(19)
(11)EP 3 200 500 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 17161346.6

(22)Date of filing:  08.12.2008
(51)International Patent Classification (IPC): 
H04W 24/06(2009.01)
H04W 72/00(2009.01)
H04L 5/00(2006.01)
H04B 17/20(2015.01)

(54)

METHOD AND APPARATUS FOR A USER EQUIPMENT PERFORMANCE TEST IN AN OFDMA SYSTEM

VERFAHREN UND VORRICHTUNG FUER EINEN LEISTUNGSTEST EINES BENUTZERGERAETS IN EINEM OFDMA-SYSTEM

PROCÉDÉ ET DISPOSITIF POUR UN TEST DE PERFORMANCE D'UN ÉQUIPEMENT UTILISATEUR DANS UN SYSTÈME OFDMA


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 13.06.2008 US 61290

(43)Date of publication of application:
02.08.2017 Bulletin 2017/31

(62)Application number of the earlier application in accordance with Art. 76 EPC:
08874637.5 / 2283673

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventors:
  • Kazmi, Muhammad
    174 64 SUNDBYBERG (SE)
  • Ghasemzadeh, Farshid
    192 48 SOLLENTUNA (SE)
  • Bergljung, Christian
    223 53 LUND (SE)
  • Müller, Walter
    194 62 UPPLANDS VÄSBY (SE)
  • Axmon, Joakim
    211 15 MALMÖ (SE)

(74)Representative: Ericsson 
Patent Development Torshamnsgatan 21-23
164 80 Stockholm
164 80 Stockholm (SE)


(56)References cited: : 
EP-A1- 1 906 569
US-B1- 6 456 652
US-A1- 2006 120 395
  
  • NOKIA: "Inclusion of OCNS definition for performance tests", 3GPP DRAFT; R4-000550, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Torino, Italy; 20000904, 31 August 2000 (2000-08-31), page 1, XP050167705,
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention relates to UE performance tests in an OFDMA system.

BACKGROUND



[0002] Different types of User Equipment, UE, performance requirements are specified in the standard. In order to ensure that UE meets these requirements, appropriate and relevant test cases are also specified. During the tests all the downlink radio resources are not typically needed for the user under test. In practical circumstances several users receive transmission simultaneously on different resources in a cell. To make the tests as realistic as possible these remaining channels or radio resources should be transmitted in a manner that mimics transmission to other users in a cell.

[0003] The objective of UE performance verification (or the so-called UE performance tests) is to verify that UE fulfils the desired performance requirements in a given scenario, conditions and channel environment. By desired performance requirements it is meant those specified in the standard or requested by an operator or by any prospective customer. The performance requirements span a very vast area of UE requirements, such as
  • UE RF receiver requirements e.g. receiver sensitivity
  • UE RF transmitter requirements e.g. UE transmit power accuracy
  • UE demodulation requirements e.g. achievable throughput
  • Radio resource management requirements e.g. handover delay


[0004] We can classify the UE verification into two categories:
  • Verification in lab
  • Verification in real network

Verification in Lab



[0005] In the verification in lab the base station is emulated by test equipment, which is often termed as system simulator. Thus all downlink transmission is done by the test equipment to the test UE. During a test all common and other necessary UE specific control channels are transmitted by the test equipment. In addition a data channel, e.g. PDSCH in E-UTRAN, is also needed to send necessary data and configure the UE. Furthermore typically a single UE is tested at a time. In most typical test cases the entire available downlink resources are not used by the UE. However to make test realistic the remaining downlink resources should also be transmitted to one or multiple virtual users.

[0006] In OFDMA system the transmission resources comprises of time-frequency resources called resource blocks, which are sent with some transmit power level, see section relating to E-UTRAN Downlink Transmission. This type of resource allocation to generate load in OFDMA will be referred to as OFDM channel noise generator (OCNG) in the following. Thus OCNG is sent to a plurality of virtual users for loading the cell.

Verification in Real Network



[0007] These types of tests are demanded by the operators and are performed in a real network. The test may comprise of single or multiple UEs. Prior to the network roll out or in an early phase of deployment the traffic load is typically very low. In classical tests the cell load is generated by increasing transmission power on one or more common channels. However operators are now increasingly demanding the network vendors to generate cell load in realistic fashion for performing tests. This means resources, which are not allocated to the test users should be allocated to the virtual users emulating load in the cell. Thus either all or large part of available resources i.e. channels, transmit power etc is used in the tests. This requires base station to implement the ability to transmit remaining resources in order to generate load. Thus for OFDMA (i.e. in E-UTRAN) OCNG is also deemed to be implemented in an actual base station.

Noise Generation in WCDMA for UE Performance Verification



[0008] In WCDMA orthogonal channel noise simulator (OCNS) is used to load cells in the test. The OCNS is implemented in both test equipment and also possibly in the base station. In the former case it is standardized in TS 25.101 and TS 25.133 for each type of test or same for similar tests. The OCNS comprises of channelization code and relative power. In a CDMA system the position of channelization code in a code tree is sensitive to intra-cell interference. Therefore more careful selection of codes for OCNS and their power levels is needed. An example of OCNS from TS 25.101 for UE demodulation tests is quoted below:
Table 1: DPCH Channelization Code and relative level settings for OCNS signal
Channelization Code at SF=128Relative Level setting (dB) (Note 1)DPCH Data (see NOTE 3)
2 -1 The DPCH data for each channelization code shall be uncorrelated with each other and with any wanted signal over the period of any measurement. For OCNS with transmit diversity the DPCH data sent to each antenna shall be either STTD encoded or generated from uncorrelated sources.
11 -3
17 -3
23 -5
31 -2
38 -4
47 -8
55 -7
62 -4
69 -6
78 -5
85 -9
94 -10
125 -8
113 -6
119 0
NOTE 1: The relative level setting specified in dB refers only to the relationship between the OCNS channels. The level of the OCNS channels relative to the lor of the complete signal is a function of the power of the other channels in the signal with the intention that the power of the group of OCNS channels is used to make the total signal add up to 1.
NOTE 2: The DPCH Channelization Codes and relative level settings are chosen to simulate a signal with realistic Peak to Average Ratio.
NOTE 3: For MBSFN, the group of OCNS channels represent orthogonal S-CCPCH channels instead of DPCH. Transmit diversity is not applicable to MBSFN which excludes STTD.

E-UTRAN Downlink Transmission



[0009] In E-UTRAN Orthogonal Frequency Division Multiplexing (OFDM) technology is used in the downlink, whereas DFT based pre-coded OFDM is used in uplink. In E-UTRAN the cell transmission bandwidth is divided into several time-frequency resources. Most of these resources comprise of resource blocks, which comprises of 0.5 ms (time slot) in time domain and 12 sub-carriers each of 15 kHz in frequency domain. However some of the resources used for common channels e.g. SCH channel (primary and synchronization sequences) or reference symbols are transmitted over one or more OFDM symbol in time domain in each sub-frame. Some other control signals such as PCFICH, PHICH and PDCCH are also sent in specific OFDMA symbol in each sub-frame. The resource blocks are used for transmitted user data or some control signaling e.g. paging, system information etc.

[0010] Furthermore E-UTRAN is a pure packet data designed cellular system, in which transmissions of user data in uplink and downlink always take place via shared channels. As similar to HSPA in UTRAN, the UE monitors physical downlink control channels (PDCCH) in order to access UE dedicated user data on the physical downlink shared channel (PDSCH) and the network assigns uplink scheduling grants to the UE on demand basis for uplink transmission via the physical uplink control channel (PUCCH) and the physical uplink shared channel (PUSCH). Error detection is provided on transport blocks and control payloads through Cyclic Redundancy Check (CRC) on PDSCH and PUSCH, and HARQ operations ensure efficient retransmissions.

[0011] In E-UTRAN, no downlink transmit power control (TPC) has been specified and uplink TPC commands are embedded in the control payload mapped to PDCCH, which are sent occasionally or frequently by the E-UTRAN base station (eNodeB).

Downlink physical signals and channels in E-UTRAN



[0012] The physical layer signals and channels in E-UTRAN downlink are:
  • Physical layer signals, i.e. reference signal (pilots) and synchronization signals;
  • Physical broadcast channel (PBCH);
  • PDCCH and PDSCH;
  • Physical control format indicator channel (PCFICH); and
  • Physical HARQ indicator channel (PHICH)


[0013] Following observations can be done:
  • Physical layer signals and PBCH are transmitted periodically;
  • Error detection via CRC of transport blocks mapped to PBCH and PDSCH, and of control data mapped to PDCCH;
  • Some uplink transmissions shall result in downlink responses through the physical channels PDCCH and PHICH;


[0014] The cell load is generated by OCNS in WCDMA, UTRAN TDD or other CDMA systems. The same concept is not needed in E-UTRAN since radio interface is based on OFDMA technology, which is less sensitive to intra-cell interference. But there is still some leakage across the sub-carriers contributing to intra-cell interference due to transmitter and receiver imperfections. However inter-cell interference is not orthogonal and therefore it can still be considerable in OFDMA like in CDMA. Currently no rules on how to generate cell load for performing UE performance test are available for OFDMA systems.

[0015] The document US 6,456,652 B1 discloses a method for optimizing forward link coverage in a spread spectrum communication system, e.g., CDMA system. Spread spectrum test communication signals are transmitted from a base station at a known power level, using an antenna having a known beam direction. Orthogonal channel noise is simulated in order to model noise generated by wireless communication traffic existing in an operational communication system of many subscribers. A mobile station receives the test communication signals in a specific region of a cell, and measures signal quality parameters, e.g., RSSI, Ec/Io and a forward frame error rate (FFER), from the received signals and simulated noise. The measured signal quality parameters are compared to respective criteria. Each region is designating as being satisfactorily covered by the base station if the measured signal quality parameters substantially satisfy the criteria. Otherwise, base station equipment is adjusted to modify the transmission of the test communication signals, and the process is repeated.

[0016] The document EP 1 906 569 A1 discloses that a wireless communication mobile station device is provided by which a throughput can be improved in multicarrier communication. In the device, a group control section controls a subcarrier group, of which CQI is to be reported, among a plurality of subcarrier groups to periodically change, by following pattern information.

[0017] For instance, the group control section changes the subcarrier group whose CQI is to be reported, by frame or TTI (Transmission Time Interval). Furthermore, the group control section specifies the subcarrier group whose CQI is to be reported, to an SINR detecting section and a CQI generating section.

SUMMARY



[0018] Thus, the objective of this invention is to define rules for loading the cell or test equipment based on OFDMA technology in the downlink for performing UE tests in realistic manner and according to well defined principles.

[0019] The invention is carried out according to independent claims 1 and 12.

[0020] A first aspect of the present invention relates to a method for performing UE performance test to verify that one or more UE under test fulfils certain performance requirements in an OFDMA system, in which test all or part of available downlink radio resources in a cell are used for transmission, comprising the step of splitting said resources used for transmission into contiguous unities in the frequency domain such that one or more of said unities consists of resources allocated to one or more UE under test; and at least one of said unities consists of resources allocated to virtual UEs.

[0021] Since the UE under test only decodes UE specific channels, and not the channels used for the virtual users, the splitting of the transmitted resources means that the decoding is made less complex. Thus, the method according to this aspect of the invention, involving separating the resources allocated for the UE under test and for the OCNG users respectively into separate unities in the frequency domain, provides consistency to the test performance by applying the specified rule that implies a low complexity and constrain on the UE or UEs performing the test.

[0022] Here, the term "contiguous" has the meaning of a consecutive, i.e continuous, arrangement within each unity.

[0023] In a specific embodiment of the invention, the resources are split such that one or more contiguous unities of resources in the center of an available cell bandwidth are allocated to the one or more UE under test, and one or more contiguous unities of resources at the edges of said cell bandwidth are allocated to virtual UEs.

[0024] In another specific embodiment, the resources are split such that one or more contiguous unities of resources at the edges of said cell bandwidth are allocated to the one or more UE under test, and one or more contiguous unities of resources in the center of an available cell bandwidth are allocated to virtual UEs.

[0025] A second aspect of the invention relates to an arrangement in a node capable of performing UE performance test to verify that a UE fulfils certain performance requirements in an OFDMA system, in which all or part of available downlink radio resources are used for transmission, comprising a processing unit capable of executing an algorithm for splitting of said transmitted resources into contiguous unities in the frequency domain, such that one or more of said unities consists of resources allocated to the one or more UE under test, and at least one of said unities consists of resources allocated to virtual UEs.

[0026] Rules governing OCNG users to load cells could be specified in the standard for all tests and should be implemented in the test equipment. They may also be implemented in actual base stations for verifying operator specific or standardized tests in real network.

[0027] Thus, the node according to said second aspect of the invention may e.g. be a test equipment such as a system simulator or a radio base station capable of operating in an OFDM system, such as an eNodeB (Evolved NodeB).

[0028] Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0029] The foregoing and other objects, features and advantages of the invention will be apparent from the following detailed description of preferred embodiments as illustrated in the drawings.

Figure 1 illustrates OCNG allocation at edges of cell transmission bandwidth;

Figure 2 illustrates OCNG allocation in the center of cell transmission bandwidth;

Figure 3 illustrates a method according to a first embodiment of the invention;

Figure 4 illustrates a method according to a second embodiment of the invention;

Figure 5 illustrates a method according to a third embodiment of the invention;

Figure 6 illustrates a node capable of carrying out embodiments of the invention.


DETAILED DESCRIPTION



[0030] The present invention can be exemplified in the following non-limiting description of embodiments of the invention.

[0031] Typically only a single UE is tested at a time in a lab to verify that the UE under test meets the performance requirements. When test is performed in real network there can be one or multiple UE but in any case the entire cell resources are rarely used. Thus both in a lab or real network tests, the unused resources are transmitted to non existing virtual UEs to load the cell and to thereby mimic a realistic scenario seen in an actual network. The objective of this invention is to define rules, which can be used to transmit both test UE(s) and virtual UEs when verifying UE performance requirements in an OFDMA system. In order words, rules should define the split of OFDMA cell transmission resources between the test user(s) and the OCNG users. According to embodiments of the invention, resources allocated to the UE or UEs under test and the virtual users are split into contiguous unities. The UE (or UEs) under test does not decode OCNG channels, but only has to decode UE specific channels such as PDSCH and other UE specific channels, for example paging mapped on PDSCH. The objective of OCNG, i.e. virtual users, is only to load the cell in order to create realistic test environment, and not to add complexity to the decoding of UE specific channels e.g PDSCH. Such unnecessary complexity would put additional constraint on the UE that is not relevant for the test performance itself. For the test performance, it is desirable to isolate the test environment from influence that is not relevant for the test. Unnecessary complexity could cause such problems for the UE under test that the purpose of the test being lost, and thus the test would be of no use. Furthermore, randomly generated or distributed arrangement of resources allocated to the UE under test could also lead to inconsistent test results.

[0032] Fig. 3 illustrates a method according to an embodiment of the invention, performed by a transmitting unit for example a base station or a system simulator. The test performance is started in step 301. In step 302, the resources to be transmitted in the test are split in the frequency domain such that certain contiguous unit or units is/are allocated to the UE or UEs under test, and certain other contiguous unit or units is/are allocated to virtual users, also referred to as OCNG users. The transmitting unit thereafter transmits according to said split, step 303.

[0033] The embodiments described in the following apply to verification tests in lab as well as those done in a real network.

[0034] According to an embodiment of the invention, all the available cell resources (i.e. in test equipment that mimics base station or an actual base station in case of real network test) are divided into three main groups: X, Y and Z. They are allocated as follows:
  • Group X resources are allocated to common channels, whose position in time and frequency domains are well specified. Examples of common channels are: SCH, PBCH, reference symbols, PCFICH, PDCCH etc
  • Group Y resources are allocated to the test user(s).
  • Group Z resources are indeed OCNG and are allocated to virtual users, also called OCNG users.


[0035] Since common channel allocation is already well defined in the standard, the embodiments described herein will focus on how cell resources are split between group Y, i.e. resources allocated to the test users, and group Z, i.e. resources allocated to OCNG users.

[0036] In radio resource management (RRM) tests such as tests related to handover or cell reselection, typically two or more cells are used, where for instance one of the cells is a target cell. Group Y, i.e. the resources allocated to the test users, is in that case used for configuring UE via the initial or a serving cell. This means that as a special case the Y group can be zero in one or more of the cells involved in some RRM tests.

[0037] According to one specific embodiment, the resources are allocated such that OCNG users are allocated resource blocks at the edges of the cell bandwidth, while the test user(s) is/are allocated resource blocks (i.e. group Y) in the middle of the cell transmission bandwidth in contiguous manner. Typically, the common channels such as SCH, PBCH, reference symbols, PCFICH, PDCCH are also located in the center of the bandwidth. Thus, the resource blocks allocated to the virtual users i.e. group Z, are arranged in contiguous unities in frequency domain at the edges of the cell bandwidth and scheduled and transmitted to OCNG users, i.e. virtual users. This arrangement is shown in Fig. 1. A method according to this embodiment, performed by a transmitting unit, for example a base station or a system simulator, is illustrated in Fig. 4. The test performance is started in step 401. In step 402, the resources to be transmitted in the test are split in the frequency domain such that a contiguous unit of resource blocks in the center of the cell bandwidth is allocated to the UE or UEs under test, while a contiguous unit of resource blocks at each edge of the cell bandwidth is allocated to virtual users, also referred to as OCNG users. The transmitting unit thereafter transmits according to said split of resources, step 403.

[0038] According to an alternative specific embodiment, the resources are allocated such that OCNG users are allocated resource blocks in the middle of the cell bandwidth, while the test user(s) is/are allocated resource blocks (i.e. group Y) at one or both edges of the cell transmission bandwidth in contiguous manner. Thus, the resource blocks allocated to virtual users, i.e. group Z, are arranged in contiguous unities in frequency domain in the center of the cell bandwidth and are transmitted to OCNG users, i.e. virtual users when carrying out the test. This arrangement where OCNG is transmitted in center of the bandwidth is shown in figure 2. A method according to this embodiment, performed by a transmitting unit for example a base station or a system simulator, is illustrated in Fig. 5. The test performance is started in step 501. In step 502, the resources to be transmitted in the test are split in the frequency domain such that a contiguous unit of resource blocks at each edge of the cell bandwidth is allocated to the UE or UEs under test, while a contiguous unit of resource blocks in the center of the cell bandwidth is allocated to virtual users, also referred to as OCNG users. The transmitting unit thereafter transmits according to said split of resources, step 503.

[0039] The allocation of resource blocks between the test users and the virtual users may be fixed, for example such that 50% of all available resource blocks are allocated to the test user(s). For instance in case of 10 MHz bandwidth there are in total 50 RB, out of which 25 RB can be allocated to test user(s). In lab test there is typically only one user and therefore all 25 RB would be assigned to this user. In case of two or more test users the resource blocks can be equally split between the users or split with different proportion depending upon the type of information to be sent to these users. Dummy data may be transmitted in case the resources allocated to the UE under test are redundant for the test user. This will keep the number of resource blocks constant in group Y and make the test case more stable. The dummy data may comprise of some random sequences, which are stored in the test equipment and periodically sent to the virtual OCNG users.

[0040] In a specific arrangement there will be one resource block assigned per each individual OCNG user i.e. there will be as many OCNG users as the number of resource blocks in group Z. In the example above (10 MHz bandwidth) there should according to this rule be 25 OCNG users (i.e. 1 RB per OCNG user). A low bit rate data (e.g. voice service) can be transmitted to OCNG users. In another arrangement there can be fewer OCNG users than the number of resource blocks in group Z, whereby more than one resource block are allocated to each OCNG user. For instance in the above example, if we have five OCNG users, then five resource blocks are allocated to each OCNG user.

[0041] It should be noted that in specific embodiments, power can be different on different resource blocks due to power boosting on some channels to improve coverage. This may depend upon the specific test case.

[0042] Typically, QPSK could be used for the modulation of the OCNG transmission. However, depending upon the test also higher order modulation could be used. In a specific embodiment, the modulation used for resources allocated to the virtual users 604 is the same as used for the one or more UE 603 under test.

[0043] In case MIMO (multiple transmit and receive antennas, transmit diversity, cyclic delay diversity, etc) is used, the OCNG can be transmitted from uncorrelated sources, i.e. uncorrelated transmit antennas. Alternatively depending upon the type of test the OCNG can use the same MIMO transmission method and the same correlation model which is used for data transmission to the test user.

[0044] Fig. 6 illustrates schematically a transmitting unit 600, which can be a base station such as an eNodeB in the case where the test is performed in a real network, or a test equipment such as a system simulator in the case where the test is performed in a lab. For the sake of clarity, only units that are relevant for this invention are illustrated in this figure. A processing unit 601 is configured to split the resources to be used for transmission into contiguous unities in the frequency domain according to a specific rule, and a transmitter 602 is configured to transmit to the UE 603 under test and to virtual users 604, also referred to as OCNG users.

[0045] Thus, embodiments of the present invention provide the advantages that:
  • The load generation in a test is simplified and testing complexity is reduced.
  • The load generation in a base station such as an e-NodeB is simplified based on the rules above for load tests in real networks.
  • Performance requirements can be properly verified since consistent rules for generating load in the cell are used in the tests since well defined load generation will allow easy distinction between the performance of good and bad UEs.


[0046] An implementation of the invention is exemplified in the following, which constitutes an example of how embodiments of the invention could be included in TS 36.133 version 8.4.0:

OP.1 TDD: OCNG FDD Pattern 1 (outer resource blocks allocation)



[0047] 




OP.1 TDD: OCNG TDD Pattern 1 (outer resource blocks allocation) for 5ms downlink-to-uplink switch-point periodicity



[0048] 


OP.1 TDD: OCNG TDD Pattern 1 ((outer resource blocks allocation) for special subframe configuration with 5ms downlink-to-uplink switch-point periodicity



[0049] 






ABBREVIATIONS



[0050] 
OFDM:
Orthogonal Frequency Division Multiplexing
OFDMA:
Orthogonal Frequency Division Multiple Access
WCDMA:
Wide band code division multiple access
UE:
User Equipment
OCNS:
Orthogonal channel noise simulator
OCNG:
OFMA channel noise generator
SCH:
Synchronisation Channel
PBCH:
Physical Broadcast Channel
PCFICH:
Physical Control Format Indicator Channel
PDCCH:
Physical Downlink Control Channel
RB:
Resource Block
QPSK:
Quadrature Phase Shift Keying



Claims

1. A method for performing UE performance test to verify that one or more UE under test fulfils certain performance requirements in an OFDMA system, in which test all or part of available downlink radio resources in a cell are used for transmission, comprising the step of splitting (302, 402, 502) said resources used for transmission into contiguous unities (101, 102, 103, 201, 202, 203) in the frequency domain such that one or more of said unities consists of resources allocated to one or more UE under test (603); and at least one of said unities consists of resources allocated to virtual UEs (604).
 
2. The method according to claim 1, comprising the step of splitting the resources such that one or more contiguous unities (102) of resources in the center of an available cell bandwidth are allocated to the one or more UE (603) under test, and one or more contiguous unities (101) of resources at the edges of said cell bandwidth are allocated to virtual UEs (604).
 
3. The method according to claim 1, comprising the step of splitting the resources such that one or more contiguous unities (202) of resources at the edges of said cell bandwidth are allocated to the one or more UE (603) under test, and one or more contiguous unities (201) of resources in the center of an available cell bandwidth are allocated to virtual UEs (604).
 
4. The method according to any of claims 1 - 3, wherein out of the contiguous unities (101, 201) of resources available for the virtual users, one resource block is allocated to each of the said virtual UEs (604).
 
5. The method according to any of claims 1 - 4, wherein QPSK modulation is used for resources allocated to the virtual UEs (604).
 
6. The method according to any of claims 1 - 5, wherein when MIMO is used, the transmission to the virtual UEs (604) is carried out via uncorrelated transmit antennas.
 
7. The method according to any of claims 1 - 5, wherein when MIMO is used, the transmission to the virtual UEs (604) is carried out via the same MIMO transmission method and using same correlation model as used for the one or more UE (603) under test.
 
8. The method according to any of claims 1 - 7, wherein the allocation of resources to the one or more UE (603) under test and the virtual UEs (604) respectively is fixed.
 
9. The method according to any of claims 1 - 8, comprising the step of transmitting resources allocated for the one or more UE (603) under test on the PDSCH.
 
10. The method according to any of claims 1 - 9, wherein said method is carried out by a test equipment (600) such as a system simulator.
 
11. The method according to any of claims 1 - 9, wherein said method is carried out by a base station (600) capable of operating in an OFDM system.
 
12. An arrangement for a node (600) capable of performing UE performance test to verify that a UE fulfils certain performance requirements in an OFDMA system, in which test all or part of available downlink radio resources are used for transmission, comprising a processing unit (601) capable of executing an algorithm for splitting of said transmitted resources into contiguous unities (101, 102, 103, 201, 202, 203) in the frequency domain, such that one or more of said unities consists of resources allocated to the one or more UE (603) under test, and at least one of said unities consists of resources allocated to virtual UEs (604).
 
13. The arrangement according to claim 14, wherein said processing unit is configured to split the resources such that one or more contiguous unities (102) of resources in the center of an available cell bandwidth are allocated to the one or more UE (603) under test, and one or more contiguous unities (101) of resources at the edges of said cell bandwidth are allocated to virtual UEs (604).
 
14. The arrangement according to claim 12, wherein said processing unit is configured to split the resources such that one or more contiguous unities (202) of resources at the edges of said cell bandwidth are allocated to the one or more UE (603) under test, and one or more contiguous unities (201) of resources in the center of an available cell bandwidth are allocated to virtual UEs (604).
 
15. The arrangement according to any of claims 12-14, wherein said processing unit (601) is configured to allocate, out of the contiguous unities (101, 201) of resources available for the virtual users, one resource block to each of the said virtual UEs (604).
 
16. The arrangement according to any of claims 12-15, wherein said processing unit (601) is configured to use QPSK modulation for resources allocated to the virtual UEs (604).
 
17. The arrangement according to any of claims 12-16, wherein a transmitter 602 is configured to transmit to the virtual UEs (604) via uncorrelated transmit antennas when MIMO is used.
 
18. The arrangement according to any of claims 12-16, wherein a transmitter 602 is configured to transmit to the virtual UEs (604) via the same MIMO transmission method and using same correlation model as used for the one or more UE (603) under test when MIMO is used.
 
19. The arrangement according to any of claims 12-18, wherein said processing unit (601) is configured to allocate resources to the one or more UE (603) under test and the virtual UEs (604) in a fixed manner.
 
20. The arrangement according to any of claims 12-19, comprising a transmitter (602) configured to transmit resources allocated for the one or more UE (603) under test on the PDSCH.
 
21. The arrangement according to any of claims 12-20, wherein said node (600) is a test equipment such as a system simulator.
 
22. The arrangement according to any of claims 12-20, wherein said node (600) is a base station capable of operating in an OFDM system.
 


Ansprüche

1. Verfahren zum Ausführen eines UE-Leistungstests, um zu verifizieren, dass ein oder mehrere UE im Test bestimmte Leistungsanforderungen in einem OFDMA System erfüllen, in welchem Test alle oder ein Teil von verfügbaren Abwärtsfunkressourcen in einer Zelle zur Übertragung verwendet werden, umfassend den Schritt zum
Teilen (302, 402, 502) der Ressourcen, die zur Übertragung verwendet werden, in zusammenhängende Einheiten (101, 102, 103, 201, 202, 203) in der Frequenzdomäne, so dass eine oder mehrere der Einheiten aus Ressourcen bestehen, die einem oder mehreren UE im Test (603) zugewiesen sind; und zumindest eine der Einheiten aus Ressourcen besteht, die virtuellen UEs (604) zugewiesen sind.
 
2. Verfahren nach Anspruch 1, umfassend den Schritt zum Teilen der Ressourcen, so dass eine oder mehrere zusammenhängende Einheiten (102) von Ressourcen in der Mitte einer verfügbaren Zellenbandbreite dem einen oder den mehreren UE (603) im Test zugewiesen sind und eine oder mehrere zusammenhängende Einheiten (101) von Ressourcen an den Rändern der Zellbandbreite virtuellen UEs (604) zugewiesen sind.
 
3. Verfahren nach Anspruch 1, umfassend den Schritt zum Teilen der Ressourcen, so dass eine oder mehrere zusammenhängende Einheiten (202) von Ressourcen an den Rändern der Zellbandbreite dem einen oder den mehreren UE (603) im Test zugewiesen sind und eine oder mehrere zusammenhängende Einheiten (201) von Ressourcen in der Mitte einer verfügbaren Zellbandbreite virtuellen UEs (604) zugewiesen sind.
 
4. Verfahren nach einem der Ansprüche 1-3, wobei aus den zusammenhängenden Einheiten (101, 201) von Ressourcen, die für die virtuellen Anwender verfügbar sind, ein Ressourcenblock jedem der virtuellen UEs (604) zugewiesen ist.
 
5. Verfahren nach einem der Ansprüche 1-4, wobei QPSK Modulation für Ressourcen verwendet wird, die den virtuellen UEs (604) zugewiesen sind.
 
6. Verfahren nach einem der Ansprüche 1-5, wobei, wenn MIMO verwendet wird, die Übertragung an die virtuellen UEs (604) über unkorrelierte Sendeantennen durchgeführt wird.
 
7. Verfahren nach einem der Ansprüche 1-5, wobei, wenn MIMO verwendet wird, die Übertragung an die virtuellen UEs (604) über dasselbe MIMO Übertragungsverfahren durchgeführt wird und dasselbe Korrelationsmodell verwendet wird, wie für das eine oder mehrere UE (603) im Test verwendet wird.
 
8. Verfahren nach einem der Ansprüche 1-7, wobei die Zuweisung von Ressourcen zu dem einen oder den mehreren UE (603) im Test und den virtuellen UEs (604) festgesetzt wird.
 
9. Verfahren nach einem der Ansprüche 1-8, umfassend den Schritt zum Übertragen von Ressourcen, die für das eine oder die mehreren UE (603) im Test zugewiesen sind, auf dem PDSCH.
 
10. Verfahren nach einem der Ansprüche 1-9, wobei das Verfahren durch eine Testausrüstung (600), wie etwa einen Systemsimulator, durchgeführt wird.
 
11. Verfahren nach einem der Ansprüche 1-9, wobei das Verfahren durch eine Basisstation (600) durchgeführt wird, die fähig ist, in einem OFDM System zu arbeiten.
 
12. Anordnung für einen Knoten (600), die zum Ausführen eines UE-Leistungstests fähig ist, um zu verifizieren, dass ein UE bestimmte Leistungsanforderungen in einem OFDMA System erfüllt, in welchem Test alle oder ein Teil von verfügbaren Abwärtsfunkressourcen zur Übertragung verwendet werden, umfassend eine Verarbeitungseinheit (601), die zum Ausführen eines Algorithmus fähig ist, um die übertragenen Ressourcen in zusammenhängende Einheiten (101, 102, 103, 201, 202, 203) in der Frequenzdomäne zu teilen, so dass eine oder mehrere der Einheiten aus Ressourcen bestehen, die einem oder mehreren UE (603) im Test zugewiesen sind; und zumindest eine der Einheiten aus Ressourcen besteht, die virtuellen UEs (604) zugewiesen sind.
 
13. Anordnung nach Anspruch 14, wobei die Verarbeitungseinheit konfiguriert ist, um die Ressourcen zu teilen, so dass eine oder mehrere zusammenhängende Einheiten (102) von Ressourcen in der Mitte einer verfügbaren Zellbandbreite dem einen oder den mehreren UE (603) im Test zugewiesen sind und eine oder mehrere zusammenhängende Einheiten (101) von Ressourcen an den Rändern der Zellbandbreite virtuellen UEs (604) zugewiesen sind.
 
14. Anordnung nach Anspruch 12, wobei die Verarbeitungseinheit konfiguriert ist, um die Ressourcen zu teilen, so dass eine oder mehrere zusammenhängende Einheiten (202) von Ressourcen an den Rändern der Zellbandbreite dem einen oder den mehreren UE (603) im Test zugewiesen sind und eine oder mehrere zusammenhängende Einheiten (201) von Ressourcen in der Mitte einer verfügbaren Zellbandbreite virtuellen UEs (604) zugewiesen sind.
 
15. Anordnung nach einem der Ansprüche 12-14, wobei die Verarbeitungseinheit (601) konfiguriert ist, um einen Ressourcenblock, aus den zusammenhängenden Einheiten (101, 201) von Ressourcen, die für die virtuellen Anwender verfügbar sind, jedem der virtuellen UEs (604) zuzuweisen.
 
16. Anordnung nach einem der Ansprüche 12-15, wobei die Verarbeitungseinheit (601) konfiguriert ist, um QPSK Modulation für Ressourcen zu verwenden, die den virtuellen UEs (604) zugewiesen sind.
 
17. Anordnung nach einem der Ansprüche 12-16, wobei ein Sender (602) konfiguriert ist, um über unkorrelierte Sendeantennen an die virtuellen UEs (604) zu übertragen, wenn MIMO verwendet wird.
 
18. Anordnung nach einem der Ansprüche 12-16, wobei ein Sender (602) konfiguriert ist, um über dasselbe MIMO Übertragungsverfahren an die virtuellen UEs (604) zu übertragen und dasselbe Korrelationsmodell zu verwenden, wie es für das eine oder die mehreren UE (603) im Test verwendet wird, wenn MIMO verwendet wird.
 
19. Anordnung nach einem der Ansprüche 12-18, wobei die Verarbeitungseinheit (601) konfiguriert ist, um Ressourcen dem einen oder den mehren UE (603) im Test und den virtuellen UEs (604) in einer festgesetzten Weise zuzuweisen.
 
20. Anordnung nach einem der Ansprüche 12-19, umfassend einen Sender (602), der konfiguriert ist, um Ressourcen, die dem einen oder den mehreren UE (603) im Test zugewiesen sind, auf dem PDSCH zu übertragen.
 
21. Anordnung nach einem der Ansprüche 12-20, wobei der Knoten (600) eine Testausrüstung ist, wie etwa ein Systemsimulator.
 
22. Anordnung nach einem der Ansprüche 12-20, wobei der Knoten (600) eine Basisstation ist, die fähig ist, in einem OFDM System zu arbeiten.
 


Revendications

1. Procédé pour effectuer un test de performance d'équipement d'utilisateur (UE) afin de vérifier qu'un ou plusieurs UE dans des conditions de test remplissent certaines exigences de fonctionnement dans un système OFDMA, test dans lequel tout ou une partie des ressources radio de liaison descendante disponibles dans une cellule sont utilisés pour une transmission, comprenant l'étape de la division (302, 402, 502) desdites ressources utilisées pour la transmission en unités contiguës (101, 102, 103, 201, 202, 203) dans le domaine de fréquence de sorte qu'une ou plusieurs desdites unités soient constituées des ressources allouées à un ou plusieurs UE testés (603) ; et au moins une desdites unités est constituée des ressources allouées auxdits UEs virtuels (604).
 
2. Procédé selon la revendication 1, comprenant l'étape de division des ressources de sorte qu'une ou plusieurs unités contiguës (102) de ressources dans le centre d'une bande passante de cellules disponibles soient allouées à un ou plusieurs UE (603) testés, et une ou plusieurs unités contiguës (101) de ressources sur les bords de ladite bande passante de cellule soient allouées aux UEs virtuels (604).
 
3. Procédé selon la revendication 1, comprenant l'étape de division des ressources de sorte qu'une ou plusieurs unités contiguës (202) de ressources sur les bords de ladite bande passante de cellule soient allouées à un ou plusieurs UE (603) testés, et un ou plusieurs unités contiguës (201) de ressources dans le centre d'une bande passante de cellule disponible sont allouées aux UEs virtuels (604).
 
4. Procédé selon une quelconque des revendications 1 à 3, dans lequel parmi les unités contiguës (101, 201) de ressources disponibles pour les utilisateurs virtuels, un bloc de ressources est alloué à chacun desdits UEs virtuels (604).
 
5. Procédé selon une quelconque des revendications 1 à 4, dans lequel une modulation QPSK est utilisée pour les ressources allouées aux UEs virtuels (604).
 
6. Procédé selon une quelconque des revendications 1 à 5, dans lequel lorsque MIMO est utilisé, la transmission aux UEs virtuels (604) est effectuée via des antennes émettrices non corrélées.
 
7. Procédé selon une quelconque des revendications 1 à 5, dans lequel lorsque MIMO est utilisé, la transmission aux UEs virtuels (604) est effectuée via le même modèle de transmission MIMO et en utilisant le même modèle de corrélation que celui utilisé pour le ou les UE (603) testés.
 
8. Procédé selon une quelconque des revendications 1 à 7, dans lequel l'allocation de ressources à un ou plusieurs UE (603) testés et aux UEs virtuels (604) est respectivement fixée.
 
9. Procédé selon une quelconque des revendications 1 à 8, comprenant l'étape de transmission de ressource allouée pour le ou les UE (603) testés sur le PDSCH.
 
10. Procédé selon une quelconque des revendications 1 à 9, dans lequel ledit procédé est effectué par un équipement de test (600) tel qu'un simulateur de système.
 
11. Procédé selon une quelconque des revendications 1 à 9, dans lequel ledit procédé est effectué par une station de base (600) capable de fonctionner dans un système OFDM.
 
12. Dispositif pour un nœud (600) capable d'effectuer un test de performance d'UE afin de vérifier qu'un UE remplisse certaines exigences de performance dans un système OFDMA, test dans lequel tout ou une partie des ressources radio de liaison descendante disponibles dans une cellule sont utilisées pour une transmission, comprenant une unité de traitement (601) capable d'exécuter un algorithme pour diviser lesdites ressources transmises en unités contiguës (101, 102, 103, 201, 202, 203) dans le domaine de fréquence, de sorte qu'une ou plusieurs desdites unités soient constituées des ressources allouées à un ou plusieurs UE testés (603), et au moins une desdites unités est constitué des ressources allouées auxdits UEs virtuels (604) .
 
13. Dispositif selon la revendication 14, dans lequel ladite unité de traitement est configurée pour diviser les ressources de sorte qu'une ou plusieurs unités contiguës (102) de ressources dans le centre d'une bande passante de cellules disponibles soient allouées à un ou plusieurs UE testés (603), et une ou plusieurs unités contiguës (101) de ressources sur les bords de ladite bande passante de cellule soient allouées aux UEs virtuels (604).
 
14. Dispositif selon la revendication 12, dans lequel ladite unité de traitement est configurée pour diviser les ressources de sorte qu'une ou plusieurs unités contiguës (202) de ressources sur les bords de ladite bande passante de cellule soient allouées à un ou plusieurs UE (603) testés, et une ou plusieurs unités contiguës (201) de ressources dans le centre d'une bande passante de cellule disponible soient allouées aux UEs virtuels (604).
 
15. Dispositif selon une quelconque des revendications 12 à 14, dans lequel ladite unité de traitement (601) est configurée pour allouer, parmi les unités contiguës (101, 201) de ressources disponibles pour les utilisateurs virtuels, un bloc de ressources à chacun desdits UEs virtuels (604).
 
16. Dispositif selon une quelconque des revendications 12 à 15, dans lequel ladite unité de traitement (601) est configurée pour utiliser une modulation QPSK pour les ressources allouées aux UEs virtuels (604).
 
17. Dispositif selon une quelconque des revendications 12 à 16, dans lequel un émetteur (602) est utilisé pour émettre vers les utilisateurs virtuels (604) via des antennes émettrices non corrélées lorsque MIMO est utilisé.
 
18. Dispositif selon une quelconque des revendications 12 à 16, dans lequel un émetteur (602) est configuré pour émettre vers les utilisateurs virtuels (604) via le même procédé de transmission MIMO et en utilisant le même modèle de corrélation que celui utilisé pour le ou les UE (603) testés lorsque MIMO est utilisé.
 
19. Dispositif selon une quelconque des revendications 12 à 18, dans lequel ladite unité de traitement (601) est configurée pour allouer des ressources à un ou plusieurs UE (603) testés et aux UEs virtuels (604) d'une manière fixe.
 
20. Dispositif selon une quelconque des revendications 12 à 19, comprenant un émetteur (602) configuré pour émettre des ressources allouées pour le ou les UE (603) testés sur le PDSCH.
 
21. Dispositif selon une quelconque des revendications 12 à 20, dans lequel ledit nœud (600) est un équipement de test tel qu'un simulateur de test.
 
22. Dispositif selon une quelconque des revendications 12 à 20, dans lequel ledit nœud (600) est une station de base capable de fonctionner dans un système OFDM.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description