(19)
(11)EP 3 195 017 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 15771262.1

(22)Date of filing:  24.08.2015
(51)International Patent Classification (IPC): 
G01T 1/24(2006.01)
G01T 1/36(2006.01)
(86)International application number:
PCT/IB2015/056381
(87)International publication number:
WO 2016/034976 (10.03.2016 Gazette  2016/10)

(54)

WINDOW-BASED SPECTRUM MEASUREMENT IN A SPECTRAL CT DETECTOR

FENSTERBASIERTE SPEKTRUMSMESSUNG IN EINEM SPEKTRALEN CT-DETEKTOR

MESURE DE SPECTRE À BASE DE FENÊTRES DANS UN DÉTECTEUR DE TOMODENSITOMÉTRIE SPECTRALE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.09.2014 US 201462044550 P

(43)Date of publication of application:
26.07.2017 Bulletin 2017/30

(73)Proprietor: Koninklijke Philips N.V.
5656 AG Eindhoven (NL)

(72)Inventor:
  • HERRMANN, Christoph
    5656 AE Eindhoven (NL)

(74)Representative: van Iersel, Hannie 
Philips Intellectual Property & Standards High Tech Campus 5
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
EP-A2- 0 483 753
US-A1- 2011 121 980
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The following generally relates to a photon counting detector and is described with particular application to computed tomography (CT); however, the following is also amenable to other imaging modalities.

    BACKGROUND OF THE INVENTION



    [0002] A computed tomography (CT) scanner generally includes a rotating gantry rotatably mounted to a stationary gantry. The rotating gantry supports an X-ray tube and is configured to rotate around an examination region about a longitudinal or Z-axis. A detector array is located opposite the X-ray tube, across the examination region. The X-ray tube is configured to emit radiation that traverses the examination region (and a portion of an object or a subject therein) and impinges upon the detector array. The detector array includes a one or two dimensional array of detector pixels that detect the radiation and produce signals indicative thereof. Each pixel conveys a corresponding signal for further processing. A reconstructor reconstructs the signals, producing volumetric image.

    [0003] For spectral CT, the detector pixels can include a direct conversion material disposed between a cathode and an anode with a voltage applied across the cathode and anode. Photons strike the cathode, transferring energy to electrons in the direct conversion material, which creates electron/hole pairs, with the electrons drifting towards the anode. The anode produces the electrical signals output by the detector array. A pulse shaper processes the signals and produces pulses having peak heights indicative of the energy of the detected radiation. A discriminator compares, with comparators, the heights with a set of energy thresholds. For each threshold, a counter counts a number of times a pulse height crosses the threshold. A binner bins the counts in energy-ranges. A decomposer decomposes the binned data, e.g., into spectral components. The reconstructor reconstructs the spectral components. US 2011/121980 A1 discloses an assembly for monitoring ionising radiation including a signal processor with a counter and a discriminator including a set of comparators, a set of reference signal generators, each corresponding to a different one of the comparators, wherein the first comparator is configured to compare a peak height of a pulse indicative of an energy of detected radiation with the first reference signal and to produce a first output indicating which of the peak height or the first reference signal is greater; wherein the second comparator is configured to compare the peak height with the second reference signal and to produce a second output indicating which of the peak height or the second reference signal is greater; and wherein the counter is configured to increment a first count value in response to the peak height exceeding the first reference signal and a second count value in response to the peak height exceeding the second reference signal.

    [0004] The forward-model-based evaluation technique of measured photon-counting data, e.g., using the Alvarez-Macovsky decomposition, requires an accurate estimate of the detector pixels' detector response, i.e., for different single excitation energies, the spectrum of absorbed energies. Using a photon-counting readout channel for a detector pixel, the detector response can be obtained by differentiating a threshold scan obtained with one of the available comparators. Unfortunately, such a measurement is highly noisy since the differentiation amplifies the inherent noise within the threshold scan data. For example, discrete differentiation implies subtraction of two statistically independent noisy Poisson random variables, so that the resulting variance equals the sum of the individual variances.

    [0005] By using two different comparators, a window based spectrum measurement can be implemented. By measuring the (Poisson distributed) counts within the energy window defined by the two comparators, the resulting noise is considerably reduced, at least because the number of counts within the window is much smaller than the number of counts above one of the thresholds. However, gain mismatches between the two comparators results in window widths that vary, or will not be constant, across the range of all threshold levels. As a consequence, the measurements require significant correction, resulting in a complex measurement procedure.

    [0006] Aspects described herein addresses the above-referenced problems and others.

    SUMMARY OF THE INVENTION



    [0007] In one aspect, a detector array signal processor of an imaging system according to claim 1 is provided. It includes a discriminator. The discriminator includes a set of comparators, a window width generator that generates a window width for a window based spectrum measurement, and a set of reference signal generators, each corresponding to a different one of the comparators, which generate different reference signals. In response to the discriminator being in a window based spectrum measurement mode, a first reference signal generator for a first comparator generates a reference signal that is supplied to the first comparator and that is added with the window width with a result of the addition supplied to the second comparator. The first comparator compares a peak height of a pulse indicative of an energy of detected radiation with the supplied reference signal and produces a first output indicating which of the peak height or the reference signal is greater. The second comparator compares the peak height with the supplied result of the addition and produces a second output indicating which of the peak height or the result of the addition is greater.

    [0008] In another aspect, a method according to claim 13 is provided.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.

    FIGURE 1 schematically illustrates an example imaging system with a discriminator configured to operate in a window based spectrum measurement mode.

    FIGURE 2 schematically illustrates an example of the discriminator in a non-window based spectrum measurement mode.

    FIGURE 3 schematically illustrates an example of the discriminator in the window based spectrum measurement mode.

    FIGURE 4 illustrates an example method for taking window based spectrum measurements.

    FIGURE 5 schematically illustrates an example of the discriminator with N comparators.

    FIGURE 6 shows an embodiment in which multiple threshold channels are calibrated in a single measurement.


    DETAILED DESCRIPTION OF EMBODIMENTS



    [0010] Initially referring to FIGURE 1, an imaging system 100 such as a computed tomography (CT) scanner is schematically illustrated.

    [0011] The imaging system 100 includes a stationary gantry 102 and a rotating gantry 104, which is rotatably supported by the stationary gantry 102. The rotating gantry 104 rotates around an examination region 106 about a longitudinal or z-axis 108.

    [0012] A radiation source 110, such as an X-ray tube, is supported by and rotates with the rotating gantry 104 around the examination region 106 about the longitudinal or z-axis 108. The radiation source 110 emits ionizing (x-ray) radiation that traverses the examination region 106 and a portion of a subject or an object located therein.

    [0013] A detector array 112 subtends an angular arc opposite the examination region 106 relative to the radiation source 110. The detector array 112 includes a one or two dimensional array of photon counting pixels, which include a direct conversion material such as cadmium telluride (CdTe), cadmium zinc telluride (CZT), silicon (Si), gallium arsenide (GaAs), and/or other direct conversion material. The detector array 112 detects radiation traversing the examination region 106 and generates an electrical signal indicative of the energy thereof.

    [0014] A pre-processor 114 processes the signal. In one instance, the processing includes amplifying the electrical signal. In a variation, the pre-processor 114 is omitted. A pulse shaper 116 receives the amplified (or non-amplified) electrical signal and generates a pulse (e.g., voltage, current, etc.) having a peak height or peak amplitude that is indicative of the energy of the detected radiation.

    [0015] A discriminator 118 includes a plurality of comparators 120, corresponding reference signal generators 122, one or more window width generators 124, and a controller 126. The comparators 120 energy-discriminate the pulse, based on the peak height of the pulse and respective reference signals (energy levels) generated by the corresponding reference signal generators 122. The illustrated discriminator 118 is configured to operate in at least a window based spectrum measurement mode. In this mode, a threshold scan is performed in which a measurement is taken for an energy window between two different comparators 120, for each of a plurality of different reference signal levels, as the reference signal levels are swept through. As described in greater detail below, the controller 126 controls the discriminator 118 such that, for a window-based spectrum measurement for a particular threshold level, a single one of the reference signal generators 122 generates a single reference signal that is used by at least two of the comparators 120, and a window width generator 124 determines the window width there between.

    [0016] A counter 128 counts, for each energy range, a number of pulses that falls within the energy range.

    [0017] A window based spectrum measurement determiner 130, when the discriminator 118 is in the window based spectrum measurement mode, determines a window based spectrum measurement. As described in greater detail below, in one instance the measurement is determined by a difference in the count values of the two comparators 120. By using a single reference signal generator 122 and a window width generator 124, instead of two different reference signal generators 122 for the two comparators 120, performance differences offset and gain mismatches between reference signal generators 122 are mitigated, and the window width is well-defined. As a consequence, the window based spectral measurements are well-suited for energy component decompositions that employ an estimate of the detector pixel's response. Furthermore, the spectral measurements are well-suited for calibrating the threshold energy levels of each of the comparators 120. For a calibration, the energy threshold level for each of the comparators 120 is checked and tuned based on measurements for the different pairs of the comparators 120.

    [0018] A binner 132 energy-bins or assigns the counts and hence the detected radiation to an energy window, thereby energy-resolving the detected radiation.

    [0019] A decomposer 134 decomposes the energy-resolved detected radiation. For example, the decomposer 134 may decompose the energy-resolved detected radiation into a photoelectric component, a Compton scatter component, and/or other component. An example of a suitable decomposition approach is described in Alvarez et al., "Energy-selective reconstructions in x-ray computerized tomography," Phys. Med. Biol., 1976, 21: 733-44. The window based spectrum measurements and/or other information indicative of the response of the detector array 112 can be used with this approach. Other approaches are also contemplated herein.

    [0020] It is to be appreciated that the decomposer 134 can be implemented with a computer processor(s) (e.g., a micro-processor, a central processing unit, etc.) executing a computer readable instruction(s) encoded or embedded on computer readable storage medium (which excludes transitory medium) such as physical memory. Additionally or alternatively, at least one of the computer readable instruction(s) is carried by a carrier wave, a signal, or other non-computer readable storage medium transitory medium.

    [0021] It is to be appreciated that in some embodiments the pre-processor 114, the shaper 116, the discriminator 118, the counter 128, the binner 132, the window based spectrum measurement determiner 130, and the decomposer 134 are considered a detector array signal processor.

    [0022] A reconstructor 136 reconstructs one or more of the decomposed components, producing spectral volumetric image data. Alternatively, the decomposed components are combined and reconstructed to produce non-spectral volumetric image data. A subject support 138, such as a couch, supports an object or subject in the examination region 106. This includes positioning the object or subject before, during and/or after a scan of the subject or object.

    [0023] A computing system serves as an operator console 140, and includes an output device such as a display and an input device such as a keyboard, mouse, and/or the like. Software resident on the console 140 allows the operator to interact with the system 100. This may include selecting an imaging protocol, initiating scanning, invoking a comparator calibration routine, etc.

    [0024] FIGURES 2 and 3 schematically illustrate a non-limiting example of the discriminator 118 in connection with the shaper 116 and the counter 128.

    [0025] For sake of brevity and clarity, this example is discussed in connection with three comparators 120. Such energy levels, in one instance, include energy levels corresponding to at least two different energy levels (e.g., low and high) such as the photoelectric effect and Compton scatter, the noise floor, etc. However, it is to be understood that in other embodiments, other energy levels, including more than three energy levels are contemplated herein. For example, FIGURE 5 illustrates a variation with N comparators 120 for N different energy levels.

    [0026] The N comparators 120 includes a plurality of comparators 2021, 2022 and 2023, each including a first input terminal 2041, 2042 and 2043, a second input terminal 2061, 2062 and 2063, and an output terminal 2081, 2082 and 2083. The reference signal generators 122 include a plurality reference signal generators 2121, 2122 and 2123. The first input terminals 2041, 2042 and 2043 are each in electrical communication with an output terminal 210 of the shaper 116. The second input terminals 2061, 2062 and 2063 are each in electrical communication with the respective reference signal generators 2121, 2122 and 2123.

    [0027] Each of the reference signal generators 2121, 2122 and 2123 can generate, alternatively, one of a plurality of different reference signals, independent of the other reference signal generators 2121, 2122 and 2123. The reference signals, similar to the pulse generated by the pulse shaper 116, are electrical signals such as voltages, currents, etc. In one instance, the reference signal generators 2121, 2122 and 2123 include digital-to-analog converters (DACs) that produce voltages in the millivolt range, which correspond to particular kV levels. A kV level can be incremented and/or decremented in steps of a tenth of a kV (e.g., 0.5 kV, 1.0 kV, etc.) or larger through corresponding millivolt setting.

    [0028] The comparators 2021, 2022 and 2023 respectively compare the peak height of the pulse from the shaper 116 with a corresponding reference signal generated by the reference signal generators 2121, 2122 and 2123 and output signals indicating which of the two signals (i.e., the pulse or the reference signal) has a larger amplitude. Each of the reference signals corresponds to a different known energy level or threshold. By way of non-limiting example, the reference signal from the reference signal generator 2122 may correspond to 80 kV whereas the reference signal generator 2123 may correspond to 120 kV. Other kV values are also contemplated herein.

    [0029] The window width generator 124 includes a window width generator 214, which can generate a predetermined window width for a particular spectrum measurement and can maintain or vary the width between measurements. The window widths, similar to the pulse generated by the pulse shaper 116, are electrical signals such as voltages, currents, etc. Similar to the reference signal generator 2121, 2122 and 2123, the window width generator 214 may include a DAC that produce voltages in the millivolt range. However, in this instance, the voltages correspond to a particular kV step. A step can be as small as a tenth of a kV (e.g., 0.5 kV, 1.0 kV, etc.).

    [0030] A first switch 2162 resides between the second input terminal 2062, and the reference signal generator 2122. The first switch 2162 is configured to switch the second input terminal 2062 between the reference signal generator 2122 and the window width generator 214. A second switch 2183 resides between the second input terminal 2063 and the window reference signal width generator 214. The second switch 2183 is configured to open and close an electrical connection between the second input terminal 2063 and the window width generator 214.

    [0031] The controller 126 controls the reference signal generators 2121, 2122 and 2123, the window width generator 214, and the switches 2162 and 2183. Such control may include controlling the reference signal generators 2121, 2122 and 2123 to generate particular threshold energy levels for the comparators 2021, 2022 and 2023, cycle through a set of predetermined reference signals for one or more of the comparators 2021, 2022 and 2023, for a threshold scan, generate a particular window width, change the window width, switch in and out of the window-based spectrum measurement mode, etc.

    [0032] The counter 128 includes a plurality of sub-counters 2201, 2202 and 2203. The plurality of sub-counters 2201, 2202 and 2183 respectively are in electrical communication with the output terminals 2081, 2082 and 2083 of the comparators 2021, 2022 and 2023. Each of the plurality of sub-counters 2201, 2202 and 2203 increments a count value each time a peak height of a pulse is greater than the corresponding reference signal, based on the output of the comparators 2021, 2022 and 2023, which indicates whether the peak height of the pulse is greater than the corresponding reference signal.

    [0033] With the switches 2162 and 2183 in the position shown in Figure 2 (in which the switch 2162 electrically connects the second input 2062 and to the reference signal generator 2122 and disconnects the second input 2062 from the window width generator 214, and the switch 2183 electrically disconnects the second input 2063 from the window width generator 214), the discriminator 118 operates in a non-window-based spectrum measurement mode.

    [0034] Figure 3 shows the example of the discriminator 118 in the window-based spectrum measurement mode. For this, the switch 2162 electrically connects the second input 2062 and the window width generator 214 and disconnects the second input 2062 from the reference signal generator 2122, and the switch 2183 electrically connects the second input 2063 and the reference signal generator 2123 to the window width generator 214.

    [0035] Where the window width generator 214 generates a window of width "w1" and the reference signal generator 2123 generates a reference signal with a level "n1", the reference signal applied to the comparator 2023 is "n1" and the reference signal applied to the comparator 2022 is "n1 + w1". The reference signal level can be simultaneously changed for both of the comparators 2022 and 2023 by controlling the reference signal applied to the comparator 2023. Where the reference signal is changed from "n1" to "n2'" (e.g., "n2" > "n1" or "n2" < "n1"), the reference signal applied to the comparator 2022 is "n2 + w1".

    [0036] Since the same reference signal generator signal generator 2123 generates the reference signal for both the comparators 2022 and 2023, the reference signal for both the comparators 2022 and 2023 is subject to a same reference signal generator gain and offset. Furthermore, the window width "w" will not vary due to differences in different reference signal generator gains between two different reference signal generators. Where the window width is change from "w1" to "w2" (e.g., "w2" > "w1" or "w2" < "w1"), the reference signal applied to the comparator 2022 is "n1 + w2".

    [0037] For each reference signal applied during the threshold scan, the sub-counter 2202 and the sub-counter 2203 accumulates respective count values. The window based spectrum measurement determiner 130 determines a number of counts within the window width by calculating a difference value between the accumulated count values of the sub-counter 2202 and the sub-counter 2203 (e.g., count value of the sub-counter 2202 less the count value of the sub-counter 2203). The count values represent correlated measurement values since they are taken in a same measurement period.

    [0038] Again, the example of FIGURE 3 is not limiting. That is, in another embodiment, there may be more than three comparators 120. Furthermore, a different pair of the comparators 120 can be used for a window based spectrum measurement. Furthermore, more than a single pair of the comparators 120 can be used for window based spectrum measurements. For a different pair and/or additional comparators 120, the comparators 120 can be electrically connected and utilized as shown in FIGURES 2 and 3.

    [0039] FIGURE 4 illustrates a method for acquiring a window-based spectrum measurement for a decomposition of acquired data.

    [0040] It is to be appreciated that the ordering of the acts in the methods described herein is not limiting. As such, other orderings are contemplated herein. In addition, one or more acts may be omitted and/or one or more additional acts may be included.

    [0041] At 402, the window based spectrum measurement mode is activated.

    [0042] At 404, a predetermined window width is set, as described herein.

    [0043] At 406, a current reference energy threshold level is set for two comparators 120 using the same reference signal generator 122, as described herein.

    [0044] At 408, the counter 128 counts for each of the two comparators 120, as described herein.

    [0045] At 410, a window based spectrum measurement is determined by determining a difference in the count value for each of the comparators 120

    [0046] At 412, it is determined whether there is a next reference signal level.

    [0047] In response to there being another reference signal level, acts 406-410 are repeated with the current threshold level set to the next threshold level.

    [0048] In response to there not being another reference signal level, at 414, the window-based spectrum measurements are conveyed to the decomposer 134, which decomposes the binned counts, using the window-based spectrum measurements as an estimate for the response of the detector.

    [0049] The above may be implemented, at least in part, via one or more processors executing one or more computer readable instructions encoded or embodied on computer readable storage medium such as physical memory which causes the one or more processors to carry out the various acts and/or other functions and/or acts. Additionally or alternatively, the one or more processors can execute instructions carried by transitory medium such as a signal or carrier wave.

    [0050] In a variation, the reference signal level of a reference signal generator 122 is maintained and the window width generator 124 varies the window width. This allows for characterizing the window width.

    [0051] FIGURE 5 shows an example in which the N comparators 120 includes comparators 2021, 2022, 2023, ..., 202N (where N is a positive integer). The comparators 2021, 2022, 2023, ..., 202N respectively have N first inputs 204, including first inputs 2041, 2042, 2043, ..., 204N, N second inputs 206, including second inputs 2061, 2062, 2063, ..., 206N, and N outputs 208, including outputs 2081, 2082, 2083, ..., 208N. The window width generators 124 include window width generators 214, including window width generators 2141, 2142, 2143, ..., 214N.

    [0052] The reference signal generators 122 include N reference signal generators 212, including reference signal generators 2121, 2122, 2123, ..., 212N. First switches 216, including first switches 2161, 2162, 2163, ..., 216N connect the N second inputs 2061, 2062, 2063, ..., 206N to either the reference signal generators 2121, 2122, 2123, ..., 212N or the window width generators 2141, 2142, 2143, ..., 214N-1. Seconds switches, including second switches 2181, 2182, 2183, ..., 218N are between the window width generators 2141, 2142, 2143, ..., 214N-1 and the N reference signal generators 2121, 2122, 2123, ..., 212N.

    [0053] In FIGURE 5, for sake of clarity, a single window width generator 214 is shown located between each of the comparators 202, and the window width generators 214 are in series. With the configuration, a window based spectrum measurement for comparators 2021 and 2023 can use the window width generator 2141, 2142, or both 2141 and 2142 to set the window width.

    [0054] In a variation of FIGURE 5, a single and different window width generator 124 is utilized for each pair of comparators 120. In either instance, window based spectrum measurements can be used by the decomposer 134 and/or to calibrate the threshold level of each of the reference signals generators 122 for each of the comparators 120.

    [0055] In another variation of FIGURE 5, at least one of the comparators 120 is not configured for a window based spectrum measurement, similar to the comparator 2021 of FIGURE 3.

    [0056] In another embodiment, all N threshold channels are calibrated in a single measurement (rather than sequential measurements). For example, in one instance, for each of the N thresholds, two of the comparators 120, with logic, are used with N of the window width generators 124. The reference signal for a first of the two comparators 120 is provided by one of the reference generators 122, while the reference signal for a second of the two comparators 120 is a summation of this reference signal and a window width provided by the N window width generators 124.

    [0057] With logic, an event is counted only if the first of the two comparators 120 trips and the second of the comparator 120 does not trip. With this configuration, only the counts within the window defined by the window width generator 124 are recorded. In addition, a switching network can be used to allow for window-based spectrum measurement for calibration purposes (involving the two comparators and the logic) or normal operation (involving only the first of the two comparators without the logic, i.e. a count is recorded as soon as the first of the two comparators trips).

    [0058] In order to get comparable spectra for all N channels, the window widths provided by the N window width generators 124 are similar to each other. This may be achieved once by characterizing the window width as a function of the DAC values controlling the window width and storing those DAC values which lead to very similar window-widths values. In order get sufficiently similar window widths, the DAC is implemented with a larger number of bits (e.g. 6 bit), so that the least significant bit (LSB) corresponds to, e.g., 1/64 of the intended window width (a 0 width can be excluded).

    [0059] FIGURE 6 shows an embodiment in which multiple (e.g., at least two, all, etc.) threshold channels are calibrated in a single measurement, rather than sequential measurements. In this example each of the comparators 202 is replaced with two comparators. For instance, 2021 is replaced with 20211 and 20212, 2022 is replaced with 20221 and 20222, ..., 202N is replaced with 202N1 and 202N2. A first set of input channels of the comparators 20212 and 20222, ..., 202N2 is electrically connected directly to the output of the shaper 116. A first set of switches 7021, 7022, ..., 702N respectively electrically connect and disconnects the output of the shaper 116 with a set of first input channels of the comparators 20211 and 20221, ..., 202N1.

    [0060] A second set of input channels of the comparators 20212 and 20222, ..., 202N2 is respectively electrically connected to the reference signal generators 2121, 2122, ..., 212N. A second set of input channels of the comparators 20211 and 20221, ..., 202N1 is respectively electrically connected to the window width generators 2141, 2142, ..., 214N. A second set of switches 7041, 7042, ..., 704N respectively electrically connect and disconnects the window width generators 2141, 2142, ..., 214N with the reference signal generators 2121, 2122, ..., 212N. Logic 700 includes a set of sub-logic 7061, 7062, ..., 706N. A third set of switches 7081, 7082, ..., 708N electrically connects and disconnects the outputs of the comparators 20211 and 20221, ..., 202N1 with the sub-logic 7061, 7062, ..., 706N. The outputs of the comparators 20212 and 20222, ..., 202N2 are electrically connected to the sub-logic 7061, 7062, ..., 706N.

    [0061] For calibration, the first set of switches 7021, 7022, ..., 702N is closed and electrically connects the output of the shaper 116 and the comparators 20211 and 20221, ..., 202N1. The second set of switches 7041, 7042, ..., 704N is closed and electrically connects the window width generators 2141, 2142, ..., 214N and the reference signal generators 2121, 2122, ..., 212N. The third set of switches 7081, 7082, ..., 708N is closed and electrically connects the output of the comparators 20211, 20221, ..., 202N1 and the sub-logic 7061, 7062, ..., 706N. In this configuration, the logic 700 outputs a pulse only when a pulse has a height, which is not larger than the value of the reference signal generators 2121, 2122, ..., 212N plus the value of the window width generators 2141, 2142, ..., 214N and larger than the value of the reference signal generators 2121, 2122, ..., 212N, in other words a height, which is between both these two levels.

    [0062] For non-calibration (or normal) operation, the first set of switches 7021, 7022, ..., 702N is open and electrically disconnects the output of the shaper 116 with the comparators 20211 and 20221, ..., 202N1. The second set of switches 7041, 7042, ..., 704N is open and electrically disconnects the window width generators 2141, 2142, ..., 214N and the reference signal generators 2121, 2122, ..., 212N. The third set of switches 7081, 7082, ..., 708N is open and electrically disconnects the output of the comparators 20211, 20221, ..., 202N1 and the sub-logic 7061, 7062, ..., 706N. In this configuration, the first set of comparators 20211 and 20221, ..., 202N1 is disabled, and the logic 700 outputs the outputs of the comparators 20212 and 20222, ..., 202N2.

    [0063] In order to get comparable spectra for all N channels, the window widths provided by the N window width generators 124 are similar to each other. This may be achieved once by characterizing the window width as a function of the DAC values controlling the window width and storing those DAC values which lead to very similar window-widths values. In order get sufficiently similar window widths, the DAC is implemented with a larger number of bits (e.g. 6 bit), so that the least significant bit (LSB) corresponds to, e.g., 1/64 of the intended window width (a 0 width can be excluded).

    [0064] The window-based spectrum measurement may be taken during an air scan, with the purpose of determining the detector response for each pixel at a given X-ray energy. For this, a plurality of K-edge filters (e.g. Pb for 89keV, Gd for 60keV) can be used. The frequency the measurement is taken depends, e.g., on the stability of the detector response. In addition, the spectrum measurement can also be used to do tube and detector characterization during a regular maintenance session. In this instance, K-edge filters are not used. Radio-active sources that irradiate at a fixed energy may or may not be used.

    [0065] The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims.


    Claims

    1. A detector array signal processor of an imaging system, comprising:

    a counter (128); and

    a discriminator (118) including:

    a set of comparators (120, 2021, 2022, 2023, 202N);

    a window width generator (124, 214, 2141, 214N) that is configured to generate a window width for a window based spectrum measurement; and

    a set of reference signal generators (122, 2121, 2122, 2123, 212N), each corresponding to a different one of the comparators, which are configured to generate different reference signals;

    wherein, in response to the discriminator being in a window based spectrum measurement mode, a first reference signal generator for a first comparator is configured to generate a first reference signal that is supplied to the first comparator and that is added with the window width to create a second reference signal, which is to be supplied to the second comparator,

    wherein the first comparator is configured to compare a peak height of a pulse indicative of an energy of detected radiation with the first reference signal and to produce a first output indicating which of the peak height or the first reference signal is greater;

    wherein the second comparator is configured to compare the peak height with the second reference signal and to produce a second output indicating which of the peak height or the second reference signal is greater; and

    wherein the counter is configured to increment a first count value in response to the peak height exceeding the first reference signal and a second count value in response to the peak height exceeding the second reference signal.


     
    2. The detector array signal processor of claim 1, further comprising:
    a shaper that is configured to process a signal produced by a direct conversion detector pixel in response to the direct conversion detector pixel detecting radiation emitted by the imaging system and to generate the pulse.
     
    3. The detector array signal processor of claim 2, further comprising:
    a pre-processor that is configured to amplify the signal produced by the direct conversion detector pixel, wherein the shaper is configured to process the amplified signal.
     
    4. The detector array signal processor of claim 1, further comprising:

    a controller that is configured to invoke the first reference signal generator to sweep through a set of different reference signals, each sequentially supplied to the first comparator and each sequentially added with the window width with the addition sequentially supplied to the second comparator,

    wherein the counter is configured to increment the first count value respectively for each of the different reference signals of the set in response to the peak height respectively exceeding each of the different reference signals, and

    wherein the counter is configured to increment the second count value respectively for each of the different reference signals of the set in response to the peak height respectively exceeding each of the different reference signals added with the window width.


     
    5. The detector array signal processor of claim 4, further comprising:
    a window based spectrum measurement determiner that is configured to determine window based spectrum measurements by calculating differences between count values for the second comparator and count values for the first comparator.
     
    6. The detector array signal processor of claim 5, wherein, in response to the discriminator not being in the window based spectrum measurement mode, the first reference signal generator is configured to supply a third reference signal to the first comparator, which is configured to generate a third output, and a second reference signal generator is configured to generate a fourth different reference signal and to supply the fourth difference reference signal to the second comparator, which is configured to generate a fourth output, and the counter is configured to count a number of times peak heights of a plurality of different input pulses exceeds the third reference signal and a number of times the peak heights of the plurality of different input pulses exceeds the third reference signal.
     
    7. The detector array signal processor of claim 6, further comprising:
    a binner that is configured to bin the counts for the third reference signal and the counts for the fourth reference signal into corresponding energy ranges.
     
    8. The detector array signal processor of claim 7, further comprising:
    a decomposer that is configured to decompose the binned counts into different energy components, using the window based spectrum measurements.
     
    9. The detector array signal processor of claim 8, wherein the different energy components includes a first energy component corresponding to a first energy and a second energy component corresponding to a second energy, wherein the first energy is greater than the second energy.
     
    10. The detector array signal processor of claim 8, further comprising:
    a reconstructor that is configured to reconstruct the first energy component and to generate a first image corresponding to the first energy component and that is configured to reconstruct the second energy component and to generate a second image corresponding to the second energy component.
     
    11. The detector array signal processor of any of claims 1 to 10, wherein the controller is configured to maintain the first reference signal and to invoke the window based spectrum measurement determiner to change a value of the window width.
     
    12. The detector array signal processor of any of claims 1 to 4, wherein the controller is configured to calibrate an energy threshold of the first comparator based on the window based spectrum measurements.
     
    13. A method, comprising:

    receiving, sequentially, a plurality of pulses from a detector array of an imaging system, each having a peak height indicative of an energy of different detected radiation;

    receiving a window width for a window based spectrum measurement;

    receiving a first reference signal for a first comparator;

    creating a second reference signal which is the first reference signal added with the window width;

    providing the plurality of pulses and the first reference signal to the first comparator;

    providing the plurality of pulses and the second reference signal to a second comparator;

    producing, by the first comparator, a first output indicating which of the peak height or the first reference signal is greater;

    producing, by the second comparator, a second output indicating which of the peak heigth or the second reference signal is greater;

    incrementing a first count value in response to the first output indicating the peak height exceeds the first reference signal;

    incrementing a second count value in response to the second output inciating the peak height exceeds the second reference signal; and

    determining a window based spectrum measurement by determining a difference between the first number and the second number for the corresponding reference signals.


     
    14. The method of claim 13, further comprising:
    employing the window based spectrum measurements in a decomposition of photon-counting data that uses an estimate of a response of a photon counting detector.
     
    15. The method of any of claims 13 to 14, wherein the reference signals correspond to kV values and increase in increments on the order of tenths of kVs.
     
    16. The method of any of claims 14 to 15, further comprising:
    changing a value of the window width based on a step, where the step corresponds to a predetermined kV value and increase in increments on the order of tenths of kVs.
     
    17. The method of claim 13, further comprising:
    calibrating an energy threshold of the first comparator based on the window based spectrum measurement.
     


    Ansprüche

    1. Ein Detektor-Array-Signalprozessor eines Bildgebungssystems, der Folgendes umfasst:

    einen Zähler (128); und

    einen Diskriminator (118), der Folgendes umfasst:

    einen Komparatorensatz (120, 2021, 2022, 2023, 202N);

    einen Fensterbreiten-Generator (124, 214, 2141, 214N),

    der eine Fensterbreite für eine fensterbasierte Spektrenmessung generiert; und

    eine Reihe von Referenzsignal-Generatoren (122, 2121, 2122, 2123, 212N),

    die jeweils einem anderen Komparatoren entsprechen, um verschiedene Referenzsignale zu generieren;

    wobei beim Versetzen des Diskriminators in einen fensterbasierten Spektrenmessungsmodus der erste Referenzsignal-Generator ein erstes Referenzsignal für den ersten Komparator erstellt, das für den ersten Komparator bereitgestellt und zur Fensterbreite hinzugefügt wird, um ein zweites Referenzsignal zu erstellen, das für den zweiten Komparator bereitgestellt wird,

    wobei der erste Komparator die Impuls-Peakhöhe der Energie der erkannten Strahlung mit dem ersten Referenzsignal vergleicht und eine erste Ausgabe generiert, die angibt, ob die Peakhöhe oder das erste Referenzsignal größer ist;

    wobei der zweite Komparator die Impuls-Peakhöhe mit dem zweiten Referenzsignal vergleicht und eine zweite Ausgabe generiert, die angibt, ob die Peakhöhe oder das zweite Referenzsignal größer ist; und

    wobei der Zähler den ersten Zählwert erhöht, wenn die Peakhöhe das erste Referenzsignal übersteigt.

    Dies gilt auch für den zweiten Zählwert, wenn die Peakhöhe das zweite Referenzsignal übersteigt.


     
    2. Der Detektor-Array-Signalprozessor gemäß Anspruch 1, der zudem Folgendes umfasst:
    einen Former, der das Signal eines Detektorpixels mit direkter Konversion verarbeitet und den Impuls generiert, wenn das Detektorpixel mit direkter Konversion erkennt, dass vom Bildgebungssystem Strahlung ausgeht.
     
    3. Der Detektor-Array-Signalprozessor gemäß Anspruch 2, der zudem Folgendes umfasst:
    einen Vorprozessor, der das vom Detektorpixel mit direkter Konversion generierte Signal verstärkt, wobei der Former das verstärkte Signal verarbeitet.
     
    4. Der Detektor-Array-Signalprozessor gemäß Anspruch 1, der zudem Folgendes umfasst:

    eine Steuerung, die den ersten Referenzsignal-Generator anweist, eine Reihe verschiedener Referenzsignale zu durchlaufen, die jeweils nacheinander für den ersten Komparator bereitgestellt, mit der Fensterbreite hinzugefügt und für den zweiten Komparator bereitgestellt werden,

    wobei der Zähler jeweils den ersten Zählwert der verschiedenen Referenzsignale des Satzes erhöht, wenn die Peakhöhe das jeweilige Referenzsignal übersteigt, und

    wobei der Zähler jeweils den zweiten Zählwert der verschiedenen Referenzsignale des Satzes erhöht, wenn die Peakhöhe das jeweilige mit der Fensterbreite hinzugefügte Referenzsignal übersteigt.


     
    5. Der Detektor-Array-Signalprozessor gemäß Anspruch 4, der zudem Folgendes umfasst:
    einen Determinator für die fensterbasierte Spektrenmessung, der die fensterbasierten Spektrenmessungen ermittelt, indem er jeweils die Differenz zwischen den Zählwerten für den ersten und den zweiten Komparator berechnet.
     
    6. Der Detektor-Array-Signalprozessor gemäß Anspruch 5, wobei der erste Referenzsignal-Generator dem ersten Komparator ein drittes Referenzsignal bereitstellt, wenn sich der Diskriminator nicht im fensterbasierten Spektrenmessungsmodus befindet, damit der erste Komparator eine dritte Ausgabe generiert. Zudem generiert ein zweiter Referenzsignal-Generator ein viertes abweichendes Referenzsignal, das für den zweiten Komparator bereitgestellt wird, der eine vierte Ausgabe erstellt. Hierbei zählt der Zähler, wie oft die Peakhöhe der verschiedenen Eingangsimpulse das dritte Referenzsignal überschreitet, und wie oft die Peakhöhe der verschiedenen Eingangsimpulse das dritte Referenzsignal überschreitet.
     
    7. Der Detektor-Array-Signalprozessor gemäß Anspruch 6, der zudem Folgendes umfasst:
    einen Aufteiler, der die Zählwerte für das dritte und vierte Referenzsignal in die entsprechenden Energiebereich auslagert.
     
    8. Der Detektor-Array-Signalprozessor gemäß Anspruch 7, der zudem Folgendes umfasst:
    einen Aufteiler, der die ausgelagerten Zählwerte anhand der fensterbasierten Spektrenmessungen in verschiedene Energiekomponenten aufteilt.
     
    9. Der Detektor-Array-Signalprozessor gemäß Anspruch 8, wobei die verschiedenen Energiekomponenten jeweils eine erste und und zweite Energiekomponente umfassen, die einer ersten und zweiten Energie entsprechen, und wobei die erste Energie größer ist als die zweite.
     
    10. Der Detektor-Array-Signalprozessor gemäß Anspruch 8, der zudem Folgendes umfasst:
    einen Rekonstruktor, der die erste Energiekomponente rekonstruiert und ein erstes Bild generiert, das der ersten Energiekomponente entspricht, und der die zweite Energiekomponente rekonstruiert und ein zweites Bild generiert, das der zweiten Energiekomponente entspricht.
     
    11. Der Detektor-Array-Signalprozessor gemäß einer der Ansprüche 1 bis 10, wobei die Steuerung das erste Referenzsignal beibehält und den Determinator für die fensterbasierte Spektrenmessung anweist, den Wert der Fensterbreite zu ändern.
     
    12. Der Detektor-Array-Signalprozessor gemäß einer der Ansprüche 1 bis 4, wobei die Steuerung beruhend auf den fensterbasierten Spektrenmessungen einen Energieschwellenwert für den ersten Komparator kalibriert.
     
    13. Eine Methode, die Folgendes umfasst:

    sequenzielles Abrufen mehrerer Impulse des Detektor-Arrays eines Bildgebungssystems, die jeweils über eine Peakhöhe verfügen, die die Energie der jeweils erkannten Strahlung angibt;

    Abrufen einer Fensterbreite für die fensterbasierte Spektrenmessung;

    Abrufen eines ersten Referenzsignals für einen ersten Komparator;

    Erstellen eines zweiten Referenzsignals, bei dem es sich um das um die Fensterbreite ergänzte erste Referenzsignal handelt;

    Bereitstellen der Impulse und des ersten Referenzsignals für den ersten Komparator;

    Bereitstellen der Impulse und des zweiten Referenzsignals für den zweiten Komparator;

    Generieren einer ersten Ausgabe mit dem ersten Komparator, die angibt, ob die Peakhöhe oder das erste Referenzsignal größer ist;

    Generieren einer zweiten Ausgabe mit dem zweiten Komparator, die angibt, ob die Peakhöhe oder das zweite Referenzsignal größer ist;

    Erhöhen eines ersten Zählwerts, wenn die erste Ausgabe angibt, dass die Peakhöhe das erste Referenzsignal überschreitet;

    Erhöhen eines zweiten Zählwerts, wenn die zweite Ausgabe angibt, dass die Peakhöhe das zweite Referenzsignal überschreitet; und

    Ermitteln einer fensterbasierten Spektrenmessung, indem die Differenz zwischen dem ersten und zweiten Wert der entsprechenden Referenzsignale ermittelt wird.


     
    14. Die Methode gemäß Anspruch 13, wobei diese zudem Folgendes umfasst:
    Verwenden der fensterbasierten Spektrenmessungen für die aufgeteilten Photonen-Zählwerte, wobei der Schätzwert einer Antwort eines Photonen-Zähldetektors herangezogen wird.
     
    15. Die Methode gemäß einer der Ansprüche 13 bis 14, wobei die Referenzsignale den kV-Werten entsprechen und in Zehner-kV-Schritten erhöht werden.
     
    16. Die Methode gemäß einer der Ansprüche 14 bis 15, wobei diese zudem Folgendes umfasst:
    Ändern eines Fensterbreitenwerts beruhend auf einem Schritt, wobei der Schritt einem vordefinierten kV-Wert entspricht und eine Erhöhung in Zehner-kV-Schritten erfolgt.
     
    17. Die Methode gemäß Anspruch 13, wobei diese zudem Folgendes umfasst:
    Kalibrieren einen Energieschwellenwert für den ersten Komparator beruhend auf den fensterbasierten Spektrenmessungen.
     


    Revendications

    1. Dispositif de traitement des signaux d'un réseau de détecteurs d'un système d'imagerie, comprenant :

    un compteur (128) ; et

    un discriminateur (118), comprenant :

    un ensemble de comparateurs (120, 2021, 2022, 2023, 202N) ;

    un générateur de largeur de fenêtre (124, 214, 2141, 214N), lequel est configuré pour générer une largeur de fenêtre pour une mesure de spectre à base de fenêtres ; et

    un ensemble de générateurs de signaux de référence (122, 2121, 2122, 2123, 212N), chaque générateur correspondant à un comparateur différent des comparateurs, lesquels sont configurés pour générer différents signaux de référence ;

    dans lequel, en réponse au fait que le discriminateur se trouve dans un mode de mesure de spectre à base de fenêtres, un premier générateur de signaux de référence pour un premier comparateur est configuré pour générer un premier signal de référence, lequel est fourni au premier comparateur et lequel est additionné à la largeur de la fenêtre pour créer un deuxième signal de référence, lequel doit être fourni au second comparateur,

    dans lequel le premier comparateur est configuré pour comparer une hauteur de crête d'une impulsion indicative d'une énergie de rayonnement détecté avec le premier signal de référence et pour produire une première sortie indiquant lequel parmi la hauteur de crête ou le premier signal de référence est supérieur ;

    dans lequel le second comparateur est configuré pour comparer la hauteur de crête avec le deuxième signal de référence et pour produire une deuxième sortie indiquant lequel parmi la hauteur de crête ou le deuxième signal de référence est supérieur ; et

    dans lequel le compteur est configuré pour incrémenter une première valeur de comptage en réponse à la hauteur de crête supérieure au premier signal de référence et une deuxième valeur de comptage en réponse à la hauteur de crête supérieure au deuxième signal de référence.


     
    2. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 1, comprenant en outre :
    un conformateur, lequel est configuré pour traiter un signal produit par un pixel détecteur de conversion directe en réponse au pixel détecteur de conversion directe détectant un rayonnement émis par le système d'imagerie et pour générer une impulsion.
     
    3. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 2, comprenant en outre :
    un pré-processeur, lequel est configuré pour amplifier le signal produit par le pixel détecteur de conversion directe, dans lequel le conformateur est configuré pour traiter le signal amplifié.
     
    4. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 1, comprenant en outre :

    un contrôleur, lequel est configuré pour invoquer le premier générateur de signaux de référence pour balayer un ensemble de signaux de référence différents, chaque signal de référence fourni de manière séquentielle au premier comparateur et chaque signal de référence additionné de manière séquentielle à la largeur de la fenêtre au moyen de l'addition fournie de manière séquentielle au second comparateur,

    dans lequel le compteur est configuré pour incrémenter la première valeur de comptage respectivement pour chacun des différents signaux de référence de l'ensemble en réponse à la hauteur de crête supérieure respectivement à chacun des différents signaux de référence, et

    dans lequel le compteur est configuré pour incrémenter la deuxième valeur de comptage respectivement pour chacun des différents signaux de référence de l'ensemble en réponse à la hauteur de crête supérieure respectivement à chacun des différents signaux de référence additionnés à la largeur de fenêtre.


     
    5. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 4, comprenant en outre :
    un déterminant de mesure de spectre à base de fenêtres, lequel est configuré pour déterminer des mesures de spectre à base de fenêtres par calcul des différences entre les valeurs de comptage pour le second comparateur et les valeurs de comptage pour le premier comparateur.
     
    6. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 5, dans lequel, en réponse au fait que le discriminateur ne se trouve pas dans le mode de mesure de spectre à base de fenêtres, le premier générateur de signaux de référence est configuré pour fournir un troisième signal de référence au premier comparateur, lequel est configuré pour générer une troisième sortie, et un deuxième générateur de signaux de référence est configuré pour générer un quatrième signal de référence différent et pour fournir le quatrième signal de référence différent au second comparateur, lequel est configuré pour générer une quatrième sortie, et le compteur est configuré pour compter un certain nombre de fois ou les hauteurs de crête d'une pluralité d'impulsions d'entrée différentes sont supérieures au troisième signal de référence et un certain nombre de fois ou les hauteurs de crête de la pluralité d'impulsions d'entrée différentes sont supérieures au troisième signal de référence.
     
    7. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 6, comprenant en outre :
    un formateur de segments, lequel est configuré pour regrouper les comptages pour le troisième signal de référence et les comptages pour le quatrième signal de référence dans des plages d'énergie correspondantes.
     
    8. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 7, comprenant en outre :
    un décomposeur, lequel est configuré pour décomposer les comptages groupés en différentes composantes d'énergie à l'aide des mesures de spectre à base de fenêtres.
     
    9. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 8, dans lequel les différentes composantes d'énergie comprennent une première composante d'énergie correspondant à une première énergie et une seconde composante d'énergie correspondant à une seconde énergie, dans lequel la première énergie est supérieure à la seconde énergie.
     
    10. Dispositif de traitement des signaux d'un réseau de détecteurs selon la revendication 8, comprenant en outre :
    un reconstructeur, lequel est configuré pour reconstruire la première composante d'énergie et pour générer une première image correspondant à la première composante d'énergie et lequel est configuré pour reconstruire la seconde composante d'énergie et pour générer une seconde image correspondant à la seconde composante d'énergie.
     
    11. Dispositif de traitement des signaux d'un réseau de détecteurs selon l'une quelconque des revendications 1 à 10, dans lequel le contrôleur est configuré pour maintenir le premier signal de référence et pour invoquer le déterminant de mesure de spectre à base de fenêtres pour changer une valeur de la largeur de la fenêtre.
     
    12. Dispositif de traitement des signaux d'un réseau de détecteurs selon l'une quelconque des revendications 1 à 4, dans lequel le contrôleur est configuré pour étalonner un seuil d'énergie du premier comparateur en fonction des mesures de spectre à base de fenêtres.
     
    13. Procédé, comprenant :

    la réception, de manière séquentielle, d'une pluralité d'impulsions provenant d'un réseau de détecteurs d'un système d'imagerie, chacune présentant une hauteur de crête indicative d'une énergie de rayonnement détecté différent ;

    la réception d'une largeur de fenêtre pour une mesure de spectre à base de fenêtres ;

    la réception d'un premier signal de référence pour un premier comparateur ;

    la création d'un deuxième signal de référence, lequel est le premier signal de référence additionné à la largeur de fenêtre ;

    la fourniture de la pluralité d'impulsions et du premier signal de référence au premier comparateur ;

    la fourniture de la pluralité d'impulsions et du deuxième signal de référence à un second comparateur ;

    la production, par le premier comparateur, d'une première sortie indiquant lequel parmi la hauteur de crête ou le premier signal de référence est supérieur ;

    la production, par le second comparateur, d'une deuxième sortie indiquant lequel parmi la hauteur de crête ou le deuxième signal de référence est supérieur ;

    l'incrémentation d'une première valeur de comptage en réponse à la première sortie indiquant que la hauteur de crête est supérieure au premier signal de référence ;

    l'incrémentation d'une deuxième valeur de comptage en réponse à la deuxième sortie indiquant que la hauteur de crête est supérieure au deuxième signal de référence ; et

    la détermination d'une mesure de spectre à base de fenêtres par détermination d'une différence entre le premier nombre et le second nombre pour les signaux de référence correspondants.


     
    14. Procédé selon la revendication 13, comprenant en outre :
    l'utilisation des mesures de spectre à base de fenêtres dans une décomposition de données de comptage de photons, laquelle utilise une estimation d'une réponse d'un détecteur de comptage de photons.
     
    15. Procédé selon l'une quelconque des revendications 13 à 14, dans lequel les signaux de référence correspondent à des valeurs kV et augmentent par incréments de l'ordre des dixièmes de kV.
     
    16. Procédé selon l'une quelconque des revendications 14 à 15, comprenant en outre :
    le changement d'une valeur de la largeur de fenêtre en fonction d'un pas, où le pas correspond à une valeur kV prédéterminée et augmente par incréments de l'ordre des dixièmes de kV.
     
    17. Procédé selon la revendication 13, comprenant en outre :
    l'étalonnage d'un seuil d'énergie du premier comparateur en fonction de la mesure de spectre à base de fenêtres.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description