cylinder 2. The compressed air may enter an air storage container 3 by way of exit holes defined at the top wall 21. The air storage container 3 is provided with one or more outlets. For example, the outlet 31 can be connected with a pressure gauge 30; the outlet 33 can be connected with a relief valve 32; the outlet 34 can be connected with a hose (not shown) for inflating an object.

    [0012] Referring to FIGS. 1 through 7, the air compressor of the present invention is designed differently from conventional technology in which a single air exit port is used. In this embodiment, there are three exit holes 4, 5, 6 defined at the top wall 21 of the cylinder 2, and the main frame 11 is formed integrally with the cylinder 2. The exit holes 4, 5, 6 are defined to be approximately equal in diameter (see FIG. 4). The exit hole 4 is defined to have a diameter of (X), the exit hole 5 is defined to have a diameter of (Y), and the exit hole 6 is defined to have a diameter of (Z), wherein X = Y = Z. The exit holes 4, 5, 6 can be regulated by a control mechanism to be opened or closed. In this embodiment, the control mechanism includes a plurality of plugs 92, 93, 94 and a plurality of compression springs 82, 83, 84. The compression springs 82, 83, 84 can urge the plugs 92, 93, 94 to seal the exit holes 4, 5, 6, respectively (see FIGS 3, 5 and 7). The cylinder 2 has a tubular projection 22 formed on the top wall 21. The tubular projection 22 is provided with a circular flange 221 at its outer surface and defines an annular groove 222 between the circular flange 221 and the top wall 21 (see FIGS.1 and 2). The air storage container 3 is provided at a bottom edge thereof with two opposite coupling means 35, which can be inserted into the annular groove 222 and engaged with the circular flange 221 (see FIG. 8). Furthermore, the air storage container 3 is provided at an inner surface thereof with a plurality of columns 37, 38, 39 corresponding to the compression springs 82, 83, 84 (see FIG. 3). As shown in FIG. 7, each of the compression springs 82, 83, 84 has one end forcing against the corresponding plug 92, 93 or 94, and has another end being fitted around and forcing against the corresponding column 37, 38 or 39. Each of the columns 37, 38, 39 is located at a predetermined height above the corresponding plug so as to limit the movement of the corresponding plug, so that the compressed air can be controlled more easily to enter the air storage container 3. FIGS. 6 and 8 show the air storage container 3 being assembled onto the cylinder 2.

    [0013] Referring to FIGS. 7 and 8, when the piston body 14 conducts reciprocating motion, the compressed air produced in the cylinder 2 can overcome the force of the compression springs 82, 83, 84 exerted on the plugs 92, 93, 94, thus pushing the plugs 92, 93, 94 away from the equal-diameter exit holes 4, 5, 6, respectively, so that the compressed air can flow into the inner space 36 of the air storage container 3. Initially, since the compressed air can flow into the inner space 36 of the air storage container 3 simultaneously via the exit holes 4, 5, 6, the air storage container 3 can be filled with a large amount of air in a short time. Later, since there is a large amount of air having entered the inner space 36 of the air storage container 3, the air contained in the air storage container 3 can exert a greater back force on the plugs 92, 93, 94 compared to the air initially contained in the air storage container 3. In other words, the piston body 14 may experience greater resistance in conducting reciprocating motion, and this may cause the exit holes 4, 5, 6 more difficult to be opened. However, upon a decrease of the pressure of the air contained in the air storage container 3, the back force exerted on the plugs 92, 93, 94 will decrease and this allows the compressed air produced in the cylinder 2 to quickly enter the inner space 36 of the air storage container 3. Considering the operation of the air compressor as a whole, since the multiple exit holes allow the piston body 14 to conduct reciprocating motion more smoothly, the performance of the air compressor can be increased. Thus, the air compressor can inflate an object more quickly.

    [0014] FIGS. 9 through 11 show a second embodiment of the air compressor of the present invention, wherein the control mechanism includes a plurality of O-rings 41, 51, 61, which can be placed around the exit holes 4, 5, 6, a resilient sheet 7, and a plurality of compression springs 82, 83, 84. The resilient sheet 7 has a root 70 at its center and a plurality of branches 72, 73, 74 extending from the root 70 to appear as a star configuration and being configured to having a size sufficient for covering the exit holes 4, 5, 6. The root 70 of the resilient sheet 7 defines a positioning hole 71 and is attached to the top wall 21 by fitting the positioning hole 71 over a boss 24 provided at the top wall 21. The branches 72, 73, 74 of the resilient sheet 7 are urged by the compression springs 82, 83, 84 against the O-rings 41, 51, 61 to seal the exit holes 4, 5, 6, respectively, wherein the branch 72 is in tight contact with the O-ring 41, the branch 73 is in tight contact with the O-ring 51, and the branch 74 is in tight contact with the O-ring 61 (see FIGS. 10 and 11).

    [0015] FIG. 12 shows a third embodiment of the air compressor of the present invention. As shown, the cylinder 2 of the embodiment defines a plurality of exit holes 42, 52, 62 at its top wall 21, wherein the exit hole 42 has a diameter of (A), the exit hole 52 has a diameter of (B), and the exit hole 62 has a diameter of (C), wherein A > B > C. The exit holes 42, 52, 62 are regulated by a control mechanism to be opened or closed. In this embodiment, the control mechanism includes a plurality of O-rings (not shown) corresponding to the exit holes 42, 52, 62, a resilient sheet 75, and a plurality of compression springs (not shown). The resilient sheet 75 has a root 750 and a plurality of branches 752, 753, 754 extending upwardly from the root 750 to appear as a dendritic configuration and being configured to have a size sufficient for covering the exit holes 42, 52, 62 (see FIG. 13). The root 750 of the resilient sheet 75 defines a positioning hole (similar to that of the second embodiment) and is attached to the top wall 21 by fitting the positioning hole over a boss 25 provided at the top wall 21 (see FIG. 13). The branches 752, 753, 754 of the resilient sheet 75 can be urged by the compression springs against the O-rings to seal the exit holes 42, 52, 62, respectively. The branch 752 of the resilient sheet 75 has an area of (R) for covering the exit hole 42. The branch 753 of the resilient sheet 75 has an area of (M) for covering the exit hole 52. The branch 754 of the resilient sheet 75 has an area of (N) for covering the exit hole 62 (see FIG. 13), wherein R > M > N.

    [0016] As a summary, the air compressor of the present invention has a breakthrough over the prior art in that the top wall 21 of the cylinder 2 defines a plurality of exit holes, which are regulated by a control mechanism to allow the compressed air produced in the cylinder 2 to quickly enter the inner space 36 of the air storage container 3, so that the piston body 14 can conduct reciprocating motion more smoothly and thus the performance of the air compressor can be increased. These features render the air compressor of the present invention useful and inventive.


    Claims

    1. An air compressor including a main frame (11) for mounting a motor (12), and a cylinder (2) having an open end (20) and a top wall (21) opposite to the open end, the open end (20) allowing a piston body (14) to be fitted into the cylinder (2), the top wall (21) defining an exit hole (4) which allows compressed air produced in the cylinder (2) to enter an air storage container (3) while the piston body (14) conducts reciprocating motion; wherein the cylinder (2) is formed integrally with the main frame (11) by a plastic material
    characterised in that
    the top wall (21) defines at least one additional exit hole (5,6) arranged side by side in one plane with the exit hole (4).
     
    2. The air compressor of claim 1, wherein the exit holes (4, 5, 6) are defined to be approximately equal in diameter.
     
    3. The air compressor of claim 1, wherein the cylinder (2) has a tubular projection (22) formed on the top wall (21), the tubular projection (22) provided at its outer surface with a circular flange (221) and defining an annular groove (222) between the circular flange (221) and the top wall (21); the air storage container (3) is provided at a bottom edge thereof with two opposite coupling means (35) and provided at an inner surface thereof with a plurality of columns (37, 38, 39), the two coupling means (35) capable of being inserted into the annular groove (222) and engaged with the circular flange (221).
     
    4. The air compressor of claim 3, wherein the exit holes (4, 5, 6) are regulated by a control mechanism to be opened or closed, the control mechanism including a plurality of plugs (92, 93, 94) and a plurality of compression springs (82, 83, 84) capable of urging the plugs to seal the exit holes (4, 5, 6), respectively.
     
    5. The air compressor of claim 4, wherein each of the compression springs (82, 83, 84) has one end forcing against the corresponding plug, and has another end being fitted around and forcing against the corresponding column, so that the exit holes (4, 5, 6) can be sealed properly, wherein each of the columns (37, 38, 39) is located at a predetermined height above the corresponding plug so as to limit the movement of the corresponding plug to facilitate controlling the compressed air entering the air storage container (3).
     
    6. The air compressor of claim 3, wherein the exit holes (4, 5, 6) are regulated by a control mechanism to be opened or closed, the control mechanism including a plurality of O-rings (41, 51, 61), a resilient sheet (7, 75), and a plurality of compression springs (82, 83, 84) capable of urging the resilient sheet (7, 75) to seal the exit holes (4, 5, 6).
     
    7. The air compressor of claim 6, wherein the resilient sheet (7) has a root (70) at a center thereof and a plurality of branches (72, 73, 74) extending from the root (70) to appear as a star configuration and being configured to have a size sufficient for covering the exit holes (4, 5, 6), the O-rings (41, 51, 61) being placed around the exit holes (4, 5, 6) respectively, the root (70) of the resilient sheet (7) defining a positioning hole (71) and attached to the top wall (21) by fitting the positioning hole (71) over a boss (24) provided at the top wall (21), the compression springs (82, 83, 84) urging the branches (72, 73, 74) against the O-rings (41, 51, 61) to seal the exit holes (4, 5, 6), respectively.
     
    8. The air compressor of claim 6, wherein the resilient sheet (75) has a root (750) and a plurality of branches (752, 753, 754) extending upwardly from the root (750) to appear as a dendritic configuration and being configured to have a size sufficient for covering the exit holes (4, 5, 6), the O-rings (41, 51, 61) being placed around the exit holes (4, 5, 6), the root (750) of the resilient sheet (75) defining a positioning hole and attached to the top wall (21) by fitting the positioning hole over a boss (25) provided at the top wall (21), the branches (752, 753, 754) of the resilient sheet (75) being urged by the compression springs (82, 83, 84) against the O-rings (41, 51, 61) to seal the exit holes (4, 5, 6), respectively.
     
    9. The air compressor of claim 1, wherein the exit holes (4, 5, 6) are defined to have different diameters.
     


    Ansprüche

    1. Luftkompressor, der einen Hauptrahmen (11) zur Montage eines Motors (12) und einen Zylinder (2) beinhaltet, der ein offenes Ende (20) und eine obere Wand (21) entgegengesetzt zu dem offenen Ende aufweist, wobei das offene Ende (20) es einem Kolbenkörper (14) erlaubt, in den Zylinder (2) eingepasst zu werden, wobei die obere Wand (21) ein Austrittsloch (4) definiert, das es der in dem Zylinder (2) erzeugten Druckluft erlaubt, in einen Luftspeicherbehälter (3) einzutreten, während der Kolbenkörper (14) eine Pendelbewegung durchführt, wobei der Zylinder (2) einstückig mit dem Hauptrahmen (11) durch ein Plastikmaterial ausgebildet ist, dadurch gekennzeichnet, dass
    die obere Wand (21) zumindest ein zusätzliches Austrittsloch (5, 6) definiert, das Seite an Seite in einer Ebene mit dem Austrittsloch (4) angeordnet ist.
     
    2. Luftkompressor gemäß Anspruch 1, bei welchem die Austrittslöcher (4, 5, 6) definiert sind, einen ungefähr gleichen Durchmesser aufzuweisen.
     
    3. Luftkompressor gemäß Anspruch 1, bei welchem der Zylinder (2) einen rohrförmigen Vorsprung (22) aufweist, der an der oberen Wand (21) ausgebildet ist, wobei der rohrförmige Vorsprung (22) an seiner Außenfläche mit einem kreisförmigen Flansch (221) ausgestattet ist und eine ringförmige Nut (222) zwischen dem kreisförmigen Flansch (221) und der oberen Wand (21) definiert, wobei der Luftspeicherbehälter (3) an seinem unteren Rand mit zwei entgegengesetzten Kupplungselementen (35 ausgestattet ist und an seiner Innenfläche mit einer Vielzahl an Säulen (37, 38, 39) ausgestattet ist, wobei die zwei Kupplungselemente (35) in die ringförmige Nut (222) gesteckt und mit dem kreisförmigen Flansch (221) in Eingriff gebracht werden können.
     
    4. Luftkompressor gemäß Anspruch 3, bei welchem die Austrittslöcher (4, 5, 6) von einem Steuerungsmechanismus reguliert werden, um geöffnet oder geschlossen zu werden, wobei der Steuerungsmechanismus eine Vielzahl an Stopfen (92, 93, 94) und eine Vielzahl an Kompressionsfedern (82, 83, 84) umfasst, die in der Lage sind, die Stopfen zu drücken, um jeweils die Austrittslöcher (4, 5, 6) zu schließen.
     
    5. Luftkompressor gemäß Anspruch 4, bei welchem jede der Kompressionsfedern (82, 83, 84) ein Ende aufweist, das gegen den entsprechenden Stopfen drückt, und ein anderes Ende aufweist, das um die entsprechende Säule gepasst ist und dagegen drückt, so dass die Austrittslöcher (4, 5, 6) ordnungsgemäß verschlossen werden können, wobei jede der Säulen (37, 38, 39) an einer vorherbestimmten Höhe über dem entsprechenden Stopfen angeordnet ist, um die Bewegung des entsprechenden Stopfens einzuschränken, um das Steuern der Druckluft, die in den Luftspeicherbehälter (3) gelangt, zu erleichtern.
     
    6. Luftkompressor gemäß Anspruch 3, bei welchem die Austrittslöcher (4, 5, 6) von einem Steuerungsmechanismus reguliert werden, um geöffnet oder geschlossen zu werden, wobei der Steuerungsmechanismus eine Vielzahl an O-Ringen (41, 51, 61), ein elastisches Blatt (7, 75) und eine Vielzahl an Kompressionsfedern (82, 83, 84) beinhaltet, die in der Lage sind, das elastische Blatt (7, 75) zu drücken, um die Austrittslöcher (4, 5, 6) zu schließen.
     
    7. Luftkompressor gemäß Anspruch 6, bei welchem das elastische Blatt (7) eine Wurzel (70) an seinem Zentrum und eine Vielzahl an Zweigen (72, 73, 74) aufweist, die sich von der Wurzel (70) erstrecken, um als eine Sternkonfiguration zu erscheinen und die konfiguriert sind, eine Größe aufzuweisen, die ausreichend ist, um die Austrittslöcher (4, 5, 6) zu bedecken, wobei die O-Ringe (41, 51, 61) entsprechend um die Austrittslöcher (4, 5, 6) angeordnet sind, wobei die Wurzel (70) des elastischen Blattes (7) ein Positionierloch (71) definiert und an der oberen Wand (21) durch das Anpassen des Positionierlochs (71) über einen Ansatz (24) angeordnet ist, der an der oberen Wand (21) bereitgestellt ist, wobei die Kompressionsfedern (82, 83, 84) die Zweige (72, 73, 74) gegen die O-Ringe (41, 51, 61) drücken, um jeweils die Austrittslöcher (4, 5, 6) zu schließen.
     
    8. Luftkompressor gemäß Anspruch 6, bei weichem das elastische Blatt (75) eine Wurzel (750) und eine Vielzahl an Zweigen (752, 753, 754) aufweist, die sich von der Wurzel (750) nach oben erstrecken, um als eine dendritische Konfiguration zu erscheinen und die konfiguriert sind, eine Größe aufzuweisen, die ausreichend ist, um die Austrittslöcher (4, 5, 6) zu bedecken, wobei die O-Ringe (4, 51, 61) entsprechend um die Austrittslöcher (4, 5, 6) angeordnet sind, wobei die Wurzel (750) des elastischen Blattes (75) ein Positionierloch definiert und an der oberen Wand (21) durch das Anpassen des Positionierlochs über einen Ansatz (25) angeordnet ist, der an der oberen Wand (21) bereitgestellt ist, wobei die Zweige (725, 735, 745) des elastischen Blattes (75) von den Kompressionsfedern (82, 83, 84) gegen die O-Ringe (41, 51, 61) gedrückt werden, um jeweils die Austrittslöcher (4, 5, 6) zu schließen.
     
    9. Luftkompressor gemäß Anspruch 1, bei welchem die Austrittslöcher (4, 5, 6) als unterschiedlich im Durchmesser definiert sind.
     


    Revendications

    1. Compresseur d'air incluant un cadre principal (11) pour monter un moteur (12), et un cylindre (2) présentant une extrémité ouverte (20) et une paroi supérieure (21) à l'opposé de l'extrémité ouverte, l'extrémité ouverte (20) permettant à un corps de piston (14) d'être intégré à l'intérieur du cylindre (2), la paroi supérieure (21) définissant un trou de sortie (4) qui permet à l'air comprimé produit dans le cylindre (2) d'entrer dans un conteneur de stockage d'air (3) tandis que le corps de piston (14) réalise un mouvement alternatif; dans lequel le cylindre (2) est formé d'une seule pièce avec le cadre principal (11) à l'aide d'un matériau plastique
    caractérisé en ce que
    la paroi supérieure (21) définit au moins un trou de sortie (5, 6) supplémentaire agencé côte à côte sur un plan avec le trou de sortie (4).
     
    2. Compresseur d'air selon la revendication 1, dans lequel les trous de sortie (4, 5, 6) sont définis de façon à être approximativement égaux en termes de diamètre.
     
    3. Compresseur d'air selon la revendication 1, dans lequel le cylindre (2) présente une projection tubulaire (22) formée sur la paroi supérieure (21), la projection tubulaire (22) étant dotée au niveau de sa surface externe d'une bride circulaire (221) et définissant une rainure annulaire (222) entre la bride circulaire (221) et la paroi supérieure (21); le conteneur de stockage d'air (3) est doté au niveau d'un bord inférieur de celui-ci de deux moyens de couplage opposés (35) et doté au niveau d'une surface interne de celui-ci d'une pluralité de colonnes (37, 38, 39), les deux moyens de couplage (35) pouvant être insérés à l'intérieur de la rainure annulaire (222) et mis en prise avec la bride circulaire (221),
     
    4. Compresseur d'air selon la revendication 3, dans lequel les trous de sortie (4, 5, 6) sont réglés par un mécanisme de commande qui les ouvre ou les ferme, le mécanisme de commande incluant une pluralité de connecteurs (92, 93, 94) et une pluralité de ressorts de compression (82, 83, 84) pouvant pousser les connecteurs à sceller les trous de sortie (4, 5, 6), respectivement.
     
    5. Compresseur d'air selon la revendication 4, dans lequel chacun des ressorts de compression (82, 83, 84) présente une extrémité forçant contre le connecteur correspondant, et présente une autre extrémité étant intégrée autour et forçant contre la colonne correspondante, de façon à ce que les trous de sortie (4, 5, 6) puissent être scellés correctement, dans lequel chacune des colonnes (37, 38, 39) est située au niveau d'une hauteur prédéterminée au-dessus du connecteur correspondant de façon à limiter le mouvement du connecteur correspondant pour faciliter la commande de l'air comprimé entrant dans le conteneur de stockage d'air (3).
     
    6. Compresseur d'air selon la revendication 3, dans lequel les trous de sortie (4, 5, 6) sont réglés par un mécanisme de commande qui les ouvre ou les ferme, le mécanisme de commande incluant une pluralité d'anneaux en O (41, 51, 61), une feuille souple (7, 75), et une pluralité de ressorts de compression (82, 83, 84) pouvant pousser la feuille souple (7, 75) à sceller les trous de sortie (4, 5, 6).
     
    7. Compresseur d'air selon la revendication 6, dans lequel la feuille souple (7) présente une racine (70) au niveau d'un centre de celle-ci et une pluralité de branches (72, 73, 74) s'étendant à partir de la racine (70) pour apparaître sous une configuration d'étoile et étant configurée pour présenter une taille suffisante pour couvrir les trous de sortie (4, 5, 6), les anneaux en O (41, 51, 61) étant placés autour des trous de sortie (4, 5, 6) respectivement, la racine (70) de la feuille souple (7) définissant un trou de positionnement (71) et étant attachée à la paroi supérieure (21) en intégrant le trou de positionnement (71) par-dessus un patron (24) fourni au niveau de la paroi supérieure (21) les ressorts de compression (82, 83, 84) poussant les branches (72, 73, 74) contre les anneaux en O (41, 51, 61) pour sceller les trous de sortie (4, 5, 6), respectivement.
     
    8. Compresseur d'air selon la revendication 6, dans lequel la feuille souple (75) présente une racine (750) et une pluralité de branches (752, 753, 754) s'étendant vers le haut à partir de la racine (750) pour apparaître sous une configuration dendritique et étant configurées pour présenter une taille suffisante pour couvrir les trous de sortie (4, 5, 6), les anneaux en O (41, 51, 61) étant placés autour des trous de sortie (4, 5, 6), la racine (750) de la feuille souple (75) définissant un trou de positionnement et étant attachée à la paroi supérieure (21) en intégrant le trou de positionnement par-dessus un patron (25) fourni au niveau de la paroi supérieure (21), les branches (752, 753, 754) de la feuille souple (75) étant poussées par les ressorts de compression (82, 83, 84) contre les anneaux en O (41, 51, 61) pour sceller les trous de sortie (4, 5, 6), respectivement.
     
    9. Compresseur d'air selon la revendication 1, dans lequel les trous de sortie (4, 5, 6) sont définis de façon à présenter des diamètres différents.
     




    Drawing












































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description