(19)
(11)EP 3 195 693 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 14900367.5

(22)Date of filing:  29.08.2014
(51)International Patent Classification (IPC): 
H05B 1/02(2006.01)
F25B 47/02(2006.01)
F24F 13/22(2006.01)
H05B 3/78(2006.01)
F24F 11/30(2018.01)
(86)International application number:
PCT/CN2014/085509
(87)International publication number:
WO 2016/029428 (03.03.2016 Gazette  2016/09)

(54)

SYSTEMS AND METHODS TO DETECT HEATER MALFUNCTION AND PREVENT DRY BURNING

SYSTEME UND VERFAHREN ZUR DETEKTION DER HEIZERFEHLFUNKTIONEN UND ZUR VERHINDERUNG VON TROCKENER VERBRENNUNG

SYSTÈMES ET PROCÉDÉS POUR DÉTECTER UN DYSFONCTIONNEMENT DE CHAUFFAGE ET EMPÊCHER LA COMBUSTION À SEC


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
26.07.2017 Bulletin 2017/30

(73)Proprietors:
  • Trane Air Conditioning Systems (China) Co. Ltd.
    Taicang, Jiangsu 215400 (CN)
  • Trane International Inc.
    Piscataway, NJ 08855 (US)

(72)Inventors:
  • CONG, Nipeng
    Taicang Jiangsu 215000 (CN)
  • ZHAO, Hua
    Shanghai 200051 (CN)
  • YUAN, Ping
    Shanghai 200051 (CN)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
CN-A- 102 428 749
CN-U- 203 349 590
CN-Y- 2 402 091
US-A1- 2007 125 764
CN-U- 203 349 590
CN-Y- 2 386 568
JP-A- 2001 128 361
US-A1- 2011 272 391
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field



    [0001] The disclosure herein relates to a heater, such as for example, an anti-freezing heater in a heating, ventilation, and air conditioning (HVAC) system. More specifically, the disclosure herein relates to systems and methods to detect heater malfunction and/or prevent the heater from dry burning. The heater may work with a component of the HVAC system, such as for example, an evaporator, a water box, and/or a condenser, which may provide heat when the component is susceptible to and/or experiences a freezing condition.

    Background



    [0002] A component of an HVAC system may experience a freezing condition during operation. For example, when an ambient temperature is relatively low (e.g. at or about 3°C), water in an evaporator of the HVAC system may encounter a freezing condition. Other components, such as a condenser and a water box, of the HVAC system may also experience a freezing condition during operation. The term "freezing condition" generally refers to a condition when liquid (e.g. water or refrigerant) inside a component and/or on an outer surface of the component may freeze. A heater (e.g. an anti-freezing heater) may be used to provide heat when the component of the HVAC system may experience a freezing condition. As prior art there may be mentioned US2007/125764, which discloses a fluid-heating apparatus that can determine a degradation of a heating element of the apparatus, and CN203349590, which discloses a fluid-heating apparatus that can confirm the aging of the heating element of the apparatus.

    Summary



    [0003] A heater, for example, an anti-freezing heater in an HVAC system, is disclosed. The heater includes a heating element; a power supply including a high voltage power and a low voltage power; and a voltage selector configured to select the high voltage power or the low voltage power to the heating element. The voltage selector is configured to switch the power supply from the high voltage power to the low voltage power when the temperature of the heating element exceeds a threshold.

    [0004] In some embodiments, the heater may include a thermostat positioned on a location of the heating element. In some embodiments, the heater may further include a monitoring alarm and a relay; and the power supply, the relay, the monitoring alarm, the heating element, and the voltage selector may be connected in series, forming a power circuit.

    [0005] In some embodiments, the monitoring alarm may be configured to set off an alarm when the power circuit is open.

    [0006] Other features and aspects of the systems, methods, and control concepts will become apparent by consideration of the following detailed description and accompanying drawings.

    Brief Description of the Drawings



    [0007] Reference is now made to the drawings in which like reference numbers represent corresponding parts throughout.

    Fig. 1 illustrates a schematic diagram of an HVAC refrigeration system.

    Fig. 2 illustrates a traditional heater design.

    Figs. 3A and 3B illustrate a heater according to one embodiment of this disclosure. Fig. 3A illustrates that a heating element of the heater is connected to a relatively high voltage power. Fig. 3B illustrates that a heating element of the heater is connected to a relatively low voltage power.

    Figs. 4A and 4B illustrate how a threshold for selecting a relatively high voltage or a relatively low voltage is determined. Fig. 4A illustrates a schematic diagram of a heating element. Fig. 4B illustrates a temperature/time diagram and an amp/time diagram.


    Detailed Description



    [0008] Components of an HVAC system, e.g. an evaporator, a condenser, and/or a water box, may experience a freezing condition during operation, e.g. when the unit is off under a relatively low ambient temperature. A heater (e.g. an anti-freezing heater) may be used to prevent and/or recover the components from the freezing condition.

    [0009] References are made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration of the embodiments in which the embodiments may be practiced. It is to be understood that the term used herein are for the purpose of describing the figures and embodiments and should not be regarded as limiting the scope.

    [0010] Fig. 1 illustrates that an HVAC system 100 that includes a compressor 102, a condenser 104, an expansion device 106 and an evaporator 108 forming a refrigeration circuit. The evaporator 108 may include a water box 109 configured to provide a working fluid (e.g. water) to the evaporator 108.

    [0011] When the ambient temperature is relatively low (e.g. at or about 3°C), the working fluid in the water box 109 may freeze. As illustrated, the water box 109 may be equipped with a heater 110 to help prevent a freezing condition, and/or recover from a freezing condition.

    [0012] Fig. 2 illustrates a traditional heater configuration. The heater 210 includes a heating element 220 and a controller 230. The heating element 220 can be positioned in a space 211 of a component 209 (e.g. a water box). The heater 210 can be powered by a power source 240. The controlled switch 230 can control whether the power source 240 is provided to the heating element 220. Generally, when the power source 240 is provided, the heating element 220 can provide heat, and when the power source 240 is not provided, the heating element 220 does not provide heat.

    [0013] In the traditional heater configuration, the controlled switch 230 can be a thermostat positioned on a housing 213 of the component 209, with the understanding that the thermostat can also be positioned at other locations (e.g. inside the shell 213). When a temperature of the housing 213 is below a temperature threshold (e.g. 3°C), for example, the controlled switch 230 can connect the power source 240 to the heating element 220. When the temperature of the housing 213 is above the temperature threshold, for example, the controlled switch 230 can disconnect the power source 240 from the heating element 220.

    [0014] The heater 210 may experience a "dry burning" condition. The term "dry burning condition" refers to a situation that the heating element 220 is connected to the power source 240 to provide heat while there is no or very little liquid (e.g. water) in the space 211. The heating element 220 can be damaged relatively easily in the dry burning condition because of, for example, overheating of the heating element 220. The dry burning condition can happen, for example, when a user of the HVAC system empties the component 209.

    [0015] Figs. 3A and 3B illustrate a heater 300 according to one embodiment of this disclosure. The heater 300 can be configured to set off an alarm (e.g. a monitoring alarm 304) when a circuit including a heating element 320 is open (e.g. a component of the circuit is broken or malfunction). The heater 300 can also be configured to connect the heating element 320 to a relatively low voltage power (e.g. Fig. 3B) when the heating element 320, for example, may experience a dry burning condition.

    [0016] The heater 300 includes the heating element 320, which may be positioned inside a component 309 (e.g. a water box) to provide heat. The heating element 320 includes a first terminal 321 and a second terminal 322. A voltage selector 330 can be configured to selectively connect the first terminal 321 to a power source 340 that includes a relatively high voltage power and a relatively low voltage power. Referring to Fig. 3A, the first terminal 321 is connected to a high voltage circuit 328 (e.g. connected to the ground directly). As a result, the heating element 320 is provided with the relatively high voltage power. Referring to Fig. 3B, the first terminal 321 is selected to the low voltage circuit 327 that includes a resistor divider 325. As a result, the heating element 320 is provided with the relatively low voltage power.

    [0017] The second terminal 322 of the heating element 320 is connected to the monitoring alarm 304, a relay 306, and the power source 340 in series. The relay 306 includes a relay switch 306a. The relay switch 306a have an "on" state and an "off' state. When the relay switch 306a is in the "off' state, the heating element 320 is disconnected from the power source 340. When the relay switch 306a are in the "on" state, the heating element is connected to the power source 340.

    [0018] In some embodiments, the heater 300 also includes a power switch 350 and a controller 331. The controller 331 in some embodiments may be configured to control, for example, a state of the power switch 350. The power switch 350 is configured to control the state of the relay 306. In some embodiments, the controller 331 can be positioned on the component 309, and control the state of the power switch 350 and/or the alarm switch 304 based on, for example, a temperature on an outer surface of the component 309. In some embodiments, the controller 331 can be a thermostat (e.g. a bimetal thermostat, a capillary thermostat, a pressure-type thermostat, or the like). In some embodiments, the controller 331 can be an electric temperature controller or a digital temperature controller.

    [0019] In operation, when the component 309 is at a relatively high temperature (e.g. higher than 3°C), the component 309 is generally not susceptible to a freezing condition. In such a condition, the controller 331 may be configured to set the power switch 350 to an "off' state. The "off" state of the power switch 350 can trigger the relay switch 306a to the "off state. The heating element is thus disconnected from the power source 340.

    [0020] When, for example, the component 309 is at a relatively low temperature (e.g. at or about 3°C), the component 309 may be susceptible to a freezing condition. In such a condition, the controller 331 may be configured to set the power switch 350 to an "on" state. The "on" state of the power switch 350 can trigger the relay switch 306a to the "on" state. The heating element 320 can be connected to the power source 340, and the heating element 320 can provide heat.

    [0021] A power circuit, which is configured to provide power to the heating element 320 to provide heat may include the power source 340, the relay 306, the monitoring alarm 304, the heating element 322, the voltage selector 330 that can be connected to either the low voltage circuit 327 or the high voltage circuit 328 of the power source 340. When, for example, the power circuit is in normal operation, e.g. the heating element 320 is connected to the power source 340 and provides heat, the monitoring alarm 304 will not set off an alarm. When, for example, the power circuit is open, e.g. if a component (e.g. the heating element 320) of the power circuit is broken or malfunction, the monitoring alarm 304 will provide alarm to notify a customer. In some embodiments, the alarm can include an audible alarm and/or light alarm.

    [0022] In some embodiments, the alarm can include an alarm signal that can be transmitted to a remotely located device through a wire or wirelessly. In some embodiments, the alarm can include a combination of more than one type of alarm.

    [0023] The voltage selector 330 is configured to monitor a temperature of the heating element 320. When the temperature of the heating element 320 is below a threshold, the voltage selector 330 is configured to connect the heating element 320 to the high voltage circuit 328 (e.g. connect to the relatively high voltage power), so that the heating element 320 can provide heat normally. When the temperature of the heating element 320 reaches or exceeds the threshold, which may indicate that the heating element 320 may experience a dry burning situation, the voltage selector 330 is configured to connect the heating element 320 to the low voltage circuit 327 (e.g. connect to the relatively low voltage power) to protect the heating element 320 from overheating. When the heating element 320 is connected to the low voltage circuit 327, the heat provided by the heating element 320 can be reduced, resulting a lower operation temperature for the heating element 320. In some embodiments, the low voltage circuit 327 can be configured to provide a voltage to the heating element 320 that can help keep the heating element 320 below a safe operation temperature. In some embodiments, the low voltage circuit 327 can be configured to provide a voltage that can keep the monitoring alarm 304 off. In some embodiments, the low voltage circuit 327 can be configured to keep the temperature of the heating element 320 below a safe operation condition, but higher than a threshold of the voltage selector 330, so that the voltage selector 330 does not frequently cycle between the relatively high voltage circuit 328 and the relatively low voltage circuit 327.

    [0024] When the heating element is connected to the relatively low voltage (e.g. is connected to the low voltage circuit 327), a voltage can still be provided to the monitoring alarm 304 so that the monitoring alarm 304 will not set off an alarm.

    [0025] Figs. 4A and 4B illustrate a method of determining a threshold for switching between a relatively high voltage (e.g. 220v AC) and a relatively low voltage (e.g. 60v AC) with respect to a heating element 420 (e.g. corresponding to the heating element 320 in Figs. 3A and 3B).

    [0026] Fig. 4A illustrates a schematic diagram of the heating element 420, which has a length L. To determine the threshold, a temperature reading can be taken at one or more locations (e.g. 420a, 420b, 420c, and 420d) along the length L in a dry burning testing. The temperature reading locations can be, for example, relatively close to where wire(s) (e.g. wires 423) are connected to the heating element 420 (e.g. 420d), relatively close to a center (e.g. 420a) of the heating element 420, on a mount (e.g. 420c) of the heating element 420, or other suitable locations (e.g. 420b, 420d).

    [0027] Fig. 4B illustrates temperature readings over time at each of the locations after a current (as illustrated by current curve 431) is provided to the heating element 420. Curve 430a corresponds to location 420a, curve 430b corresponds to location 420b, curve 430c corresponds to location 420c, and curve 430d corresponds to location 420d.

    [0028] A threshold can be chosen based on the curves in Fig. 4B. Based on the curves as shown in Fig. 4B, a temperature at one location (e.g. the location 420d) can be corresponded to a temperature at another location (e.g. the location 420a). For example, a temperature reading on the curve 430d can be correspond to a specific time point. And the specific time point can be used to correspond the temperature reading on the curve 430d to a temperature reading on other curves 430a, 430b and/or 430c. Thus, a threshold can be set at a location that may be convenient for temperature measurement, while the threshold can be corresponded to a desired temperature (e.g. a safe operation temperature) at another location.

    [0029] In one embodiment, a voltage selector (e.g. the voltage selector 330 in Fig. 3) may be configured to switch based on a threshold at the location 420d, where the wires 423 are connected to the heating element 420. The threshold (e.g. at or about 212°C) can be at or below a temperature that the wires 423 can tolerate (e.g. at or about 250°C for a Teflon covered wire). When the threshold is reached or exceeded, the voltage selector can switch the power supply from a relatively high voltage to a relatively low voltage.

    [0030] In another embodiment, the voltage selector may be configured to switch based on a threshold at location 420d. The threshold at location 420d may be corresponded to a safe operation temperature of the heating element 420, e.g. a safe operation temperature at the locations 420a or 420b. When the threshold at location 420d is reached, indicating the temperature of the heating element may exceed the safe operation temperature, the voltage selector can switch the power supply from a relatively high voltage to a relatively low voltage.

    [0031] It is to be noted that the embodiments as disclosed herein may be applicable to a situation where a heater may experience a dry-burning situation.

    [0032] With regard to the foregoing description, it is to be understood that changes may be made in detail, without departing from the scope of the present invention. It is intended that the specification and depicted embodiments are to be considered exemplary only, with a true scope of the invention being indicated by the broad meaning of the claims.


    Claims

    1. A heater (110, 300) comprising:

    a heating element (320, 420);

    a power supply (340) including a high voltage power and a low voltage power; and

    a voltage selector (330) configured to select the high voltage power or the low voltage power to the heating element (320, 420), characterized in that

    the voltage selector (330) is configured to select the high voltage power or the low voltage power based on a temperature of the heating element (320, 420), and

    the voltage selector (330) is configured to switch the power supply (340) from the high voltage power to the low voltage power when the temperature of the heating element (320, 420) exceeds a threshold.


     
    2. The heater (110, 300) of claim 1, wherein the heater (110, 300) includes a thermostat positioned on a location of the heating element (320, 420).
     
    3. The heater (110, 300) of claim 1, further comprising:

    a monitoring alarm (304); and

    a relay (306);

    wherein the power supply (340), the relay (306), the monitoring alarm (304), the heating element (320, 420), and the voltage selector (330) are connected in series, forming a power circuit.


     
    4. The heater (110, 300) of claim 3, wherein the monitoring alarm (304) is configured to set off an alarm when the power circuit is open.
     
    5. The heater (110, 300) of claim 1, wherein the heating element (320, 420) is positioned inside a component (109, 309) of an HVAC system (100).
     
    6. The heater (110, 300) of claim 1, where in the heating element (320, 420) is positioned inside a waterbox (109, 309) of an HVAC system (100).
     
    7. An HVAC system (100), comprising:

    an evaporator (108); and

    a heater (110, 300) configured to provide heat to the evaporator (108); wherein the heater (110, 300) includes:

    a heating element (320, 420);

    a power supply (340) including a high voltage power and a low voltage power; and

    a voltage selector (330) configured to select the high voltage power or the low voltage power to the heating element (320, 420), characterized in that

    the voltage selector (330) is configured to select the high voltage power or the low voltage power based on a temperature of the heating element (320, 420), and

    the voltage selector (330) is configured to switch the power supply (340) from the high voltage power to the low voltage power when the temperature of the heating element (320, 420) exceeds a threshold.


     
    8. The HVAC system (100) of claim 7, wherein the heater (110, 300) includes a thermostat positioned on a location of the heating element (320, 420).
     
    9. The HVAC system (100) of claim 7, wherein the heater (110, 300) further comprises:

    a monitoring alarm (304); and

    a relay (306);

    wherein the relay (306), the monitoring alarm (304), the heating element (320, 420), the voltage selector (330), and the power supply (340) are connected in series, forming a circuit.


     
    10. The HVAC system (100) of claim 9, wherein the monitoring alarm (304) is configured to set off an alarm when the circuit is open.
     
    11. The HVAC system of claim 7, wherein the heating element (320, 420) is positioned inside the evaporator (108).
     
    12. The HVAC system of claim 7, where in the heating element (320, 420) is positioned inside a waterbox (109, 309) of the evaporator (108).
     
    13. A method of providing heat to a component (109, 309) in the HVAC system of claim 7, comprising:

    measuring a temperature of the heating element (320, 420) in the HVAC system (100);

    when the temperature of the heating element (320, 420) exceeds the threshold, connecting the heating element (320, 420) to the low voltage power; and

    when the temperature of the heating element (320, 420) is below the threshold, connecting the heating element (320, 420) to the high voltage power.


     
    14. The method of claim 13, further comprising:
    when the heating element (320, 420) experiences malfunction, setting off an alarm.
     


    Ansprüche

    1. Heizgerät (110, 300), umfassend:

    ein Heizelement (320, 420);

    eine Leistungsversorgung (340) einschließlich einer Hochspannungsleistung und einer Niederspannungsleistung; und

    einen Spannungsselektor (330), der dazu ausgelegt ist, die Hochspannungsleistung oder die Niederspannungsleistung zu dem Heizelement (320, 420) auszuwählen, dadurch gekennzeichnet, dass der Spannungsselektor (330) dazu ausgelegt ist, die Hochspannungsleistung oder die Niederspannungsleistung basierend auf einer Temperatur des Heizelements (320, 420) auszuwählen, und

    der Spannungsselektor (330) dazu ausgelegt ist, die Leistungsversorgung (340) von der Hochspannungsleistung zu der Niederspannungsleistung zu schalten, wenn die Temperatur des Heizelements (320, 420) eine Schwelle überschreitet.


     
    2. Heizgerät (110, 300) nach Anspruch 1, wobei das Heizgerät (110, 300) ein Thermostat beinhaltet, das an einem Ort des Heizelements (320, 420) positioniert ist.
     
    3. Heizgerät (110, 300) nach Anspruch 1, ferner umfassend:

    einen Überwachungsalarm (304); und

    ein Relais (306);

    wobei die Leistungsversorgung (340), das Relais (306), der Überwachungsalarm (304), das Heizelement (320, 420) und der Spannungsselektor (330) in Reihe geschaltet sind und eine Leistungsschaltung bilden.


     
    4. Heizgerät (110, 300) nach Anspruch 3, wobei der Überwachungsalarm (304) dazu ausgelegt ist, einen Alarm auszulösen, wenn die Leistungsschaltung offen ist.
     
    5. Heizgerät (110, 300) nach Anspruch 1, wobei das Heizelement (320, 420) innerhalb einer Komponente (109, 309) eines HVAC-Systems (100) positioniert ist.
     
    6. Heizgerät (110, 300) nach Anspruch 1, wobei das Heizelement (320, 420) innerhalb einer Wasserkammer (109, 309) eines HVAC-Systems (100) positioniert ist.
     
    7. HVAC-System (100), umfassend:

    einen Verdampfer (108); und

    ein Heizgerät (110, 300), das dazu ausgelegt ist, dem Verdampfer (108) Wärme bereitzustellen; wobei das Heizgerät (110, 300) Folgendes beinhaltet:

    ein Heizelement (320, 420);

    eine Leistungsversorgung (340) einschließlich einer Hochspannungsleistung und einer Niederspannungsleistung; und

    einen Spannungsselektor (330), der dazu ausgelegt ist, die Hochspannungsleistung oder die Niederspannungsleistung zu dem Heizelement (320, 420) auszuwählen, dadurch gekennzeichnet, dass der Spannungsselektor (330) dazu ausgelegt ist, die Hochspannungsleistung oder die Niederspannungsleistung basierend auf einer Temperatur des Heizelements (320, 420) auszuwählen, und

    der Spannungsselektor (330) dazu ausgelegt ist, die Leistungsversorgung (340) von der Hochspannungsleistung zu der Niederspannungsleistung zu schalten, wenn die Temperatur des Heizelements (320, 420) eine Schwelle überschreitet.


     
    8. HVAC-System (100) nach Anspruch 7, wobei das Heizgerät (110, 300) ein Thermostat beinhaltet, das an einem Ort des Heizelements (320, 420) positioniert ist.
     
    9. HVAC-System (100) nach Anspruch 7, wobei das Heizgerät (110, 300) ferner Folgendes umfasst:

    einen Überwachungsalarm (304); und

    ein Relais (306);

    wobei das Relais (306), der Überwachungsalarm (304), das Heizelement (320, 420), der Spannungsselektor (330) und die Leistungsversorgung (340) in Reihe geschaltet sind und eine Schaltung bilden.


     
    10. HVAC-System (100) nach Anspruch 9, wobei der Überwachungsalarm (304) dazu ausgelegt ist, einen Alarm auszulösen, wenn die Schaltung offen ist.
     
    11. HVAC-System nach Anspruch 7, wobei das Heizelement (320, 420) innerhalb des Verdampfers (108) positioniert ist.
     
    12. HVAC-System nach Anspruch 7, wobei das Heizelement (320, 420) innerhalb einer Wasserkammer (109, 309) des Verdampfers (108) positioniert ist.
     
    13. Verfahren zum Bereitstellen von Wärme an eine Komponente (109, 309) im HVAC-System nach Anspruch 7, umfassend:

    Messen einer Temperatur des Heizelements (320, 420) im HVAC-System (100);

    wenn die Temperatur des Heizelements (320, 420) die Schwelle überschreitet, Verbinden des Heizelements (320, 420) mit der Niederspannungsleistung; und

    wenn die Temperatur des Heizelements (320, 420) unter der Schwelle liegt, Verbinden des Heizelements (320, 420) mit der Hochspannungsleistung.


     
    14. Verfahren nach Anspruch 13, ferner umfassend:
    wenn das Heizelement (320, 420) einer Fehlfunktion unterliegt, Auslösen eines Alarms.
     


    Revendications

    1. Chauffage (110, 300), comprenant :

    un élément chauffant (320, 420) ;

    une alimentation (340) incluant un courant à haute tension et un courant à basse tension ; et

    un sélecteur de tension (330), configuré pour sélectionner le courant à haute tension ou le courant à basse tension pour l'élément chauffant (320, 420),

    le chauffage étant caractérisé en ce que :

    le sélecteur de tension (330) est configuré pour sélectionner le courant à haute tension ou le courant à basse tension sur la base d'une température de l'élément chauffant (320, 420), et

    le sélecteur de tension (330) est configuré pour commuter l'alimentation (340) du courant à haute tension au courant à basse tension quand la température de l'élément chauffant (320, 420) dépasse un seuil.


     
    2. Chauffage (110, 300) selon la revendication 1, le chauffage (110, 300) comprenant un thermostat positionné sur un emplacement de l'élément chauffant (320, 420).
     
    3. Chauffage (110, 300) selon la revendication 1, comprenant en outre :

    une alarme de surveillance (304) ; et

    un relais (306) ;

    l'alimentation (340), le relais (306), l'alarme de surveillance (304), l'élément chauffant (320, 420) et le sélecteur de tension (330) étant connectés en série, en formant un circuit de puissance.


     
    4. Chauffage (110, 300) selon la revendication 3, dans lequel l'alarme de surveillance (304) est configurée pour déclencher une alarme quand le circuit de puissance est ouvert.
     
    5. Chauffage (110, 300) selon la revendication 1, dans lequel l'élément chauffant (320, 420) est positionné à l'intérieur d'un composant (109, 309) d'un système CVC (100).
     
    6. Chauffage (110, 300) selon la revendication 1, dans lequel l'élément chauffant (320, 420) est positionné à l'intérieur d'une boîte à eau (109, 309) d'un système CVC (100).
     
    7. Système CVC (100), comprenant :

    un évaporateur (108) ; et

    un chauffage (110, 300), configuré pour fournir de la chaleur à l'évaporateur (108) ; le chauffage (110, 300) comprenant :

    un élément chauffant (320, 420) ;

    une alimentation (340) incluant un courant à haute tension et un courant à basse tension ; et

    un sélecteur de tension (330), configuré pour sélectionner le courant à haute tension ou le courant à basse tension pour l'élément chauffant (320, 420),

    le système CVC étant caractérisé en ce que :

    le sélecteur de tension (330) est configuré pour sélectionner le courant à haute tension ou le courant à basse tension sur la base d'une température de l'élément chauffant (320, 420), et

    le sélecteur de tension (330) est configuré pour commuter l'alimentation (340) du courant à haute tension au courant à basse tension quand la température de l'élément chauffant (320, 420) dépasse un seuil.


     
    8. Système CVC (100) selon la revendication 7, dans lequel le chauffage (110, 300) comprend un thermostat positionné sur un emplacement de l'élément chauffant (320, 420).
     
    9. Système CVC (100) selon la revendication 7, dans lequel le chauffage (110, 300) comprend en outre :

    une alarme de surveillance (304) ; et

    un relais (306) ;

    le relais (306), l'alarme de surveillance (304), l'élément chauffant (320, 420), le sélecteur de tension (330) et l'alimentation (340) étant connectés en série, en formant un circuit.


     
    10. Système CVC (100) selon la revendication 9, dans lequel l'alarme de surveillance (304) est configurée pour déclencher une alarme quand le circuit est ouvert.
     
    11. Système CVC selon la revendication 7, dans lequel l'élément chauffant (320, 420) est positionné à l'intérieur de l'évaporateur (108).
     
    12. Système CVC selon la revendication 7, dans lequel l'élément chauffant (320, 420) est positionné à l'intérieur d'une boîte à eau (109, 309) de l'évaporateur (108).
     
    13. Procédé de fourniture de chaleur à un composant (109, 309) dans le système CVC selon la revendication 7, consistant à :

    mesurer une température de l'élément chauffant (320, 420) dans le système CVC (100) ;

    quand la température de l'élément chauffant (320, 420) dépasse le seuil, connecter l'élément chauffant (320, 420) au courant à basse tension ; et

    quand la température de l'élément chauffant (320, 420) est inférieure au seuil, connecter l'élément chauffant (320, 420) au courant à haute tension.


     
    14. Procédé selon la revendication 13, consistant en outre à :
    quand l'élément chauffant (320, 420) présente un dysfonctionnement, déclencher une alarme.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description