(19)
(11)EP 3 197 021 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 15842579.3

(22)Date of filing:  10.09.2015
(51)Int. Cl.: 
H02K 3/52  (2006.01)
H02K 3/34  (2006.01)
G01D 5/20  (2006.01)
(86)International application number:
PCT/JP2015/004618
(87)International publication number:
WO 2016/042745 (24.03.2016 Gazette  2016/12)

(54)

RESOLVER STATOR

DREHMELDERSTATOR

STATOR DE TRIGONOMÈTRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.09.2014 JP 2014191024

(43)Date of publication of application:
26.07.2017 Bulletin 2017/30

(73)Proprietor: Japan Aviation Electronics Industry, Ltd.
Tokyo 150-0043 (JP)

(72)Inventor:
  • OZAKI, Yoshiaki
    Tokyo 150-0043 (JP)

(74)Representative: Regi, François-Xavier et al
Chez OPILEX 32 rue Victor Lagrange
69007 Lyon
69007 Lyon (FR)


(56)References cited: : 
JP-A- 2003 207 370
JP-A- 2009 131 033
JP-A- 2009 264 892
JP-B1- 5 414 918
JP-A- 2003 333 781
JP-A- 2009 264 892
JP-A- 2013 198 268
JP-U- S6 132 778
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a resolver stator.

    Background Art



    [0002] As one of this kind of technique, Patent Literature 1 discloses a stator 100 for a rotor inside-rotatable magnetic generator in which a magnetic rotor is disposed so as to rotate inside the stator 100 as shown in Fig. 12 of the present application. In this stator 100, a connecting wire 102 for connecting adjacent power-generating coils 101 to each other is disposed along an inner-peripheral surface 104 of a ring-shaped yoke part 103. Further, in order to prevent the connecting wire 102 from being broken due to vibrations, the connecting wire 102 is bonded and fixed to the inner-peripheral surface 104 of the yoke part 103 by an adhesive 105 that is applied so as to cover the connecting wire 102.

    Citation List


    Patent Literature



    [0003] 

    Patent Literature 1: Japanese Unexamined Patent Application Publication No. H09-121520.

    Patent document JP2009264892A discloses a resolver stator according to the preamble of claim 1.


    Summary of Invention


    Technical Problem



    [0004] It is conceivable that even when the connecting wire 102 is disposed along the inner-peripheral surface 104 of the yoke part 103 as shown in the aforementioned Patent Literature 1 as well as when the connecting wire 102 is disposed on an end face of the yoke part 103 in the axial direction thereof unlike in the aforementioned Patent Literature 1, a wire that has already been wound could be accidentally cut off by the tip of a winding machine during a winding process, and the connecting wire 102 could be touched by the hand when an operator holds the stator 100, resulting in damage of the connecting wire 102.

    [0005] To cope with this, in the aforementioned Patent Literature 1, the adhesive 105 is applied to the connecting wire 102 so as to cover the connecting wire 102, so that when the operator holds the stator 100, the operator cannot directly touch the connecting wire 102 by the hand. However, since this structure requires the process for applying the adhesive 105, the manufacturing cost is high.

    [0006] An object of the present invention is to provide a technique for preventing an operator from touching a connecting wire directly by the hand when the operator holds a resolver stator.

    Solution to Problem



    [0007] The present invention provides a resolver stator according to claim 1.

    [0008] Further aspects of the invention are defined by the dependent claims.

    Advantageous Effects of Invention



    [0009] According to the present invention, it is possible to prevent an operator from touching a connecting wire directly by the hand when the operator holds a resolver stator.

    Brief Description of Drawings



    [0010] 

    Fig. 1 is a perspective view of a resolver stator (first exemplary embodiment);

    Fig. 2 is a perspective view of the resolver stator as viewed at a different angle (first exemplary embodiment);

    Fig. 3 is a bottom view of the resolver stator (first exemplary embodiment);

    Fig. 4 is a developed view of the resolver stator (first exemplary embodiment);

    Fig. 5 is an enlarged view of a part A in Fig. 1 (first exemplary embodiment);

    Fig. 6 is an enlarged view of a part B in Fig. 1 (first exemplary embodiment);

    Fig. 7 is an enlarged view of a part C in Fig. 2 (first exemplary embodiment);

    Fig. 8 is an enlarged view of a part D in Fig. 2 (first exemplary embodiment);

    Fig. 9 is an enlarged view of a part E in Fig. 3 (first exemplary embodiment);

    Fig. 10 is a cross section taken along a line X-X in Fig. 4 (first exemplary embodiment);

    Fig. 11 is a cross section corresponding to Fig. 10 (second exemplary embodiment); and

    Fig. 12 is a drawing corresponding to Fig. 6 of Patent Literature 1.


    Description of Embodiments


    (First Exemplary Embodiment)



    [0011] A first exemplary embodiment is explained hereinafter with reference to Figs. 1 to 10.

    [0012] Fig. 1 shows a perspective view of a resolver stator 1 as viewed from the front side thereof and Fig. 2 shows a perspective view of the resolver stator 1 as viewed from the rear side thereof. Further, Fig. 3 shows a bottom view of the resolver stator 1. Further, a resolver rotor 2 is indicated by chain double-dashed lines in Fig. 1.

    [0013] As shown in Fig. 1, a resolver 3 is used for detecting a rotation of an output shaft of, for example, an engine or a motor and includes the resolver rotor 2 fixed to the output shaft and the ring-shaped resolver stator 1 disposed so as to surround the resolver rotor 2.

    [0014] As shown in Figs. 1 to 3, the resolver stator 1 includes a stator core 4, an insulator 5, a plurality of stator windings 6, and a terminal strip 7.

    [0015] As shown in Figs. 1 and 2, the stator core 4 includes a ring-shaped stator core main body 8 and a plurality of tooth parts 9 protruding radially inward from the stator core main body 8. The plurality of tooth parts 9 are arranged at regular intervals in the circumferential direction.

    [0016] The insulator 5 is made of a resin that is insert-molded into the stator core 4 and is provided to mainly ensure electrical insulation between the stator core 4 and the plurality of stator windings 6. Specific shapes of the insulator 5 will be described later.

    [0017] As shown in Fig. 3, the plurality of stator windings 6 include a plurality of coils 10 and a plurality of connecting wires 11. Each of the coils 10 is formed on a respective one of the tooth parts 9 by winding the plurality of stator windings 6 around the one of the tooth parts 9. Each of the connecting wires 11 electrically connects a plurality of coils 10 with each other. For example, each of the connecting wires 11 electrically connects two coils 10 that are adjacent to each other in the circumferential direction. In this exemplary embodiment, for the sake of explanation, a plurality of connecting wires 11 are disposed between two coils 10 that are adjacent to each other in the circumferential direction. A specific wiring of the connecting wires 11 will be described later.

    [0018] As shown in Fig. 1, the terminal strip 7 is a part for holding ends of the plurality of stator windings 6 in order to externally output detection signals generated by the resolver stator 1. The terminal strip 7 includes a plurality of output terminals 12 to which the ends of the plurality of stator windings 6 are connected respectively, and a terminal holding part 13 for holding the plurality of output terminals 12 by means of insert-molding. The terminal holding part 13 is integrally formed with the insulator 5.

    [0019] Next, the shape of the insulator 5 and the arrangement of the connecting wires 11 are explained in detail. Fig. 4 shows a developed view of the resolver stator 1 as viewed from the inside. Fig. 5 shows an enlarged view of a part A in Fig. 1. Fig. 6 shows an enlarged view of a part B in Fig. 1. Fig. 7 shows an enlarged view of a part C in Fig. 2. Fig. 8 shows an enlarged view of a part D in Fig. 2. Fig. 9 shows an enlarged view of a part E in Fig. 3. Fig. 10 shows a cross section taken along a line X-X in Fig. 4. Note that for the sake of explanation, the coils 10 are not drawn in Figs. 5 to 7 and the connecting wires 11 are not drawn in Fig. 9.

    [0020] As shown in Figs. 1 to 3, the insulator 5 is generally formed into a ring shape along the stator core 4. As shown in Figs. 4 to 10, the insulator 5 includes an insulator main body 20, a plurality of protruding parts 21, a plurality of tooth insulating parts 22, and a plurality of holding protrusions 23.

    [0021] As shown in Figs. 5 and 6, each of the tooth insulating parts 22 is formed so as to cover a respective one of the tooth parts 9 and ensures electrical insulation between the coil 10 (not shown) and the tooth part 9.

    [0022] As shown in Fig. 10, the insulator main body 20 is a part that is formed into a ring shape so as to cover an inner-peripheral edge 24 of the ring-shaped stator core main body 8. The insulator main body 20 has an insulator main body inner surface 25 that faces radially inward between two of the tooth parts 9 adjacent to each other in the circumferential direction. As shown in Figs. 7 to 9, the insulator main body inner surface 25 includes a first insulator main body inner surface 26 and a second insulator main body inner surface 27. The first and second insulator main body inner surfaces 26 and 27 are formed so that they are adjacent to each other in the circumferential direction. The first and second insulator main body inner surfaces 26 and 27 are in contact with each other. Each of the first and second insulator main body inner surfaces 26 and 27 is formed as a plane surface. Each of the first and second insulator main body inner surfaces 26 and 27 generally extends in a straight manner in the circumferential direction as viewed in the axial direction of the resolver stator 1. That is, the first and second insulator main body inner surfaces 26 and 27 are not on the same plane as each other. The first and second insulator main body inner surfaces 26 and 27 are in contract with each other at a certain angle. As shown in Fig. 9, an angle θ1 between the first and second insulator main body inner surfaces 26 and 27 is smaller than 180 degrees as viewed in the axial direction. In this exemplary embodiment, the angle θ1 is about 135 degrees. The intersection 28 of the first and second insulator main body inner surfaces 26 and 27 extends in the axial direction.

    [0023] Further, as shown in Fig. 4, the insulator main body 20 has a main body top surface 30 and a main body bottom surface 31. As shown in Figs. 5 and 6, a plurality of connecting wire holding protrusions 32 and a plurality of connecting wire protection walls 33 are formed on the main body top surface 30 of the insulator main body 20. Specifically, as shown in Fig. 5, two connecting wire holding protrusions 32 are formed near each of the tooth parts 9 and one connecting wire protection wall 33 is formed radially outward with respect to the two connecting wire holding protrusions 32.

    [0024] As shown in Figs. 5 to 8 and Fig. 10, the plurality of protruding parts 21 are formed so as to protrude radially inward from the insulator main body 20. Specifically, as shown in Fig. 10, the plurality of protruding parts 21 protrude from the insulator main body 20 in such a manner that they protrude radially inward beyond the insulator main body inner surface 25 of the insulator main body 20. As shown in Fig. 4, two protruding parts 21 protrude radially inward from the insulator main body 20 between two of the tooth parts 9 that are adjacent to each other in the circumferential direction. The two protruding parts 21 are formed so that they are adjacent to each other in the circumferential direction. The two protruding parts 21 are in contact with each other. As shown in Fig. 9, which is a bottom view, a protruding part 21 formed on the upper side of the first insulator main body inner surface 26 is referred to as a first protruding part 35 and a protruding part 21 formed on the upper side of the second insulator main body inner surface 27 is referred to as a second protruding part 36 in the following explanation. As shown in Fig. 9, the first and second protruding parts 35 and 36 generally extend in a straight manner in the circumferential direction as viewed in the axial direction of the resolver stator 1. As shown in Fig. 5, the first protruding part 35 has a first protruding part inner surface 40 facing radially inward and a first protruding part bottom surface 41 facing downward in the axial direction. The first protruding part inner surface 40 and the first protruding part bottom surface 41 are both formed in plane surfaces. As shown in Fig. 6, the second protruding part 36 has a second protruding part inner surface 42 facing radially inward and a second protruding part bottom surface 43 facing downward in the axial direction. The second protruding part inner surface 42 and the second protruding part bottom surface 43 are both formed in plane surfaces. As shown in Fig. 9, an angle θ2 between the first and second protruding part inner surfaces 40 and 42 is smaller than 180 degrees. In this exemplary embodiment, the angle θ2 is equal to the angle θ1 and is about 135 degrees. As shown in Fig. 5, a first access passage 46 (access passage) is formed between an end 45 of the first protruding part 35 and the tooth insulating part 22. The first access passage 46 is formed as a groove that extends in the axial direction and is opened radially inward. Similarly, as shown in Fig. 6, a second access passage 48 is formed between an end 47 of the second protruding part 36 and the tooth insulating part 22. The second access passage 48 is formed as a groove that extends in the axial direction and is opened radially inward.

    [0025] As shown in Fig. 7, each of the holding protrusions 23 is formed so as to protrude downward in the axial direction from a respective one of the protruding parts 21. Specifically, each of the holding protrusions 23 is disposed near the intersection 28 of the first and second insulator main body inner surfaces 26 and 27. To be more specific, each of the holding protrusions 23 is formed so as to be opposed to the intersection 28 in the radial direction of the resolver stator 1. Each of the holding protrusions 23 is disposed away from the insulator main body inner surface 25. Each of the holding protrusions 23 is disposed radially inward with respect to the insulator main body inner surface 25. Each of the holding protrusions 23 is opposed to the insulator main body inner surface 25 in the radial direction of the resolver stator 1.

    [0026]  Next, the connecting wires 11 are explained.

    [0027] Wiring of the connecting wires 11 is performed with an ordinary automatic winding machine. That is, after the stator winding 6 is wound around the tooth insulating part 22 to form a coil 10, as shown in Fig. 5, the connecting wire 11 from the coil 10 is first hooked on the connecting wire holding protrusion 32 and then guided to the underside of the first protruding part 35 through the first access passage 46. Next, as shown in Fig. 7, the connecting wire 11 is wired along the first protruding part bottom surface 41 of the first protruding part 35, disposed between the holding protrusion 23 and the intersection 28, wired along the second protruding part bottom surface 43 of the second protruding part 36, and as shown in Fig. 6, wired to the opposite side of the second protruding part 36 through the second access passage 48. Then, after the connecting wire 11 is hooked on the connecting wire holding protrusion 32, the connecting wire 11 is wound around the next tooth insulating part 22. By repeating the above-described procedure, a plurality of coils 10 are formed in respective tooth parts 9 and the plurality of coils 10 are electrically connected to one another through the connecting wires 11.

    [0028] The above-described first exemplary embodiment has the following features (or advantages).

    [0029] 
    1. (1) A resolver stator 1 includes: the stator core 4 including the ring-shaped stator core main body 8, and the plurality of tooth parts 9 protruding radially inward from the stator core main body 8; the insulator 5 disposed radially inward with respect to the stator core main body 8; the plurality of coils 10 wound around the plurality of tooth parts 9 respectively; and the connecting wire 11 configured to electrically connect the plurality of coils 10 to one another. The insulator 5 includes the insulator main body 20 having the insulator main body inner surface 25 facing radially inward, and the protruding part 21 protruding radially inward beyond the insulator main body inner surface 25. As shown in Fig. 10, the connecting wire 11 is disposed so as to be opposed to the protruding part 21 in the axial direction (a direction parallel to the rotation axis of the resolver stator 1) and also opposed to the insulator main body inner surface 25 in the radial direction (a direction perpendicular to the rotation axis). By the above-described configuration, it is possible to prevent the operator from touching the connecting wire 11 directly by the hand when the operator holds the resolver stator 1. Therefore, it is possible to prevent the connecting wire 11 from being broken when the resolver stator 1 is handled.
      In other words, the connecting wire 11 is wired along a step P formed by the insulator main body inner surface 25 of the insulator main body 20 and the protruding part 21. By the above-described configuration, it is possible to prevent the operator from touching the connecting wire 11 directly by the hand when the operator holds the resolver stator 1. Therefore, it is possible to prevent the connecting wire 11 from being broken when the resolver stator 1 is handled.
    2. (2) Further, as shown in Fig. 10, the connecting wire 11 touches the protruding part 21 in the axial direction. By the above-described configuration, it is possible to prevent the operator from touching the connecting wire 11 directly by the hand in a more reliable manner when the operator holds the resolver stator 1.
    3. (3) Further, as shown in Fig. 7, the insulator main body inner surface 25 is formed as the plane surface. By the above-described configuration, compared to the case where the insulator main body inner surface 25 is curved in a convex shape radially outward, it is possible to prevent the connecting wire 11 from floating away from the insulator main body inner surface 25.
    4. (4) Further, as shown in Fig. 7, the insulator 5 further includes the holding protrusion 23 protruding from the protruding part 21 in the axial direction. The connecting wire 11 is disposed between the insulator main body inner surface 25 and the holding protrusion 23. By the above-described configuration, it is possible to effectively prevent the connecting wire 11 from floating away from the insulator main body inner surface 25.
    5. (5) Further, as shown in Figs. 5 and 6, the insulator 5 further includes the first access passage 46 or the second access passage 48 as an access passage for allowing the connecting wire 11 to be wired to the opposite side of the protruding part 21 without getting over the protruding part 21. By the above-described configuration, the connecting wire 11 can be wired to the opposite side of the protruding part 21 without floating the connecting wire 11 radially inward.
      In other words, the insulator 5 further includes the first access passage 46 or the second access passage 48 as an access passage for allowing the connecting wire 11 to be wired beyond the protruding part 21 without getting over the protruding part 21. By the above-described configuration, the connecting wire 11 can be wired to the opposite side of the protruding part: 21 without floating the connecting wire 11 radially inward.
      One of the first and second access passages 46 and 48 can be omitted.
    6. (6) Further, as shown in Figs. 5 and 6, the first access passage 46 and the second access passage 48 are formed as two access passages. Both ends (the ends 50 and 51) of the connecting wire 11 are wired to the opposite side of the protruding part 21 through the first and second access passages 46 and 48. By the above-described configuration, both ends (ends 50 and 51) of the connecting wire 11 can be wired to the opposite side of the protruding part 21.
    7. (7) Further, as shown in Fig. 9, the insulator main body inner surface 25 has the first insulator main body inner surface 26 and the second insulator main body inner surface 27 that are adjacent to each other in the circumferential direction. Each of the first and second insulator main body inner surfaces 26 and 27 is formed as a plane surface. The angle θ1 between the first and second insulator main body inner surfaces 26 and 27 is smaller than 180 degrees. By the above-described configuration, compared to the case where the insulator main body inner surface 25 is formed as a single plane surface, a large space S can be secured near the base of each of the tooth parts 9, thus making it easier to wind the stator winding 6 around each of the tooth parts 9 with the automatic winding machine.
    8. (8) Further, as shown in Figs. 7 and 8, the insulator 5 further includes the holding protrusion 23 protruding from the protruding part 21 in the axial direction. The connecting wire 11 is disposed between the insulator main body inner surface 25 and the holding protrusion 23. By the above-described configuration, it is possible to effectively prevent the connecting wire 11 from floating away from the insulator main body inner surface 25.
    9. (9) Further, as shown in Fig. 9, the holding protrusion 23 is disposed near the intersection 28 of the first and second insulator main body inner surfaces 26 and 27. By the above-described configuration, it is possible to effectively prevent the connecting wire 11 from floating away from the insulator main body inner surface 25 near the intersection 28 of the first and second insulator main body inner surfaces 26 and 27.
      Note that in practice, the connecting wire 11 is wired with some degree of tensile strength in Fig. 9. Therefore, although the connecting wire 11 is disposed away from the first and second insulator main body inner surfaces 26 and 27, it is tightly in contact with the outer-peripheral surface of the holding protrusion 23. Therefore, the connecting wire 11 is effectively prevented from projecting radially inward beyond the first protruding part inner surface 40 or the second protruding part inner surface 42.
      Note that in the case where a curved surface or another plane surface is interposed between the first and second insulator main body inner surfaces 26 and 27, the holding protrusion 23 is preferably disposed near an imaginary intersection of the first and second insulator main body inner surfaces 26 and 27. Even in such a case, it is possible to effectively prevent the connecting wire 11 from floating away from the insulator main body inner surface 25 near the imaginary intersection of the first and second insulator main body inner surfaces 26 and 27.
    10. (10) Further, as shown in Fig. 10, the resolver stator 1 includes the plurality of connecting wires 11. The plurality of connecting wires 11 are disposed so as to be opposed to the protruding part 21 in the axial direction and also opposed to the insulator main body inner surface 25 in the radial direction, while being piled up on each other in a bundle-like manner, between two of the coils 10 that are adjacent to each other in the circumferential direction.

    (Second Exemplary Embodiment)



    [0030] Next, a second exemplary embodiment is explained with reference to Fig. 11. The following explanation is given with particular emphasis on differences between this exemplary embodiment and the above-described first exemplary embodiment, and duplicated explanations are omitted.

    [0031] In this exemplary embodiment, the insulator 5 further includes an additional protruding part 60 protruding radially inward beyond the protruding part 21. One of the plurality of connecting wires 11 is disposed so as to be opposed to the protruding part 21 in the axial direction and also opposed to the insulator main body inner surface 25 in the radial direction between two of the coils 10 that are adjacent to each other in the circumferential direction. Another of the plurality of connecting wires 11 is disposed so as to be opposed to the additional protruding part 60 in the axial direction and also opposed to the protruding part 21 in the radial direction. By the above-described configuration, it is possible to arrange the plurality of connecting wires 11 away from each other.

    [0032] This application is based upon and claims the benefit of priority from Japanese patent application No.2014-191024, filed on September 19, 2014.

    Reference Signs List



    [0033] 

    1 RESOLVER STATOR

    2 RESOLVER ROTOR

    3 RESOLVER

    4 STATOR CORE

    5 INSULATOR

    6 STATOR WINDING

    7 TERMINAL STRIP

    8 STATOR CORE MAIN BODY

    9 TOOTH PART

    10 COIL

    11 CONNECTING WIRE

    12 OUTPUT TERMINAL

    13 TERMINAL HOLDING PART

    20 INSULATOR MAIN BODY

    21 PROTRUDING PART

    22 TOOTH INSULATING PART

    23 HOLDING PROTRUSION

    24 INNER-PERIPHERAL EDGE

    25 INSULATOR MAIN BODY INNER SURFACE

    26 FIRST INSULATOR MAIN BODY INNER SURFACE (INSULATOR MAIN BODY INNER SURFACE)

    27 SECOND INSULATOR MAIN BODY INNER SURFACE (INSULATOR MAIN BODY INNER SURFACE)

    28 INTERSECTION

    30 MAIN BODY TOP SURFACE

    31 MAIN BODY BOTTOM SURFACE

    32 CONNECTING WIRE HOLDING PROTRUSION

    33 CONNECTING WIRE PROTECTION WALL

    35 FIRST PROTRUDING PART (PROTRUDING PART)

    36 SECOND PROTRUDING PART (PROTRUDING PART)

    40 FIRST PROTRUDING PART INNER SURFACE

    41 FIRST PROTRUDING PART BOTTOM SURFACE

    42 SECOND PROTRUDING PART INNER SURFACE

    43 SECOND PROTRUDING PART BOTTOM SURFACE

    45 END

    46 FIRST ACCESS PASSAGE (ACCESS PASSAGE)

    47 END

    48 SECOND ACCESS PASSAGE (ACCESS PASSAGE)

    50 END

    51 END

    60 ADDITIONAL PROTRUDING PART

    P STEP

    S SPACE

    θ1 ANGLE

    θ2 ANGLE




    Claims

    1. A resolver stator (1) comprising:

    a stator core (4) comprising a ring-shaped stator core main body (8), and a plurality of tooth parts (9) protruding radially inward from an inner-peripheral edge (24) of the ring-shaped stator core main body (8);

    an insulator (5) disposed radially inward with respect to the stator core main body (8);

    a plurality of coils (10) wound around the plurality of tooth parts (9) respectively; and

    at least one connecting wire (11), wired with a tensile strength, configured to electrically connect the plurality of coils (10) to one another, wherein

    the insulator (5) comprises an insulator main body (20) formed into a ring shape so as to cover the inner-peripheral edge (24) of the ring-shaped stator core main body (8), the insulator main body (20) having an insulator main body inner surface (25) facing radially inward, and a protruding part (21),

    characterized in that
    the protruding part (21) protrudes radially inward beyond the insulator main body inner surface (25), in that
    the at least one connecting wire (11) is disposed so as to be opposed to the protruding part (21) in a direction parallel to a rotation axis of the resolver stator (1) and also opposed to the insulator main body inner surface (25) in a direction perpendicular to the rotation axis, in that the insulator (5) further comprises a holding protrusion (23) protruding from the protruding part (21) in the direction parallel to the rotation axis, and in that
    the at least one connecting wire (11) is disposed between the insulator main body inner surface (25) and the holding protrusion (23).
     
    2. The resolver stator according to Claim 1, wherein
    the at least one connecting wire (11) touches the protruding part (21) in the direction parallel to the rotation axis.
     
    3. The resolver stator according to Claim 1 or 2, wherein
    the insulator main body inner surface (25) is formed as a plane surface.
     
    4. The resolver stator according to any one of Claims 1 to 3, wherein
    the insulator (5) further comprises at least one access passage (46) for allowing the at least one connecting wire (11) to be wired to an opposite side of the protruding part (21) without getting over the protruding part (21).
     
    5. The resolver stator according to Claim 4, wherein
    the at least one access passage comprises two access passages (46, 48), and
    both ends (50, 51) of the at least one connecting wire (11) are wired to the opposite side of the protruding part (21) through the two access passages (46, 48) respectively.
     
    6. The resolver stator according to Claim 1 or 2, wherein
    the insulator main body inner surface (25) has a first insulator main body inner surface (26) and a second insulator main body inner surface (27) adjacent to each other in a circumferential direction,
    each of the first and second insulator main body inner surfaces (26, 27) is formed as a plane surface, and
    an angle between the first and second insulator main body inner surfaces (26, 27) is smaller than 180 degrees.
     
    7. The resolver stator according to Claim 6, wherein the holding protrusion (23) is disposed near an intersection or an imaginary intersection of the first and second insulator main body inner surfaces (26, 27).
     
    8. The resolver stator according to any preceding Claim, wherein
    the at least one connecting wire (11) comprises a plurality of connecting wires, and
    between two of the coils (10) that are adjacent to each other in a circumferential direction, the plurality of connecting wires (11) are disposed so as to be opposed to the protruding part (21) in the direction parallel to the rotation axis and also opposed to the insulator main body inner surface (25) in the direction perpendicular to the rotation axis, while being piled up on each other in a bundle-like manner.
     
    9. The resolver stator according to any preceding Claim, wherein
    the at least one connecting wire (11) comprises a plurality of connecting wires,
    the insulator (5) further includes an additional protruding part (60) protruding radially inward beyond the protruding part (21), and
    between two of the coils (10) that are adjacent to each other in a circumferential direction, one of the connecting wires (11) is disposed so as to be opposed to the protruding part (21) in the direction parallel to the rotation axis and also opposed to the insulator main body inner surface (25) in the direction perpendicular to the rotation axis, and another of the connecting wires (11) is disposed so as to be opposed to the additional protruding part (60) in the direction parallel to the rotation axis and also opposed to the protruding part (21) in the direction perpendicular to the rotation axis.
     


    Ansprüche

    1. Einen Resolverstator (1), umfassend:

    Einen Statorkern (4), der einen ringförmigen Statorkern-Hauptkörper (8) und eine Vielzahl von Zahnteilen (9) umfasst, die radial nach innen gerichtet aus einer Innenumfangskante (24) des ringförmigen Statorkern-Haupt-Körpers (8) hervorstehen;

    einen Isolator (5), der in Bezug auf den Statorkern-Haupt-Körper (8) radial nach innen gerichtet angeordnet ist;

    eine Vielzahl von Wicklungen (10), die jeweils um die Vielzahl von Zahnteilen (9) gewickelt sind; und

    zumindest einen Verbindungsdraht (11), der mit einer Zugkraft verdrahtet ist, konfiguriert, die Vielzahl von Wicklungen (10) elektrisch miteinander zu verbinden, wobei

    der Isolator (5) einen Isolator-Hauptkörper (20) umfasst, der zu einer Ringform geformt ist, um die Innenumfangskante (24) des ringförmigen Statorkern-Hauptkörpers (8) zu bedecken, wobei der Isolator-Hauptkörper (20) eine Isolator-Hauptkörperinnenfläche (25), die radial nach innen gerichtet ist und ein hervorstehendes Teil (21) aufweist,

    dadurch gekennzeichnet,

    dass das hervorstehende Teil (21) radial nach innen gerichtet über die Isolator-Hauptkörperinnenfläche (25) hinaus hervorsteht,

    dass der zumindest eine Verbindungsdraht (11) angeordnet ist, dem hervorstehenden Teil (21) in einer Richtung parallel zur Drehachse des Resolverstators (1) gegenüber zu liegen und außerdem der Isolator-Hauptkörperinnenfläche (25) in einer Richtung senkrecht zur Drehachse gegenüber zu liegen,

    dass der Isolator (5) ferner einen Haltevorsprung (23) umfasst, der aus dem hervorstehenden Teil (21) in der Richtung parallel zur Drehachse hervorsteht, und

    dass der zumindest eine Verbindungsdraht (11) zwischen der Isolator-Hauptkörperinnenfläche (25) und dem Haltevorsprung (23) angeordnet ist.


     
    2. Resolverstator nach Anspruch 1, wobei zumindest ein Verbindungsdraht (11) das hervorstehende Teil (21) in der Richtung parallel zur Drehachse berührt.
     
    3. Resolverstator nach Anspruch 1 oder 2, wobei die Isolator-Hauptkörperinnenfläche (25) als eine ebene Fläche geformt ist.
     
    4. Resolverstator nach einem der Ansprüche 1 bis 3, wobei der Isolator (5) ferner zumindest einen Zugangsdurchgang (46) umfasst, um zu ermöglichen, den zumindest einen Verbindungsdraht (11) mit einer gegenüber liegenden Seite des hervorstehenden Teils (21) zu verdrahten ohne über das hervorstehende Teil (21) hinweg zu kommen.
     
    5. Resolverstator nach Anspruch 4, wobei
    der zumindest einen Zugangsdurchgang zwei Durchgangszugänge (46, 48) umfasst, und
    beide Enden (50, 51) des zumindest einen Verbindungsdrahtes (11) jeweils durch die zwei Zugangsdurchgänge (46, 48) mit der gegenüber liegenden Seite des hervorstehenden Teils (21) verbunden sind.
     
    6. Resolverstator nach Anspruch 1 oder 2, wobei
    die Isolator-Hauptkörperinnenfläche (25) eine erste Isolator-Hauptkörperinnenfläche (26) und eine zweite Isolator-Hauptkörperinnenfläche (27) in einer zirkumferenziellen Richtung angrenzend aneinander aufweist,
    wobei jede der ersten und zweiten Isolator-Hauptkörperinnenflächen (26, 27) als eine ebene Fläche geformt ist, und
    ein Winkel zwischen den ersten und zweiten Isolator-Hauptkörperinnenflächen (26, 27) kleiner als 180 Grad ist.
     
    7. Resolverstator nach Anspruch 6, wobei der Haltevorsprung (23) nahe einer Schnittstelle oder einer imaginären Schnittstelle der ersten und zweiten Isolator-Hauptkörperinnenflächen (26, 27) angeordnet ist.
     
    8. Resolverstator nach einem vorhergehenden Anspruch, wobei
    der zumindest eine Verbindungsdraht (11) eine Vielzahl von Verbindungsdrähten umfasst, und zwischen zwei der Wicklungen (10), die in einer zirkumferenziellen Richtung aneinander angrenzen, die Vielzahl von Verbindungsdrähten (11) angeordnet sind, um dem hervorstehenden Teil (21) in der Richtung parallel zur Drehachse gegenüber zu liegen und außerdem der Isolator-Hauptkörperinnenfläche (25) in der Richtung senkrecht zur Drehachse gegenüber zu liegen, während sie auf eine bündelartige Weise aufeinandergetürmt sind.
     
    9. Resolverstator nach einem vorhergehenden Anspruch, wobei
    der zumindest eine Verbindungsdraht (11) eine Vielzahl von Verbindungsdrähten umfasst, der Isolator (5) ferner ein zusätzliches hervorstehendes Teil (60) einschließt, das radial nach innen gerichtet über das hervorstehende Teil (21) hervorsteht, und wobei
    zwischen den Wicklungen (10), die in einer zirkumferenziellen Richtung aneinander angrenzen,
    einer der Verbindungsdrähte (11) angeordnet ist, um dem hervorstehenden Teil (21) in der Richtung parallel zur Drehachse gegenüber zu liegen und außerdem der Isolator-Hauptkörperinnenfläche (25) in der Richtung senkrecht zur Drehachse gegenüber zu liegen, und wobei ein weiterer der Verbindungsdrähte (11) angeordnet ist, dem zusätzlichen hervorstehenden Teil (60) in der Richtung parallel zur Drehachse gegenüber zu liegen und außerdem dem hervorstehenden Teil (21) in der Richtung senkrecht zur Drehachse gegenüber zu liegen.
     


    Revendications

    1. Stator de résolveur (1) comprenant :

    un noyau de stator (4) comprenant un corps principal de noyau de stator de forme annulaire (8), et une pluralité de parties formant des dents (9) dépassant radialement vers l'intérieur depuis un bord périphérique intérieur (24) du corps principal de noyau de stator de forme annulaire (8) ;

    un isolant (5) disposé radialement à l'intérieur par rapport au corps principal de noyau de stator (8) ;

    une pluralité de bobines (10) enroulées respectivement autour de la pluralité de parties formant des dents (9) ; et

    au moins un fil de connexion (11), câblé avec une force de traction, configuré pour connecter électriquement entre elles la pluralité de bobines (10),

    l'isolant (5) comprenant un corps principal d'isolant (20) ayant une forme annulaire de manière à couvrir le bord périphérique intérieur (24) du corps principal de noyau de stator de forme annulaire (8), le corps principal d'isolant (20) ayant une surface intérieure de corps principal d'isolant (25) orientée radialement vers l'intérieur, et une partie en saillie (21),

    caractérisé en ce que

    la partie en saillie (21) dépasse radialement vers l'intérieur au-delà de la surface intérieure de corps principal d'isolant (25), en ce que

    le ou les fils de connexion (11) sont disposés de manière à être opposés à la partie en saillie (21) dans une direction parallèle à un axe de rotation du stator de résolveur (1) et aussi opposés à la surface intérieure du corps principal d'isolant (25) dans une direction perpendiculaire à l'axe de rotation, en ce que l'isolant (5) comprend en outre une saillie de retenue (23) dépassant de la partie en saillie (21) dans la direction parallèle à l'axe de rotation, et en ce que

    le ou les fils de connexion (11) sont disposés entre la surface intérieure du corps principal d'isolant (25) et la saillie de retenue (23).


     
    2. Stator de résolveur selon la revendication 1, dans lequel
    le ou les fils de connexion (11) touchent la partie en saillie (21) dans la direction parallèle à l'axe de rotation.
     
    3. Stator de résolveur selon la revendication 1 ou 2, dans lequel
    la surface intérieure du corps principal d'isolant (25) est formée comme une surface plane.
     
    4. Stator de résolveur selon l'une quelconque des revendications 1 à 3, dans lequel
    l'isolant (5) comprend en outre au moins un passage d'accès (46) pour permettre au ou aux fils de connexion (11) d'être câblés à un côté opposé de la partie en saillie (21) sans passer par-dessus la partie en saillie (21).
     
    5. Stator de résolveur selon la revendication 4, dans lequel
    le ou les passages d'accès comprennent deux passages d'accès (46, 48), et
    les deux extrémités (50, 51) du ou des fils de connexion (11) sont câblées au côté opposé de la partie en saillie (21) en passant respectivement par les deux passages d'accès (46, 48).
     
    6. Stator de résolveur selon la revendication 1 ou 2, dans lequel
    la surface intérieure du corps principal d'isolant (25) a une première surface intérieure de corps principal d'isolant (26) et une deuxième surface intérieure de corps principal d'isolant (27) adjacentes l'une à l'autre dans une direction circonférentielle,
    chacune des première et deuxième surfaces intérieures de corps principal d'isolant (26, 27) est formée comme une surface plane, et
    un angle entre les première et deuxième surfaces intérieures de corps principal d'isolant (26, 27) est inférieur à 180 degrés.
     
    7. Stator de résolveur selon la revendication 6, dans lequel la saillie de retenue (23) est disposée près d'une intersection ou d'une intersection imaginaire des première et deuxième surfaces intérieures de corps principal d'isolant (26, 27).
     
    8. Stator de résolveur selon l'une quelconque des revendications précédentes, dans lequel
    le ou les fils de connexion (11) comprennent une pluralité de fils de connexion, et
    entre deux des bobines (10) qui sont adjacentes l'une à l'autre dans une direction circonférentielle, la pluralité de fils de connexion (11) est disposée de manière à être opposée à la partie en saillie (21) dans la direction parallèle à l'axe de rotation et aussi opposée à la surface intérieure de corps principal d'isolant (25) dans la direction perpendiculaire à l'axe de rotation, en même temps que de fils de connexion sont empilés les uns sur les autres en faisceau.
     
    9. Stator de résolveur selon l'une quelconque des revendications précédentes, dans lequel
    le ou les fils de connexion (11) comprennent une pluralité de fils de connexion,
    l'isolant (5) comporte en outre une partie en saillie supplémentaire (60) dépassant radialement vers l'intérieur au-delà de la partie en saillie (21), et
    entre deux des bobines (10) qui sont adjacentes l'une à l'autre dans une direction circonférentielle, l'un des fils de connexion (11) est disposé de manière à être opposé à la partie en saillie (21) dans la direction parallèle à l'axe de rotation et aussi opposé à la surface intérieure de corps principal d'isolant (25) dans la direction perpendiculaire à l'axe de rotation, et un autre des fils de connexion (11) est disposé de manière à être opposé à la partie en saillie supplémentaire (60) dans la direction parallèle à l'axe de rotation et aussi opposé à la partie en saillie (21) dans la direction perpendiculaire à l'axe de rotation.
     




    Drawing







































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description