(19)
(11)EP 3 197 008 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.08.2022 Bulletin 2022/31

(21)Application number: 15897378.4

(22)Date of filing:  26.11.2015
(51)International Patent Classification (IPC): 
H02J 7/04(2006.01)
H02J 7/00(2006.01)
H04M 1/02(2006.01)
(52)Cooperative Patent Classification (CPC):
H02J 7/00; H02J 7/007192; H02J 7/04; H02J 7/00714; H02J 7/007182
(86)International application number:
PCT/CN2015/095628
(87)International publication number:
WO 2017/088138 (01.06.2017 Gazette  2017/22)

(54)

CHARGING DEVICE FOR MOBILE TERMINAL

LADEVORRICHTUNG FÜR EIN MOBILES ENDGERÄT

DISPOSITIF DE CHARGE POUR TERMINAL MOBILE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
26.07.2017 Bulletin 2017/30

(73)Proprietor: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
Wusha, Chang'an Dongguan, Guangdong 523860 (CN)

(72)Inventors:
  • CHEN, Shebiao
    Dongguan Guangdong 523860 (CN)
  • ZHANG, Jun
    Dongguan Guangdong 523860 (CN)

(74)Representative: Mewburn Ellis LLP 
Aurora Building Counterslip
Bristol BS1 6BX
Bristol BS1 6BX (GB)


(56)References cited: : 
CN-A- 103 762 691
CN-A- 103 795 040
CN-A- 104 810 873
CN-A- 104 810 877
US-A1- 2007 185 590
US-A1- 2014 313 792
CN-A- 103 762 702
CN-A- 104 810 873
CN-A- 104 810 877
CN-A- 104 993 562
US-A1- 2010 127 666
  
  • A Nonymous: "High-Speed USB 2.0 DPST Switch with overvoltage protection (ovp) and dedicated charger port protection", , 5 September 2013 (2013-09-05), pages 1-18, XP055258829, Retrieved from the Internet: URL:http://www.intersil.com/content/dam/In tersil/documents/isl5/isl54227.pdf [retrieved on 2016-03-16]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present disclosure relates to the field of charging, and particularly to a charging apparatus of a mobile terminal.

BACKGROUND



[0002] With the rapid development of mobile terminals (such as mobile phones, Pad), the battery power issue of the mobile terminal has become the concern of users and mobile terminal manufacturers.

[0003] Conventional charging apparatus for the mobile terminal typically include adapters, Mobile power, and the like. Take the adapter as an example, the adapter usually takes alternating current (AC) from the electricity, and then through AC conversion, rectification and other operations, the alternating current can be converted into direct current (DC) suitable for charging of the mobile terminal. For example, the adapter usually converts 220V AC to 5V DC as the charging voltage of the mobile terminal.

[0004] CN 104993562 A discloses a power supply adapter comprising a charging interface, an AC-DC conversion unit and a control unit. The power supply adapter performs timing communication with a mobile terminal acting as a charging object to acquire voltage variations of a battery inside an electronic product, then dynamically adjusts charging voltage outputted by the power supply adapter according to the voltage variations of the battery, and carries out direct charging on the built-in battery of the electronic product by using the charging voltage.

[0005] US 2014/0313792 A1 discloses a power delivery device comprising a primary-side controller configured to control an input current of a DC/DC converter disposed between an input and output, and a secondary-side controller connected with AC coupling to an output, and configured to feedback electric power information of the output to the primary-side controller. The primary-side controller varies an output voltage value and an available output current capacity of the DC/DC converter by controlling the input current on the basis of the electric power information fed back from the secondary-side controller. The primary-side controller can change an overpower detecting set value in accordance with the target equipment connected to the output, thereby executing the power change of the DC/DC converter.

[0006] However, with the requirements on charging speed and charging safety gradually increased, it is increasingly difficult for the charging apparatus with simple function to meet the charging needs of the mobile terminal.

SUMMARY



[0007] Embodiments of the present disclosure provide a charging apparatus of a mobile terminal, so as to improve the intelligibility of the charging apparatus of the mobile terminal.

[0008] The invention is set out in the appended set of claims.

[0009] In the charging apparatus of a mobile terminal according to the present disclosure, the control chip is provided in the charging apparatus, data can be exchanged with the mobile terminal through the control chip, and the current detection circuit, the voltage detection circuit, the ADC, the power adjusting circuit as well as other circuits can be provided around the control chip, which can improve the intelligent level of the mobile terminal and provide a hardware foundation for quick charging, safe charging, and so on.

BRIEF DESCRIPTION OF THE DRAWINGS



[0010] In order to illustrate the technical solutions of the present disclosure or the related art more clearly, a brief description of the accompanying drawings used herein is given below. Obviously, the drawings listed below are only examples, and a person skilled in the art should be noted that, other drawings can also be obtained on the basis of these exemplary drawings without creative work.

[0011] FIG. 1 is a schematic structure diagram illustrating a charging apparatus of a mobile terminal according to an embodiment of the present disclosure.

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS



[0012] FIG. 1 is a schematic structure diagram illustrating a charging apparatus of a mobile terminal according to an embodiment of the present disclosure. FIG.1 illustrates a charging apparatus 10, which includes: an input end 11, configured to receive an alternating current; a Universal Serial Bus (USB) interface 12, configured to connect the charging apparatus 10 with the mobile terminal; a power supply circuit 13 connected with the input end 11 and the USB interface 12 respectively, and the power supply circuit 13 is configured to convert the alternating current inputted through the input end 11 into a direct current and transmit an output power of the power supply circuit 13 to the mobile terminal through the USB interface 12, so as to charge a battery of the mobile terminal.

[0013] The charging apparatus 10 further includes: a control chip 14 connected with the USB interface 12 and is configured to exchange data with the mobile terminal through a data line of the USB interface 12; a current detection circuit 15 connected with the power supply circuit 13 and configured to detect a current output current of the power supply circuit 13; a voltage detection circuit 16 connected with the power supply circuit 13 and configured to detect a current output voltage of the power supply circuit 13; an analog to digital converter (ADC) 17 connected with the current detection circuit 15, the voltage detection circuit 16, and the control chip 14 respectively, and the current detection circuit 15 and the voltage detection circuit 16 are configured to provide the control chip 14 with the current value of the current output current and the voltage value of the current output voltage respectively through the ADC 17; a power adjusting circuit 18 connected with the control chip 14 and the power supply circuit 13 respectively and adjust an output power of the power supply circuit 13 based on the control of the control chip 14.

[0014] In the charging apparatus of a mobile terminal according to the present disclosure, the control chip is provided in the charging apparatus, data can be exchanged with the mobile terminal through the control chip, and the current detection circuit, the voltage detection circuit, the ADC, the power adjusting circuit as well as other circuits are provided around the control chip, which can improve the intelligent level of the mobile terminal and provide a hardware foundation for quick charging, safe charging and so on.

[0015] For example, the mobile terminal can be a mobile phone in one implementation and can be a Pad in another implementation.

[0016] The USB interface 12 can be a normal USB interface or a Micro USB interface. Generally, the USB interface can include 5 pins, for example, the USB interface can include a D+ data line, a D- data line, an ID line, a V-Bus, and an earth wire; however, the present disclosure is not limited thereto, for example, the USB interface can be a USB interface designed specifically for quick charging, such as a USB interface including 7 pins, among which the new pins can be used with the original charging lines together to carry a greater charging current.

[0017] The form of the power supply circuit 13 is not restricted in the present disclosure, for example, the power supply circuit 13 can adopt a transformer 22 as illustrated in FIG. 1. The transformer 22 has a primary side connected with a rectifier bridge 19 and an AC-DC primary side controller 20 which can adjust the voltage of the primary side. The transformer 22 has a secondary side connected with a rectifier driver 21, and can transmit the rectified output current to a V-Bus of the USB interface 12.

[0018] The type of the control chip 14 can be selected according to actual needs, for example, it can be selected according to the actual function to be achieved or the interface type to be provided or other options. The control chip 14 can have its own read-only memory(ROM) and/or Random Access Memory (RAM), for example, the control chip 14 can include a 16KB ROM and a 1KB RAM. In an example, the control chip 14 can be a MCU.

[0019] The control chip 14 can exchange data with the mobile terminal through a data line(s) of the USB interface 12. Alternatively, the control chip 14 can communicate with the mobile terminal through the data line of the USB interface 12. For example, through the data line in the USB interface 12, the control chip 14 can conduct two-way communication with the mobile terminal, exchange handshake information, and so on. By communication, the control chip 14 and the mobile terminal can negotiate the charging mode together, or if one party has a security risk, the other party can be notified immediately, which can improve the intelligent level of the mobile terminal and provide a hardware foundation for quick charging, safe charging, and so on.

[0020] The manner in which the control chip 14 interacts with the mobile terminal through the data line of the USB interface 12 can be various, for example, the control chip 14 can provide clock signals through the D+ data line of the USB interface 12, or the control chip 14 can transmit data through the D- data line of the USB interface 12.

[0021] It should be understood that, the manner in which the current detection circuit 15 detects the current output current of the power supply circuit 13 can be various. Optionally, in an embodiment, as illustrated in FIG.1, the current detection circuit 15 can include a second operational amplifier 23. The second operational amplifier 23 has two input ends connected in parallel at both ends of a current sense resistor 24 of the power supply circuit 13. The second operational amplifier 23 has an output end connected with the ADC 17. The second operational amplifier 23 can detect an output current of the power supply circuit 13 through a voltage drop across both ends of the current sense resistor 24.

[0022] It should be understood that, the manner in which the voltage detection circuit 16 detects the current output voltage of the power supply circuit 13 can be various. Optionally, as illustrated in FIG. 1, the voltage detection circuit 16 detects the current output voltage of the power supply circuit 13 in a way of using two resistors for voltage dividing. The present disclosure has not restriction with regard to the position and number of the voltage detection circuit 16. As illustrated in FIG.1, the voltage detection circuit 16 can include a first voltage detection circuit 16 and a second voltage detection circuit 16. The first voltage detection circuit 16 and the second voltage detection circuit 16 are provided at both ends of a switching circuit 25 respectively. In practice, it is possible to select at least one voltage detection circuit from the two voltage detection circuits to detect the voltage of the power supply circuit 13 according to the actual situation, for example, it is possible to select based on detection accuracy.

[0023] With regard to the type of the ADC 17 (ADC illustrated in FIG.1), the present disclosure has no restriction, as long as the analog signal detected by the current detection circuit 15 and the voltage detection circuit 16 can be converted into a digital signal. In addition, the ADC 17 can be connected with a temperature sensor 26 for measuring the temperature in the vicinity of the control chip 14 and transmit the measured temperature to the control chip 14. The control chip 14 can control the ON/OFF of the power supply circuit 13 according to the temperature in the vicinity thereof; for example, if the temperature is greater than a preset temperature threshold, the power supply circuit 13 will be turned off. A reference voltage (for example, Vref as illustrated in FIG.1) can be provided to the ADC 17 for reference in the digital-to-analog signal conversion of the ADC 17.

[0024] The form of the power adjusting circuit 18 can vary. For example, refer to FIG.1, the power adjusting circuit 18 can include a potentiometer 27, and the potentiometer 27 can be a digital potentiometer. The output voltage of the power supply circuit 13 can be adjusted by sliding the potentiometer 27. In addition, the power adjusting circuit 18 can also include a first operational amplifier 28. Via the first operational amplifier 28, the power adjusting circuit 18 can be connected to a controller 20 (AC-DC primary side controller) on a primary side of the transformer 22, and control the output current of the power supply circuit 13 through the controller 20.

[0025] The number of circuit devices is relatively large, and the structure and function thereof are relatively complicated. In order to make the circuit structure more simple as well as reduce costs, optionally, the control chip 14, the current detection circuit 15, the ADC 17, the voltage detection circuit 16, and the power adjusting circuit 18 can be integrated in an integrated circuit.

[0026] Optionally, the ADC 17 can connect with a pin of the data line of the USB interface 12 so as to obtain a voltage value of the data line pin and transmit the voltage value to the control chip 14. The control chip 14 adjusts an output power of the power supply circuit 13 through the power adjusting circuit 18 according to the voltage value of the data line pin.

[0027] In other words, analog-digital conversion (ADC) multiplexing function can be added to D+/D- pins, such that the control chip 14 can detect the voltage of the D+/D- pins, and more functionality and control logic can be achieved based on the voltage value of the D+/D-pins.

[0028] In an embodiment, the charging apparatus 10 further includes: a selecting circuit 29, which has a first input end connected with the control chip 14, a second input end connected with the ADC 17 directly without passing through the control chip, and an output end connected with the power adjusting circuit 18. The selecting circuit 29 can select one current control signal from a current control signal input through the first input end and a current control signal input through the second input end, and adjust an output current of the power supply circuit through the power adjusting circuit based on the current control signal selected.

[0029] The current detection circuit 15, the ADC 17, and the selecting circuit 29 can be hardware circuits capable of realizing current adjustment. The hardware circuits can reduce the load on the control chip 14 and improve the processing efficiency of the charging apparatus 10 without the involvement of the control chip 14. Alternatively, the control chip 14 can control the output current of the power supply circuit 13 through the selecting circuit 29. The selecting circuit 29 can select one of the two current control signals to control the output current of the power supply circuit 13. The selecting circuit 29 can be a switching circuit, which can determine whether the current is controlled by the hardware circuit or the control chip 14 according to actual needs. Alternatively, the selecting circuit can include a comparator, with which a smaller value can be selected from current values indicated by current control signals of the hardware circuit and the control chip 14, and the control chip 14 can control the current of the power supply circuit 13 based on the smaller value.

[0030] The charging apparatus 10 further includes: a switching circuit 25 connected in series in the power supply circuit 13 and connected with the control chip 14; the control chip 14 is further configured to control the ON/OFF of a charging circuit between the charging apparatus 10 and the mobile terminal through the switching circuit 25.

[0031] The switching circuit 25 can ensure a timely turn-off of the circuit in the event of a failure and therefore can improve the safety of the charging apparatus. The switching circuit 25 can be in a variety of forms. Optionally, according to an embodiment, the switching circuit 25 can include: a switch transistor assembly 30 connected in series in the power supply circuit; a charge pump 31, which has one end connected with a control end of the switch transistor assembly 30 and another end connected with the control chip 14; the control chip 14 can generate a target control voltage through the charge pump 31 and control the switch transistor assembly 30 to turn on, among which the target control voltage is greater than a working voltage (VDD) of the charging apparatus 10.

[0032] With aid of the charge pump, the voltage of the switch transistor control end can be enhanced, for example, can be enhanced to 3 times of VDD (drain-to-drain voltage), so as to achieve a sufficiently high voltage that the switch transistor assembly 30 can be fully turned on.

[0033] The switch assembly 30 can be in a variety of forms. For example, the switch assembly 30 can include one switch transistor or more than one switch transistor. Optionally, refer to FIG.1, the switch assembly 30 can include a first switch transistor and a second switch transistor, which are connected in series in the power supply circuit 13 and disposed back to back. By disposing two switch transistors back-to-back, reverse leakage generated by parasitic diodes of the switch transistors can be avoided.

[0034] The charging apparatus 10 further includes a temperature detection circuit 31, which can connect with the ADC 17 and transmit a detected temperature to the control chip 14 through the ADC 17. The control chip 14 can control the ON/OFF of the switching circuit 25 according to the temperature detected by the temperature detection circuit 31.

[0035] The present disclosure has no restriction on the location of the temperature detection circuit 31. For example, since the USB interface 12 is often overheated, the temperature detection circuit 31 can be provided to the vicinity of the USB interface 12. The switching circuit 25 can be controlled to turn off through the control chip 14 if the temperature of the USB interface 12 is greater than or equal to a preset temperature threshold, so as to ensure the safety of the charging apparatus.

[0036] The present disclosure has no restriction on the form of the temperature detection circuit 31. For example, refer to FIG.1, the temperature detection circuit 31 can include: a temperature sensor connected with the ADC; a negative temperature coefficient resistor, which has one end connected with the temperature sensor and other end grounded. Without a doubt, the temperature detection circuit can be an external temperature switch that can connect to the control chip 14 directly. The control chip 14 can to determine whether or not the temperature detection function is enabled.

[0037] Optionally, according to an embodiment, the charging apparatus 10 can further include: a load circuit connected with the power supply circuit 13 and the control chip 14 respectively; the control chip 14 is further configured to control the load circuit to turn on if the output voltage of the power supply circuit 13 is less than a preset voltage threshold, and supply power for load devices of the load circuit through the power supply circuit 13, so as to maintain the stability of the power supply circuit. As an implementation, the load circuit can include a third switch transistor, and a load resistor connected in series between the third switch transistor and ground. The third switch transistor has a control end connected with the control chip, an input end connected with the power supply circuit, and an output end grounded.

[0038] It should be understood that, through the data line of the USB interface 12, the control chip 14 can perform at least one of the following operations: short connecting a D+ data line and a D- data line of the USB interface; for example, when the charging apparatus is connected with the mobile terminal, the control chip 14 can cause the D+ data line and the D-data line of the USB interface to be short connected to provide a normal charging mode; in this way, it can be better compatible with the related art. The control chip 14 can exchange data with the data line of the USB interface via a General Purpose Input/output (GPIO) port, or the control chip 14 can exchange data in the format of Universal Asynchronous Receiver Transmitter (UART) with the mobile terminal. For example, the control chip can perform a handshake with the mobile terminal through the GIPO port, as well as transmit firmware upgrade data for an adapter through a UART port.

[0039] Optionally, according to an embodiment, the control chip 14 can further connect with an ID line of the USB interface 12; the controller is further configured to identify, through the ID line, whether a charging data line between the charging apparatus 10 and the mobile terminal is a data line that support quick charging.

[0040] For example, a chip or chips can be provided in the charging data line, and signals can be transmitted to the chip of the charging data line through the control chip 14. It is indicated that the data line supports quick charging if a response signal is received; otherwise, it is indicated that the data line is a normal data line and does not support quick charging if no response signal is received.

[0041] Optionally, according to an embodiment, the power supply circuit 13 can include: a transformer; an input circuit located on a primary side of a coil of the transformer, the input circuit includes a controller configured to control the voltage of the input circuit; an output circuit located on a secondary side of the coil of the transformer; the power adjusting circuit includes a potentiometer and a first operational amplifier, the potentiometer can connect with the control chip and the output circuit respectively, besides, the potentiometer can connect with the controller of the input circuit through the first operational amplifier and adjust an output voltage of the power supply circuit through the controller.

[0042] It should be understood that, the switch transistor can include but not limited to one of the following or any combination thereof: Metal Oxide Semiconductor (MOSFET), Insulated Gate Bipolar Transistor (IGBT), Integrated Gate Commutated Thyristors (IGCT), Silicon Controlled Rectifier (SCR), or other power devices.

[0043] Those of ordinary skill in the art will recognize that, the elements and algorithm steps of various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are implemented in hardware or software depends on the specific application and design constraints of a technical solution. For each particular application, the skilled person can use different methods for the implementation of the described functions; however, such implementation should not be considered as a departure from the scope of the present disclosure.

[0044] As will be apparent to those skilled in the art, for the convenience and conciseness of description, with regard to the working processes of the system, the device, and the units illustrated above, reference can be made to corresponding processes in the foregoing method embodiments and will not be repeated here.

[0045] In the embodiments of the present disclosure, it will be appreciated that, the system, the device, and the method disclosed can be achieved in other ways. For example, the device embodiments described above are merely illustrative; the division of the units is only a logical function division, and the units can be divided into other ways during the actual implementation, for example, multiple units or components can be combined or can be integrated into another system, or some features can be ignored or not implemented. In addition, the coupling or direct coupling or communication connection illustrated or discussed between each other can be an indirect coupling or indirect communication connection via some interface, device, or unit, and it can be in electrical, mechanical or other forms.

[0046] The units illustrated as separate components can or cannot be physically separated, and the components displayed as units can or cannot be physical units, that is to say, the units or components can be located in one place, or can be distributed over multiple network elements. Some or all of these units can be selected according to actual needs to achieve the purpose of the embodiments of the present disclosure.

[0047] In addition, the functional units in various embodiments of the present disclosure can be integrated in one processing unit. It is also possible that the individual units are physically present individually, or, it is also possible to integrate two or more units into one unit.

[0048] When implemented in the form of a software functional unit and sold or used as a stand-alone product, the functionality can be stored in a computer readable storage medium. Based on such understanding, technical solutions of the present disclosure in essence, or in part, or part of the technical solutions which contributes to the related art, can be embodied in the form of a software product. The software product can be stored in a storage medium and include several instructions, which can cause computer equipment (such as a personal computer, a server, or network equipment) to execute all or part of the method steps of the embodiments of the present disclosure. The aforementioned storage medium includes U-disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk, CD, or various media that can store program code.


Claims

1. A charging apparatus (10) of a mobile terminal, comprising:

an input end (11), configured to receive an alternating current;

a Universal Serial Bus, USB, interface (12), configured to connect the charging apparatus (10) with the mobile terminal;

a power supply circuit(13) connected with the input end (11) and the USB interface (12) respectively, wherein the power supply circuit (13) is configured to convert the alternating current inputted through the input end (11) into a direct current and transmit an output power of the power supply circuit (13) to the mobile terminal through the USB interface (12), so as to charge a battery of the mobile terminal;

a control chip (14) connected with the USB interface (12), wherein the control chip (14) is configured to exchange data with the mobile terminal through a data line of the USB interface (12);

a current detection circuit (15) connected with the power supply circuit (13) and configured to detect a current output current of the power supply circuit (13);

a voltage detection circuit (16) connected with the power supply circuit (13) and configured to detect a current output voltage of the power supply circuit (13);

an analog to digital converter, ADC, (17) connected with the current detection circuit (15), the voltage detection circuit (16), and the control chip (14) respectively, wherein the current detection circuit (15) and the voltage detection circuit (16) are configured to provide the control chip (14) with the current value of the current output current and the voltage value of the current output voltage respectively through the ADC, wherein the ADC (17) is connected with a data line pin of the USB interface (12), and is configured to acquire a voltage value of the data line pin and transmit the voltage value of the data line pin to the control chip (14); and

a power adjusting circuit (18) connected with the control chip (14) and the power supply circuit (13) respectively and configured to adjust an output power of the power supply circuit (13) based on the control of the control chip (14),
wherein the control chip (14) is further configured to control the power adjusting circuit (18) to adjust an output power of the power supply circuit (13) according to the voltage value of the data line pin;

a selecting circuit (29), wherein the selecting circuit (29) has a first input end connected with the control chip (14), a second input end connected with the ADC (17) directly without passing through the control chip (14), and an output end connected with the power adjusting circuit (18); wherein the selecting circuit (29) comprises:

a switching circuit configured to determine whether an output current of the power supply circuit (13) is controlled by the ADC (17) or the control chip (14) and control switch between the control chip (14) and the ADC (17) to control the output current of the power supply circuit;

characterized in that:

the switching circuit (25) is connected in series in the power supply circuit (13) and connected with the control chip (14); and

wherein the control chip (14) is further configured to control the ON/OFF of a charging circuit between the charging apparatus (10) and the mobile terminal through the switching circuit (25);

wherein the charging circuit (10) further comprises a temperature detection circuit (31) connected with the ADC (17) and configured to transmit a temperature detected to the control chip (14) through the ADC (17); and wherein

the control chip (14) is further configured to control the ON/OFF of the switching circuit (25) according to the temperature detected by the temperature detection circuit (31).


 
2. The charging apparatus (10) of claim 1, wherein the switching circuit (25) comprises:

a switch transistor assembly (30) connected in series in the power supply circuit (13);

a charge pump (31), wherein the charge pump (31) has one end connected with a control end of the switch transistor assembly (30) and another end connected with the control chip (14); and

the control chip (14) is further configured to generate a target control voltage through the charge pump (31) and control the switch transistor assembly (30) to turn on, wherein the target control voltage is greater than a working voltage of the charging apparatus (10).


 
3. The charging apparatus (10) of claim 2, wherein the switch transistor assembly (30) has a first switch transistor and a second switch transistor, wherein the first switch transistor and the second switch transistor are connected in series in the power supply circuit (13) and disposed back to back.
 
4. The charging apparatus (10) of claim 1, wherein the temperature detection circuit (31) comprises:

a temperature sensor connected with the ADC (17); and

a negative temperature coefficient resistor, wherein the negative temperature coefficient resistor has one end connected with the temperature sensor and other end grounded.


 
5. The charging apparatus (10) of any of claims 1 to 4, wherein the voltage detection circuit (16) comprises a first voltage detection circuit and a second voltage detection circuit, wherein the first voltage detection circuit and the second voltage detection circuit are provided at both ends of the switching circuit (25) respectively.
 
6. The charging apparatus (10) of any of claims 1 to 5, further comprising:

a load circuit connected with the power supply circuit (13) and the control chip (14) respectively; and

wherein the control chip (14) is further configured to control the load circuit to turn on if an output voltage of the power supply circuit (13) is less than a preset voltage threshold, and supply power for load devices of the load circuit through the power supply circuit (13), so as to maintain the stability of the power supply circuit (13).


 
7. The charging apparatus (10) of claim 6, wherein the load circuit comprises:

a third switch transistor, wherein the third switch transistor has a control end connected with the control chip (14), an input end connected with the power supply circuit (13), and an output end grounded; and

a load resistor connected in series between the third switch transistor and ground.


 
8. The charging apparatus (10) of any of claims 1 to 7, wherein the control chip (14) is configured to perform at least one of the following operations through the data line of the USB interface (12):

short connecting a D+ data line and a D- data line of the USB interface (12);

exchanging data with the data line of the USB interface (12) via a General Purpose Input/output, GPIO, port; and

exchanging data in the format of Universal Asynchronous Receiver Transmitter, UART, with the mobile terminal.


 
9. The charging apparatus (10) of any of claims 1 to 8, wherein the control chip (14) is further connected with an ID line of the USB interface (12), and the controller is further configured to identify, through the ID line, whether a charging data line between the charging apparatus (10) and the mobile terminal is a data line that support quick charging.
 
10. The charging apparatus (10) of any of claims 1 to 9, wherein the power supply circuit comprises:

a transformer;

an input circuit located on a primary side of a coil of the transformer, wherein the input circuit comprises a controller configured to control the voltage of the input circuit;

an output circuit located on a secondary side of the coil of the transformer; and

wherein the power adjusting circuit (18) comprises a potentiometer and a first operational amplifier, wherein the potentiometer is connected with the control chip (14) and the output circuit respectively, connected with the controller of the input circuit through the first operational amplifier, and is configured to adjust an output voltage of the power supply circuit (13) through the controller.


 
11. The charging apparatus (10) of any of claims 1 to 10, wherein the current detection circuit (15) comprises:

a second operational amplifier, wherein the second operational amplifier has two input ends connected in parallel at both ends of a current sense resistor of the power supply circuit (13) and an output end connected with the ADC (17); and

wherein the second operational amplifier is configured to detect an output current of the power supply circuit (13) through a voltage drop across both ends of the current sense resistor.


 
12. The charging apparatus of any of claims 1 to 11, wherein the control chip, the current detection circuit, the ADC, the voltage detection circuit, and the power adjusting circuit are located in the same integrated circuit.
 


Ansprüche

1. Ladevorrichtung (10) für ein mobiles Endgerät, die Folgendes umfasst:

ein Eingangsende (11), das zum Empfangen eines Wechselstroms ausgebildet ist;

eine Universal Serial Bus (USB)-Schnittstelle (12), die so ausgebildet ist, dass sie die Ladevorrichtung (10) mit dem mobilen Endgerät verbindet;

eine Stromversorgungsschaltung (13), die mit dem Eingangsende (11) bzw. der USB-Schnittstelle (12) verbunden ist, wobei die Stromversorgungsschaltung (13) so ausgebildet ist, dass sie den über das Eingangsende (11) eingegebenen Wechselstrom in einen Gleichstrom umwandelt und eine Ausgangsleistung der Stromversorgungsschaltung (13) über die USB-Schnittstelle (12) an das mobile Endgerät überträgt, um eine Batterie des mobilen Endgerätes zu laden;

einen Steuerchip (14), der mit der USB-Schnittstelle (12) verbunden ist, wobei der Steuerchip (14) so ausgebildet ist, dass er Daten mit dem mobilen Endgerät über eine Datenleitung der USB-Schnittstelle (12) austauscht;

eine Stromerfassungsschaltung (15), die mit der Stromversorgungsschaltung (13) verbunden und so ausgebildet ist, dass sie einen aktuellen Ausgangsstrom der Stromversorgungsschaltung (13) erfasst;

eine Spannungserfassungsschaltung (16), die mit der Stromversorgungsschaltung (13) verbunden und so ausgebildet ist, dass sie eine aktuelle Ausgangsspannung der Stromversorgungsschaltung (13) erfasst;

einen Analog-Digital-Wandler (ADC) (17), der jeweils mit der Stromerfassungsschaltung (15), der Spannungserfassungsschaltung (16) und dem Steuerchip (14) verbunden ist, wobei die Stromerfassungsschaltung (15) und die Spannungserfassungsschaltung (16) so ausgebildet sind, dass sie dem Steuerchip (14) den Stromwert des aktuellen Ausgangsstroms bzw. den Spannungswert der aktuellen Ausgangsspannung über den ADC bereitstellen, wobei der ADC (17) mit einem Datenleitungspin der USB-Schnittstelle (12) verbunden und so ausgebildet ist, dass er einen Spannungswert des Datenleitungspins erfasst und den Spannungswert des Datenleitungspins an den Steuerchip (14) überträgt; und

eine Leistungsregelschaltung (18), die mit dem Steuerchip (14) bzw. der Stromversorgungsschaltung (13) verbunden und so ausgebildet ist, dass sie eine Ausgangsleistung der Stromversorgungsschaltung (13) basierend auf der Steuerung des Steuerchips (14) einstellt,

wobei der Steuerchip (14) ferner so ausgebildet ist, dass er die Leistungsregelschaltung (18) steuert, um eine Ausgangsleistung der Leistungsversorgungsschaltung (13) entsprechend dem Spannungswert des Datenleitungspins einzustellen;

eine Auswahlschaltung (29), wobei die Auswahlschaltung (29) ein erstes Eingangsende, das mit dem Steuerchip (14) verbunden ist, ein zweites Eingangsende, das direkt mit dem ADC (17) verbunden ist, ohne den Steuerchip (14) zu passieren, und ein Ausgangsende, das mit der Leistungsregelschaltung (18) verbunden ist, aufweist; wobei die Auswahlschaltung (29) Folgendes umfasst:

eine Umschalt-Schaltung, die ausgebildet ist, um zu bestimmen, ob ein Ausgangsstrom der Stromversorgungsschaltung (13) durch den ADC (17) oder den Steuerchip (14) gesteuert wird, und um zwischen dem Steuerchip (14) und dem ADC (17) umzuschalten, um den Ausgangsstrom der Stromversorgungsschaltung zu steuern;

dadurch gekennzeichnet, dass:

die Umschalt-Schaltung (25) in der Stromversorgungsschaltung (13) in Reihe geschaltet und mit dem Steuerchip (14) verbunden ist; und

wobei der Steuerchip (14) ferner so ausgebildet ist, dass er das EIN/AUS einer Ladeschaltung zwischen der Ladevorrichtung (10) und dem mobilen Endgerät über die Umschalt-Schaltung (25) steuert;

wobei die Ladeschaltung (10) ferner eine Temperaturerfassungsschaltung (31) umfasst, die mit dem ADC (17) verbunden und so ausgebildet ist, dass sie eine erfasste Temperatur über den ADC (17) an den Steuerchip (14) übermittelt; und

wobei der Steuerchip (14) ferner so ausgebildet ist, dass er das EIN/AUS der Umschalt-Schaltung (25) in Abhängigkeit von der durch die Temperaturerfassungsschaltung (31) erfassten Temperatur steuert.


 
2. Ladevorrichtung (10) nach Anspruch 1, wobei die Umschalt-Schaltung (25) Folgendes umfasst:

eine Schalttransistoranordnung (30), die in der Stromversorgungsschaltung (13) in Reihe geschaltet ist;

eine Ladungspumpe (31), wobei ein Ende der Ladungspumpe (31) mit einem Steuerende der Schalttransistoranordnung (30) und ein anderes Ende mit dem Steuerchip (14) verbunden ist; und

wobei der Steuerchip (14) ferner so ausgebildet ist, dass er eine Zielsteuerspannung durch die Ladungspumpe (31) erzeugt und die Schalttransistoranordnung (30) so steuert, dass sie sich einschaltet, wobei die Zielsteuerspannung größer ist als eine Arbeitsspannung der Ladevorrichtung (10).


 
3. Ladevorrichtung (10) nach Anspruch 2, wobei die Schalttransistoranordnung (30) einen ersten Schalttransistor und einen zweiten Schalttransistor aufweist, wobei der erste Schalttransistor und der zweite Schalttransistor in der Stromversorgungsschaltung (13) in Reihe geschaltet und Rücken an Rücken angeordnet sind.
 
4. Ladevorrichtung (10) nach Anspruch 1, wobei die Temperaturerfassungsschaltung (31) Folgendes umfasst:

einen Temperatursensor, der mit dem ADC (17) verbunden ist; und

einen Widerstand mit negativem Temperaturkoeffizienten, wobei der Widerstand mit negativem Temperaturkoeffizienten an einem Ende mit dem Temperatursensor verbunden und am anderen Ende geerdet ist.


 
5. Ladevorrichtung (10) nach einem der Ansprüche 1 bis 4, wobei die Spannungserfassungsschaltung (16) eine erste Spannungserfassungsschaltung und eine zweite Spannungserfassungsschaltung umfasst, wobei die erste Spannungserfassungsschaltung und die zweite Spannungserfassungsschaltung jeweils an beiden Enden der Umschalt-Schaltung (25) vorgesehen sind.
 
6. Ladevorrichtung (10) nach einem der Ansprüche 1 bis 5, die ferner Folgendes umfasst:

eine Lastschaltung, die mit der Stromversorgungsschaltung (13) bzw. dem Steuerchip (14) verbunden ist; und

wobei der Steuerchip (14) ferner so ausgebildet ist, dass er die Lastschaltung so steuert, dass sie sich einschaltet, wenn eine Ausgangsspannung der Stromversorgungsschaltung (13) unter einem voreingestellten Spannungsschwellenwert liegt, und Strom für Lastvorrichtungen der Lastschaltung über die Stromversorgungsschaltung (13) liefert, um die Stabilität der Stromversorgungsschaltung (13) aufrechtzuerhalten.


 
7. Ladevorrichtung (10) nach Anspruch 6, wobei die Lastschaltung Folgendes umfasst:

einen dritten Schalttransistor, wobei der dritte Schalttransistor ein Steuerende, das mit dem Steuerchip (14) verbunden ist, ein Eingangsende, das mit der Stromversorgungsschaltung (13) verbunden ist, und ein geerdetes Ausgangsende aufweist; und

einen Lastwiderstand, der in Reihe zwischen dem dritten Schalttransistor und Masse geschaltet ist.


 
8. Ladevorrichtung (10) nach einem der Ansprüche 1 bis 7, wobei der Steuerchip (14) so ausgebildet ist, dass er mindestens eine der folgenden Operationen über die Datenleitung der USB-Schnittstelle (12) durchführt:

kurzes Verbinden einer D+ Datenleitung und einer D-Datenleitung der USB-Schnittstelle (12);

Austauschen von Daten mit der Datenleitung der USB-Schnittstelle (12) über einen General Purpose Input/Output (GPIO)-Anschluss; und

Austauschen von Daten im Format Universal Asynchronous Receiver Transmitter (UART) mit dem mobilen Endgerät.


 
9. Ladevorrichtung (10) nach einem der Ansprüche 1 bis 8, wobei der Steuerchip (14) ferner mit einer ID-Leitung der USB-Schnittstelle (12) verbunden ist und der Controller ferner so ausgebildet ist, dass er über die ID-Leitung erkennt, ob eine Ladedatenleitung zwischen der Ladevorrichtung (10) und dem mobilen Endgerät eine Datenleitung ist, die Schnellladung unterstützt.
 
10. Ladevorrichtung (10) nach einem der Ansprüche 1 bis 9, wobei die Stromversorgungsschaltung Folgendes umfasst:

einen Transformator;

eine Eingangsschaltung, die sich auf einer Primärseite einer Spule des Transformators befindet, wobei die Eingangsschaltung einen Controller umfasst, der so ausgebildet ist, dass er die Spannung der Eingangsschaltung steuert;

eine Ausgangsschaltung, die sich auf der Sekundärseite der Spule des Transformators befindet; und

wobei die Leistungsregelschaltung (18) ein Potentiometer und einen ersten Operationsverstärker umfasst, wobei das Potentiometer mit dem Steuerchip (14) bzw. der Ausgangsschaltung verbunden ist, über den ersten Operationsverstärker mit dem Controller der Eingangsschaltung verbunden und so ausgebildet ist, dass es eine Ausgangsspannung der Stromversorgungsschaltung (13) über den Controller einstellt.


 
11. Ladevorrichtung (10) nach einem der Ansprüche 1 bis 10, wobei die Stromerfassungsschaltung (15) Folgendes umfasst:

einen zweiten Operationsverstärker, wobei der zweite Operationsverstärker zwei Eingangsenden hat, die parallel an beiden Enden eines Strommesswiderstands der Stromversorgungsschaltung (13) angeschlossen sind, und ein Ausgangsende, das mit dem ADC (17) verbunden ist; und

wobei der zweite Operationsverstärker so ausgebildet ist, dass er einen Ausgangsstrom der Stromversorgungsschaltung (13) durch einen Spannungsabfall an beiden Enden des Strommesswiderstands erfasst.


 
12. Ladevorrichtung nach einem der Ansprüche 1 bis 11, wobei der Steuerchip, die Stromerfassungsschaltung, der ADC, die Spannungserfassungsschaltung und die Leistungsregelschaltung in derselben integrierten Schaltung untergebracht sind.
 


Revendications

1. Appareil de recharge (10) d'un terminal mobile, comprenant :

une extrémité d'entrée (11), configurée pour recevoir un courant alternatif ;

une interface bus série universel, USB, (12), configurée pour connecter l'appareil de recharge (10) au terminal mobile ;

un circuit d'alimentation électrique (13) connecté à l'extrémité d'entrée (11) et l'interface USB (12) respectivement, dans lequel le circuit d'alimentation électrique (13) est configuré pour convertir le courant alternatif entré par le biais de l'extrémité d'entrée (11) en un courant continu et transmettre une puissance de sortie du circuit d'alimentation électrique (13) au terminal mobile par le biais de l'interface USB (12), afin de recharger une batterie du terminal mobile ;

une puce de commande (14) connectée à l'interface USB (12), dans lequel la puce de commande (14) est configurée pour échanger des données avec le terminal mobile par le biais d'une ligne de données de l'interface USB (12) ;

un circuit de détection de courant (15) connecté au circuit d'alimentation électrique (13) et configuré pour détecter un courant de sortie actuel du circuit d'alimentation électrique (13) ;

un circuit de détection de tension (16) connecté au circuit d'alimentation électrique (13) et configuré pour détecter une tension de sortie actuelle du circuit d'alimentation électrique (13) ;

un convertisseur analogique-numérique, ADC, (17) connecté au circuit de détection de courant (15), au circuit de détection de tension (16), et à la puce de commande (14) respectivement, dans lequel le circuit de détection de courant (15) et le circuit de détection de tension (16) sont configurés pour fournir à la puce de commande (14) la valeur de courant du courant de sortie actuel et la valeur de tension de la tension de sortie actuelle respectivement par le biais de l'ADC, dans lequel l'ADC (17) est connecté à une broche de ligne de données de l'interface USB (12), et est configuré pour acquérir une valeur de tension de la broche de ligne de données et transmettre la valeur de tension de la broche de ligne de données à la puce de commande (14) ; et

un circuit d'ajustement de puissance (18) connecté à la puce de commande (14) et au circuit d'alimentation électrique (13) respectivement et configuré pour ajuster une puissance de sortie du circuit d'alimentation électrique (13) sur la base de la commande de la puce de commande (14),
dans lequel la puce de commande (14) est en outre configurée pour commander le circuit d'ajustement de puissance (18) pour ajuster une puissance de sortie du circuit d'alimentation électrique (13) selon la valeur de tension de la broche de ligne de données ;

un circuit de sélection (29), dans lequel le circuit de sélection (29) a une première extrémité d'entrée connectée à la puce de commande (14), une seconde extrémité d'entrée connectée à l'ADC (17) directement sans passer à travers la puce de commande (14), et une extrémité de sortie connectée au circuit d'ajustement de puissance (18) ; dans lequel le circuit de sélection (29) comprend :

un circuit de commutation configuré pour déterminer le fait qu'un courant de sortie du circuit d'alimentation électrique (13) est commandé par l'ADC (17) ou la puce de commande (14) et commander la commutation entre la puce de commande (14) et l'ADC (17) pour commander le courant de sortie du circuit d'alimentation électrique ;

caractérisé en ce que :

le circuit de commutation (25) est connecté en série dans le circuit d'alimentation électrique (13) et connecté à la puce de commande (14) ; et

dans lequel la puce de commande (14) est en outre configuré pour commander la marche/l'arrêt d'un circuit de recharge entre l'appareil de recharge (10) et le terminal mobile par le biais du circuit de commutation (25) ;

dans lequel le circuit de recharge (10) comprend en outre un circuit de détection de température (31) connecté à l'ADC (17) et configuré pour transmettre une température détectée à la puce de commande (14) par le biais de l'ADC (17) ; et dans lequel

la puce de commande (14) est en outre configurée pour commander la marche/l'arrêt du circuit de commutation (25) selon la température détectée par le circuit de détection de température (31).


 
2. Appareil de recharge (10) selon la revendication 1, dans lequel le circuit de commutation (25) comprend :

un ensemble de transistors de commutation (30) connecté en série dans le circuit d'alimentation électrique (13),

une pompe de recharge (31), dans lequel la pompe de recharge (31) a une extrémité connectée à une extrémité de commande de l'ensemble de transistors de commutation (30) et une autre extrémité connectée à la puce de commande (14) ; et

la puce de commande (14) est en outre configurée pour générer une tension de commande cible par le biais de la pompe de recharge (31) et commander l'ensemble de transistors de commutation (30) pour se mettre en marche, dans lequel la tension de commande cible est supérieure à une tension de fonctionnement de l'appareil de recharge (10).


 
3. Appareil de recharge (10) selon la revendication 2, dans lequel l'ensemble de transistors de commutation (30) a un premier transistor de commutation et un deuxième transistor de commutation, dans lequel le premier transistor de commutation et le deuxième transistor de commutation sont connectés en série dans le circuit d'alimentation électrique (13) et disposés dos à dos.
 
4. Appareil de recharge (10) selon la revendication 1, dans lequel le circuit de détection de température (31) comprend :

un capteur de température connecté à l'ADC (17) ; et

une résistance à coefficient de température négatif, dans lequel la résistance à coefficient de température négatif a une extrémité connectée au capteur de température et une autre extrémité mise à la terre.


 
5. Appareil de recharge (10) selon l'une quelconque des revendications 1 à 4, dans lequel le circuit de détection de tension (16) comprend un premier circuit de détection de tension et un second circuit de détection de tension, dans lequel le premier circuit de détection de tension et le second circuit de détection de tension sont prévus aux deux extrémités du circuit de commutation (25) respectivement.
 
6. Appareil de recharge (10) selon l'une quelconque des revendications 1 à 5, comprenant en outre :

un circuit de charge connecté au circuit d'alimentation électrique (13) et à la puce de commande (14) respectivement ; et

dans lequel la puce de commande (14) est en outre configurée pour commander le circuit de charge pour se mettre en marche si une tension de sortie du circuit d'alimentation électrique (13) est inférieure à un seuil de tension prédéfini, et effectuer l'alimentation électrique à des dispositifs de charge du circuit de charge par l'intermédiaire du circuit d'alimentation électrique (13), afin de maintenir la stabilité du circuit d'alimentation électrique (13).


 
7. Appareil de recharge (10) selon la revendication 6, dans lequel le circuit de charge comprend :

un troisième transistor de commutation, dans lequel le troisième transistor de commutation a une extrémité de commande connectée à la puce de commande (14), une extrémité d'entrée connectée au circuit d'alimentation électrique (13), et une extrémité de sortie mise à la terre ; et

une résistance de charge connectée en série entre le troisième transistor de commutation et la terre.


 
8. Appareil de recharge (10) selon l'une quelconque des revendications 1 à 7, dans lequel la puce de commande (14) est configurée pour réaliser au moins une des opérations suivantes par le biais de la ligne de données de l'interface USB (12) :

la connexion en court-circuit d'une ligne de données D+ et d'une ligne de données D- de l'interface USB (12) ;

l'échange de données avec la ligne de données de l'interface USB (12) par l'intermédiaire d'un port d'entrée/de sortie à usage général, GPIO, ; et

l'échange de données dans le format de récepteur-transmetteur asynchrone universel, UART, avec le terminal mobile.


 
9. Appareil de recharge (10) selon l'une quelconque des revendications 1 à 8, dans lequel la puce de commande (14) est en outre connectée à une ligne d'ID de l'interface USB (12), et l'organe de commande est en outre configuré pour identifier, par le biais de la ligne d'ID, le fait qu'une ligne de données de recharge entre l'appareil de recharge (10) et le terminal mobile est ou non une ligne de données qui supporte une recharge rapide.
 
10. Appareil de recharge (10) selon l'une quelconque des revendications 1 à 9, dans lequel le circuit d'alimentation électrique comprend :

un transformateur ;

un circuit d'entrée situé sur un primaire d'une bobine du transformateur, dans lequel le circuit d'entrée comprend un organe de commande configuré pour commander la tension du circuit d'entrée ;

un circuit de sortie situé sur un secondaire de la bobine du transformateur ; et

dans lequel le circuit d'ajustement de puissance (18) comprend un potentiomètre et un premier amplificateur opérationnel, dans lequel le potentiomètre est connecté à la puce de commande (14) et au circuit de sortie respectivement, connecté à l'organe de commande du circuit d'entrée par le biais du premier amplificateur opérationnel, et est configuré pour ajuster une tension de sortie du circuit d'alimentation électrique (13) par le biais de l'organe de commande.


 
11. Appareil de recharge (10) selon l'une quelconque des revendications 1 à 10, dans lequel le circuit de détection de courant (15) comprend :

un second amplificateur opérationnel, dans lequel le second amplificateur opérationnel a deux extrémités d'entrée connectées en parallèle au niveau des deux extrémités d'une résistance détectrice de courant du circuit d'alimentation électrique (13) et une extrémité de sortie connectée à l'ADC (17) ; et

dans lequel le second amplificateur opérationnel est configuré pour détecter un courant de sortie du circuit d'alimentation électrique (13) par le biais d'une chute de tension sur les deux extrémités de la résistance détectrice de courant.


 
12. Appareil de recharge selon l'une quelconque des revendications 1 à 11, dans lequel la puce de commande, le circuit de détection de courant, l'ADC, le circuit de détection de tension, et le circuit d'ajustement de puissance sont situés dans le même circuit intégré.
 




Drawing








Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description