(19)
(11)EP 3 202 245 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 17161683.2

(22)Date of filing:  25.07.2013
(51)International Patent Classification (IPC): 
A01B 63/114(2006.01)
A01C 5/06(2006.01)
A01C 7/20(2006.01)
F15B 15/20(2006.01)

(54)

INTEGRATED IMPLEMENT DOWNFORCE CONTROLLER

VORRICHTUNG ZUM REGELN DES BODENDRUCKS DER WERKZEUGE EINES LANDWIRTSCHAFTLICHEN GERÄTS

APPAREIL D'AJUSTEMENT DE LA PRESSION AU SOL D'UN ÉQUIPEMENT D'APPAREIL AGRICOLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.07.2012 US 201261675678 P

(43)Date of publication of application:
09.08.2017 Bulletin 2017/32

(60)Divisional application:
20179210.8
20179292.6
20179326.2

(62)Application number of the earlier application in accordance with Art. 76 EPC:
13822581.8 / 2876992

(73)Proprietor: Precision Planting LLC
Tremont, IL 61568 (US)

(72)Inventors:
  • STOLLER, Jason
    Eureka, IL 61530 (US)
  • LEVY, Kent
    Morton, IL 61550 (US)
  • SWANSON, Todd
    Morton, IL 61550 (US)

(74)Representative: AGCO Intellectual Property Department 
AGCO Limited Abbey Park Stoneleigh
Kenilworth, Warwickshire CV8 2TQ
Kenilworth, Warwickshire CV8 2TQ (GB)


(56)References cited: : 
US-A- 3 233 523
US-A1- 2012 060 730
US-A1- 2012 048 159
US-A1- 2013 146 318
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] In operating an agricultural implement such as a row crop planter, maintaining a desired "downforce" between the soil and ground-engaging wheels of each row unit is difficult. Too much downforce can cause undesired compaction and yield loss, while insufficient downforce can cause the row unit to lose planting depth, resulting potential emergence failure. Recent advances in implement downforce measurement and mapping have highlighted the extreme spatial variation in applied downforce required to maintain desired downforce as moisture and soil properties change throughout the field being planted. Thus there is a need in the art for effectively controlling applied downforce with greater spatial granularity.

    [0002] US 3 233 523 A discloses a fluid cylinder and valve control means therefore.

    [0003] US 2012/060730 A and US 2012/048159 A1 disclose downforce controller for a planter row unit.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0004] 

    FIG. 1A is a perspective view of an embodiment of a downforce controller.

    FIG. 1B is a side elevation view of an embodiment of the downforce controller of FIG. 1A.

    FIG. 1C is a cross-sectional view of the downforce controller of FIG. 1A.

    FIG. 2A is a side elevation view of an embodiment of a planter row unit incorporating the downforce controller of FIG. 1A.

    FIG. 2B is a side elevation view of an embodiment of a planter and a tractor drawing the planter row unit of FIG. 2A through a field.

    FIG. 3 schematically illustrates an embodiment of an electronic control system for controlling one or more downforce controllers.

    FIG. 4 is a top view of an embodiment of a fluid control system for controlling multiple downforce controllers.

    FIG. 5 is a cross-sectional view of another embodiment of a downforce controller including a lift pressure control valve.

    FIG. 6 is a top view of another embodiment of a fluid control system for controlling multiple downforce controllers.

    FIG. 7 is a fluid schematic illustrating an embodiment of a manifold for controlling pressure delivered to a downforce controller.


    DESCRIPTION


    Downforce Controller



    [0005] Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, FIGs. 1A - 1C illustrate an embodiment of a downforce controller 100. Referring to FIG. 1A, the downforce controller 100 includes a manifold 110 and a cylinder 130. The manifold 110 includes a manifold body 102, a lift control conduit 120, and a cavity sized to receive a down pressure control valve 140. It should be appreciated that as illustrated in FIGs. 1A - 1C, the down pressure control valve 140 is coupled to the manifold 110 and is thus coupled to the cylinder 130; likewise, the valve is supported by the manifold 110 and is thus supported by the cylinder 130. The manifold body 102 includes a supply passage 112, a return passage 114, and a lift control passage 116. Each passage 112, 114, 116 preferably includes a left fitting, a right fitting, and an aperture connecting the left and right fittings. Referring to the cross-sectional view of FIG. 1C, the manifold body 110 includes a control pressure diagnostic passage 118 and a down chamber connection passage 111.

    [0006] The cylinder 130 includes a barrel 132, a rod 170, and a gland 138. The cylinder 130 is mounted to the manifold 110. In the embodiment illustrated in FIGs. 1A - 1C, the barrel 132 is mounted to the manifold body 102. Referring to the cross-sectional view of FIG. 1C, the gland 138 is mounted to a lower end of the barrel 132 and the rod 170 is slidably mounted within the gland 138. The rod 170 includes a piston 174 which separates an interior volume of the barrel 132 into a down chamber 136 and a lift chamber 134.

    [0007] The down pressure control valve 140 is preferably a electro-hydraulic pressure reducing-relieving valve. The down pressure control valve 140 includes a solenoid 142 having an electrical port 144. The down pressure control valve 140 includes a flow control valve 150 having a supply port 152, a return port 154, and a control port 158 (FIG. 1C). The pressure control valve 140 is preferably a PDR08-P proportional pressure relief valve available from Hydac International GmbH in Sulzbach, Germany ("Hydac"). The down pressure control valve 140 is mounted to the manifold body 102. The down pressure control valve 140 is preferably oriented substantially parallel with the cylinder 130.

    [0008] Referring to FIG. 1C, the supply port 152 of the pressure control valve 140 is in fluid communication with the supply passage 112. The return port 154 is in fluid communication with the return passage 114. The control port 158 is in fluid communication with the control pressure diagnostic passage 118. The control pressure diagnostic passage 118 is in fluid communication with the down chamber connection passage 111. The down chamber connection passage 111 is in fluid communication with the down chamber 136. The control pressure diagnostic passage 118 and the down chamber connection passage 111 collectively comprise a passage placing the control port 158 in fluid communication with the down chamber 136. The conduit 120 places the lift control passage 116 in fluid communication with the lift chamber 134. The control pressure diagnostic passage 118 is preferably capped with a cap 119 which may be removed in order to place a gauge, transducer, or other pressure measurement device in fluid communication with the control port 158.

    [0009] In operation, the flow control valve 150 establishes a control pressure at the control port 158 by selectively allowing flow between the control port 158, the supply port 152, and the return port 154 as is known in the art. The solenoid 142 changes an operating state of the down pressure control valve 140 (e.g., by imposing a force on a component of the flow control valve 150) to modify the control pressure as is known in the art. The control pressure set by the solenoid 142 preferably corresponds to a signal received at the electrical port 144. Thus the down pressure control valve 140 is configured to maintain any one of a continuous range of pressures at the control port 158, and is further configured to selectively maintain one of such continuous range of pressures based on the signal received by the solenoid 142.

    Implement Installation and Operation



    [0010] Turning to FIGs. 2A and 2B, an embodiment of the downforce controller 100 is illustrated installed on a planter 10 drawn by a tractor 5. The planter 10 includes a transversely extending toolbar 14 to which multiple row units 200 are mounted in transversely spaced relation.

    [0011] For attachment purposes, the manifold body 102 of the downforce controller 100 includes a pin eye 182 (FIGs. 1A-1C) and the rod 170 includes a clevis 172. Referring to FIG. 2A, a controller attachment bracket 214 is mounted to the front bracket 212. The downforce controller 100 is pivotally connected to the controller attachment bracket 214 by an upper pin 215-1 extending through the pin eye 182. The downforce controller 100 is pivotally connected at a lower end to a parallel linkage 216 by a lower pin 215-2 extending through the clevis 172. A manifold 700 is preferably mounted to the toolbar 14.

    [0012] Continuing to refer to FIG. 2A, the parallel linkage 216 supports the row unit 200 from the toolbar 14, permitting each row unit to move vertically independently of the toolbar and the other spaced row units in order to accommodate changes in terrain or upon the row unit encountering a rock or other obstruction as the planter is drawn through the field. A ride quality sensor 364, preferably an accelerometer, is mounted to the row unit 200 and disposed to measure the vertical velocity and acceleration of the row unit 200. Each row unit 200 further includes a mounting bracket 220 to which is mounted a hopper support beam 222 and a subframe 224. The hopper support beam 222 supports a seed hopper 226 and a fertilizer hopper 228 as well as operably supporting a seed meter 230 and a seed tube 232. The subframe 224 operably supports a furrow opening assembly 234 and a furrow closing assembly 236.

    [0013] In operation of the row unit 200, the furrow opening assembly 234 cuts a furrow 38 into the soil surface 40 as the planter 10 is drawn through the field. The seed hopper 226, which holds the seeds to be planted, communicates a constant supply of seeds 42 to the seed meter 230. The seed meter 230 of each row unit 200 is preferably selectively engaged to a drive 372 via a clutch 370 such that individual seeds 42 are metered and discharged into the seed tube 232 at regularly spaced intervals based on the seed population desired and the speed at which the planter is drawn through the field. The drive 372 and clutch 370 may be of the types disclosed in U.S. Patent Application No. 12/228,075. A seed sensor 360, preferably an optical sensor, is supported by the seed tube 232 and disposed to detect the presence of seeds 42 as they pass. The seed 42 drops from the end of the seed tube 232 into the furrow 38 and the seeds 42 are covered with soil by the closing wheel assembly 236.

    [0014] The furrow opening assembly 234 includes a pair of furrow opening disk blades 244 and a pair of gauge wheels 248 selectively vertically adjustable relative to the disk blades 244 by a depth adjusting mechanism 268. The depth adjusting mechanism 268 preferably pivots about a downforce sensor 362, which preferably comprises a pin instrumented with strain gauges for measuring the force exerted on the gauge wheels 248 by the soil 40. The downforce sensor 362 is preferably of the type disclosed in Applicant's co-pending U.S. Patent Application No. 12/522,253. In other embodiments, the downforce sensor is of the types disclosed in U.S. Patent No. 6,389,999. The disk blades 244 are rotatably supported on a shank 254 depending from the subframe 224. Gauge wheel arms 260 pivotally support the gauge wheels 248 from the subframe 224. The gauge wheels 248 are rotatably mounted to the forwardly extending gauge wheel arms 260.

    [0015] Referring to FIG. 2B, a GPS receiver 366 is preferably mounted to an upper portion of the tractor 5. A monitor 310 is preferably mounted in a cab 7 of the tractor 5. One or more speed sensors 368, such as a Hall-effect wheel speed sensor or a radar speed sensor, are preferably mounted to the tractor 5.

    Electrical Control System



    [0016] Turning to FIG. 3, an electrical control system 300 for controlling and measuring downforce and other implement functions is illustrated schematically. In the electrical control system, the monitor 310 is preferably in electrical communication with the down pressure control valves 140 and a lift pressure control valve 740 (described herein with respect to FIG. 7), as well as the drives 370 and the clutches 372. The monitor 310 is preferably in electrical communication with the downforce sensors 362 as well as the seed sensors 360, the downforce sensors 362, the speed sensors 368, and the GPS receiver 366. It should be appreciated that the monitor 310 comprises an electronic controller.

    [0017] The monitor 310 preferably includes a central processing unit ("CPU") 316, a memory 314, and a graphical user interface ("GUI") 312 allowing the user to view and enter data into the monitor. The monitor 310 is preferably of the type disclosed in Applicant's co-pending U.S. patent application no. 13/292,384. such that the monitor is capable of displaying downforce and seeding information to the user.

    Downforce Fluid Control System



    [0018] Turning to FIG. 4, an embodiment of a fluid control system 400 is illustrated installed on four downforce controllers 100 (each installed on a respective row unit 200), the toolbar 14 and the tractor 5. The fluid control system includes a supply 430, preferably a power-beyond supply port located on the tractor 5, and a tank 440, preferably a power-beyond tank port located on the tractor 5. The supply 430 and tank 440 are in fluid communication with the manifold 700.

    [0019] Turning to FIG. 7, an embodiment of the manifold 700 is illustrated schematically. The manifold 700 includes a filter 710 (preferably model no. CP-SAE-120 available from Hydac), a check valve 720 (preferably model no. RV16A-01 available from Hydac), a float select valve 735 (preferably model no. PD10-41-0-N-170 available from Hydraforce in Lincolnshire, Illinois), and the lift pressure control valve 740 (preferably an equivalent valve to the down pressure control valve 140). The supply 430 is in fluid communication with the filter 710, a pressure port of the lift pressure control valve 740, and a supply hose 422 connected to a supply port of the manifold 700. The tank 440 is in fluid communication with the check valve 720, a tank port of the lift pressure control valve 740, and a return hose 424 connected to a return port of the manifold 700. A control port of the lift pressure control valve 740 is preferably in fluid communication with a first port of the float select valve 735. A second port of the float select valve is preferably in fluid communication with the return hose 424. A third port of the float select valve is preferably in fluid communication with a lift control hose 426 connected to a lift control port of the manifold 700.

    [0020] In operation, the lift pressure control valve 740 receives a command signal and maintains a desired pressure at the control port of the lift pressure control valve corresponding to the command signal. When the pressure in the lift control hose 426 exceeds the pressure in the return hose 424 by a threshold (e.g., 170 psi), as for example when one or more of the row units 200 drops relative to the toolbar causing substantial fluid flow from the lift control hose through the float select valve 734, the float select valve is preferably configured to shift into the position shown in FIG. 7 such that fluid is allowed to bypass the lift pressure control valve 740 and return to the return hose 424.

    [0021] Returning to FIG. 4, the supply hose 422 is in fluid communication with the supply passage 112 of the first downforce controller 100-1. The supply passage 112 of each downforce controller 100 is in fluid communication with the supply passage 112 of an adjacent downforce controller 100 via an inter-row supply hose 412. The distal port of the supply passage 112 of the distal downforce controller (e.g., the right-hand port of the supply passage of the downforce controller 100-4 as illustrated in FIG. 4) is preferably capped with a cap 450. It should be appreciated in view of FIG. 4 and the description above that a first end of the inter-row supply hose 412 is coupled to and supported by the supply passage 112 of a first downforce controller (e.g., the downforce controller 100-1) and a second end of the inter-row supply hose 412 is coupled to and supported by the supply passage 112 of a second, preferably adjacent downforce controller (e.g., the downforce controller 100-2).

    [0022] The return hose 424 is in fluid communication with the return passage 114 of the first downforce controller 100-1. The return passage 114 of each downforce controller 100 is in fluid communication with the return passage 114 of an adjacent downforce controller 100 via an inter-row return hose 414. The distal port of the return passage 114 of the distal downforce controller (e.g., the right-hand port of the return passage of the downforce controller 100-4 as illustrated in FIG. 4) is preferably capped with a cap 450. It should be appreciated in view of FIG. 4 and the description above that a first end of the inter-row return hose 414 is coupled to and supported by the return passage 114 of a first downforce controller (e.g., the downforce controller 100-1) and a second end of the inter-row return hose 414 is coupled to and supported by the return passage 114 of a second, preferably adjacent downforce controller (e.g., the downforce controller 100-2).

    [0023] The lift control hose 426 is in fluid communication with the lift control passage 116 of the first downforce controller 100-1. The lift control passage 116 of each downforce controller 100 is in fluid communication with the lift control passage 116 of an adjacent downforce controller 100 via an inter-row lift hose 416. The distal port of the lift control passage 116 of the distal downforce controller (e.g., the right-hand port of the lift control passage of the downforce controller 100-4 as illustrated in FIG. 4) is preferably capped with a cap 450. It should be appreciated in view of FIG. 4 and the description above that a first end of the inter-row lift hose 416 is coupled to and supported by the lift control passage 116 of a first downforce controller (e.g., the downforce controller 100-1) and a second end of the inter-row lift hose 416 is coupled to and supported by the lift control passage 116 of a second, preferably adjacent downforce controller (e.g., the downforce controller 100-2).

    [0024] It should be appreciated in light of FIG. 4 and the corresponding description above that each of the downforce controllers 100 (and thus the associated down chambers 136 of each of the cylinders 130) are in fluid communication "in series", e.g., fluid from the supply hose 422 passes through the supply passage 112 of the downforce controller 100-1 before reaching the supply passage 112 of the downforce controller 100-2. Likewise, each of the lift pressure chambers 160 are in fluid communication "in series", e.g., fluid from the lift control hose 426 passes through the lift control passage 116 of the downforce controller 100-1 before reaching the lift control passage 116 of the downforce controller 100-2.

    [0025] It should be appreciated that a single fluid control system 400 may control all of the row units 200 drawn by the toolbar 14, or a subset thereof. Moreover, it should be appreciated that multiple fluid control systems 400 may control separate subsets or "sections" of row units 200 such that the lift pressure in each section may be controlled independently. For example, three fluid control systems 400 may be used to independently control a right section comprising a first plurality of row units 200 mounted to a right portion of the toolbar 14, a center section comprising a second plurality of row units mounted to a central portion of the toolbar 14, and a left section comprising a third plurality of row units mounted to a left portion of the toolbar 14.

    Operation



    [0026] In operation of the fluid control system 400 and the electronic control system 300, the monitor 310 preferably receives a downforce signal from each downforce sensor 362. The monitor 310 preferably uses the downforce signal to display the downforce measured at each row unit 200. The monitor 310 preferably uses the downforce signal to select a target net downforce to be applied to each row unit 200 by each downforce controller 100. For example, if the downforce signal for a given row unit 200 is in excess of a threshold, the monitor 310 preferably reduces the target net downforce to be applied by the corresponding controller 100. In other embodiments, the monitor 310 allows the user to simply select a target net downforce for each downforce controller 100. Once the target net downforce is selected for each downforce controller, the monitor 310 preferably sends control signals to each down pressure control valve 140 and the lift pressure control valve 740 such that the net downforce applied by each downforce controller 100 more closely approximates the corresponding target net downforce. In some embodiments, the monitor 310 selects desired control pressures according to the methods disclosed in Applicant's co-pending U.S. patent application no 61/515,700.

    Downforce Controller - Alternative Embodiments



    [0027] Turning to FIG. 5, an alternative embodiment of a modified downforce controller 500 is illustrated in cross-section. The downforce controller 500 includes a modified manifold 510 and a modified conduit 520, allowing incorporation of an individual lift control valve 140-1 to control the pressure in the lift chamber 134. The individual lift pressure control valve 140-1 is preferably substantially similar to the pressure control valve 140. It should be appreciated that the right hand side of the manifold 510 is similar to the manifold 110 except that the lift control passage 116 is preferably omitted.

    [0028] The manifold 510 preferably includes a manifold body 502, a lift control conduit 520, and a cavity sized to receive the individual lift pressure control valve 140-1. The manifold body 502 preferably includes a supply passage 512 and a return passage 514. Each passage 512,514 preferably includes a left fitting, a right fitting, and an aperture connecting the left and right fittings. The manifold body 510 preferably includes a control pressure diagnostic passage 518 and a down chamber connection passage 511.

    [0029] The supply port of the individual lift pressure control valve 140-1 is in fluid communication with the supply passage 512. The return port of the individual lift pressure control valve 140-1 is in fluid communication with the return passage 514. The control port of the individual lift pressure control valve 140-1 is in fluid communication with the control pressure diagnostic passage 518. The control pressure diagnostic passage 518 is in fluid communication with the down chamber connection passage 511. The down chamber connection passage 511 is in fluid communication with the down chamber 136. The control pressure diagnostic passage 518 and the down chamber connection passage 511 collectively comprise a passage placing the control port of the individual lift pressure control valve 140-1 in fluid communication with the down chamber 136. The conduit 520 places the lift control passage 516 in fluid communication with the lift chamber 134. The control pressure diagnostic passage 518 is preferably capped with a cap (not shown) which may be removed in order to place a gauge or other pressure measurement device in fluid communication with the control port of the individual lift pressure control valve 140-1.

    [0030] Turning to FIG. 6, a modified fluid control system 600 is illustrated installed on four downforce controllers 500 (each installed on a respective row unit 200), the toolbar 14 and the tractor 5. The fluid control system 600 preferably includes the same supply 430 and tank 440 as the fluid control system 500.

    [0031] The supply passage 112 and return passage 114 of the first downforce controller 500-1 are in fluid communication with the supply 430 and the tank 440, respectively. As with the fluid control system 500, the supply passage 112 and the return passage 114 of each downforce controller 500 are in fluid communication with the supply passage 112 and the return passage 114, respectively, of an adjacent downforce controller 500 via the supply hose 412 and the return hose 414, respectively.

    [0032] Similarly, the supply passage 512 and return passage 514 of the rightmost downforce controller 500-4 are in fluid communication with the supply 430 and the tank 440, respectively. The supply passage 512 and the return passage 514 of each downforce controller 500 are in fluid communication with the supply passage 512 and the return passage 514, respectively, of an adjacent downforce controller 500 via an inter-row supply hose 612 and an inter-row return hose 614, respectively.

    [0033] The individual lift control valve 140-1 is preferably in electrical communication with the monitor 130. In operation of the modified fluid control system 600, the monitor 130 is preferably configured to select pressures of both the lift pressure control valve 140-1 and the down pressure control valve 140-1. The monitor 130 is preferably configured to alter the commanded lift pressure and down pressure for each downforce controller 500 based on the downforce signal received from the downforce sensor 362 of the corresponding row unit 200.

    [0034] In other embodiments of the downforce controller 500, the down chamber connection passage 511 is in fluid communication with the control port of the lift pressure control valve 140-1 via a pilot-operated blocking valve whose pilot pressure port is in fluid communication with the control port of the down pressure control valve 140-1 such that lift pressure is only applied when the down pressure exceeds a threshold. Similarly, in other embodiments of the downforce controller 100, the lift control passage 116 is in fluid communication with the conduit 120 via a pilot-operated blocking valve whose pilot pressure port is in fluid communication with the control port of the down pressure control valve 140 such that lift pressure is only applied when the down pressure exceeds a threshold. In such embodiments, the pilot-operated blocking valve is preferably housed within the manifold body.

    [0035] In other embodiments of the downforce controller 100 and the downforce controller 500, the lift pressure control valve 740 and/or the individual lift pressure control valve 140-1 are replaced with a manually operated pressure reducing-relieving valves such that the user may manually select the lift and/or down pressure applied to each row unit 200.

    [0036] In still other embodiments of the downforce controller 100, a spring is incorporated in the lift chamber 134 such that the spring is compressed as the rod 170 extends. A bottom of the spring is preferably adjustable from outside the cylinder (e.g., by a lockable sliding mechanism supporting an annular ring on which the spring rests) such that the user is enabled to adjust the compression and reaction force of the spring as the rod extends. In such embodiments, the conduit 120 and lift control passage 116 are preferably omitted.

    Diagnostic Methods



    [0037] In the event of a fluid leakage in one of the cylinders 130, the monitor 310 is preferably configured to carry out one or more diagnostic processes to identify the leaking cylinder.

    [0038] In a first diagnostic process, the monitor 310 preferably commands zero or small pressure at each of the down pressure control valves 140 and commands a lift pressure to the lift pressure control valve 740 theoretically sufficient (i.e., without system leakage) to raise all of the row units 200. The monitor 310 preferably alerts the operator to confirm that all of the row units 200 have raised. The monitor 310 then preferably increases the pressure commanded to each down pressure control valve 140 one at a time to a pressure theoretically sufficient to counter the lift pressure and lower the row units 200. The monitor 310 preferably alerts the operator to verify that each row unit 200 has been lowered.

    [0039] In a second diagnostic process, the monitor 310 preferably commands a pressure the lift pressure control valve 740 sufficient to raise the row units 200 and simultaneously commands a pressure to all of the down pressure control valves 140 theoretically sufficient to retain all of the row units 200 in a lowered position. The monitor 310 preferably alerts the operator to confirm that none of the row units 200 have raised. The monitor 310 then preferably reduces the pressure commanded to each down pressure control valve 140 one at a time such that each row unit 200 should raise. The monitor 310 preferably alerts the operator to verify that each row unit 200 has been raised.

    [0040] In alternative embodiments of the first and second diagnostic processes, rather than (or in addition to) alerting the operator to verify that the row units 200 have raised or lowered, the monitor 310 determines whether each row unit 200 is raised or lowered by comparing the signal received from each downforce sensor 362 to a threshold value; the threshold value preferably corresponds to a small amount of ground force (e.g., 10 pounds) on the row unit.

    [0041] The foregoing description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment of the apparatus, and the general principles and features of the system and methods described herein will be readily apparent to those of skill in the art. Thus, the present invention is not to be limited to the embodiments of the apparatus, system and methods described above and illustrated in the drawing figures, but is to be accorded the widest scope consistent with the scope of the appended claims.


    Claims

    1. A downforce controller (100) for a planter row unit (200), the downforce controller (100) comprising:

    a manifold (110) having a manifold body (102) and a cavity sized to receive a down pressure control valve (140), said manifold (110) in fluid communication with a pressure supply (430) and comprising a supply passage (112), a return passage (114), a lift control passage (116) and a lift control conduit (120);

    the down pressure control valve (140) being coupled to and supported by said manifold body (102), the down pressure control valve (140) including a flow control valve (150) having a supply port (152), a return port (154) and a control port (158), the flow control valve (150) configured to establish a control pressure at the control port (158) by selectively allowing flow between the control port (158), the supply port (152) and the return port (154); and

    a double-acting cylinder (130) having a barrel (132), a rod and a gland (138), wherein the rod (170) has a piston (174) separating an interior volume of the barrel (132) into a down chamber (136) and a lift chamber (134),

    wherein said down chamber (136) is in fluid communication with said control port (158), and wherein the lift control conduit (120) places the lift chamber (134) in fluid communication with the lift control passage (116),

    wherein the down pressure control valve (140) includes a solenoid (142) and is configured to selectively maintain any one of a continuous range of pressures at the control port (158) based on a signal received by the solenoid (142) to change an operating state of the down pressure control valve (140) to modify the control pressure at the control port (158), characterized in that the barrel (132) is mounted to the manifold body (102).


     
    2. The downforce controller (100) of claim 1 wherein the down pressure control valve (140) is an electro-hydraulic pressure reducing-relieving valve.
     
    3. The downforce controller (100) of claim 1, wherein said supply passage (112) is in fluid communication with said supply port (152), and wherein said return passage (114) is in fluid communication with said return port (154).
     
    4. A planter row unit (200) comprising the downforce controller of claim 1 and including a pair of furrow opening disk blades (244) and a pair of gauge wheels (248) selectively vertically adjustable relative to the disk blades (244) by a depth adjustment mechanism (268).
     
    5. The planter row unit (200) of claim 4, wherein the depth adjusting mechanism (268) pivots about a downforce sensor (362).
     
    6. The planter row unit (200) of claim 5, further comprising:
    an electrical control system (300), the electrical control system (300) comprising a monitor (310) configured to receive a downforce signal from the downforce sensor (362) and to select a target net downforce to be applied to said row unit (200).
     
    7. The planter row unit (200) of claim 6 wherein said monitor (310) is arranged to send a control signal to the down pressure control valve (140) and a lift pressure control valve (740) such that a net downforce applied by the downforce controller (100) approximates a corresponding target net downforce selected for the downforce controller (100).
     


    Ansprüche

    1. Anpressdruckregler (100) für eine Pflanzmaschinenreiheneinheit (200), wobei der Anpressdruckregler (100) das Folgende aufweist:

    einen Verteiler (110) mit einem Verteilerkörper (102) und einer Ausnehmung, die für das Aufnehmen eines Anpressdruckregelventils (140) dimensioniert ist, wobei sich der Verteiler (110) in einer Fluidverbindung mit einer Druckversorgung (430) befindet und einen Versorgungsdurchlass (112), einen Rückkehrdurchlass (114), einen Liftregeldurchlass (116) und eine Liftregelleitung (120) aufweist;

    wobei das Anpressdruckregelventil (140) mit dem Verteilerkörper (102) gekoppelt und durch diesen gelagert ist, wobei das Anpressdruckregelventil (140) ein Durchflussregelventil (150) mit einem Versorgungsanschluss (152), einem Rückkehranschluss (154) und einem Regelanschluss (158) aufweist, wobei das Durchflussregelventil (150) konfiguriert ist, um einen Regeldruck an dem Regelanschluss (158) zu etablieren, indem ein Fluss zwischen dem Regelanschluss (158), dem Versorgungsanschluss (152) und dem Rückkehranschluss (154) wahlweise ermöglicht wird; und

    einen doppeltwirkenden Zylinder (130) mit einem Zylinder (132), einer Stange und einer Buchse (138), wobei die Stange (170) einen Kolben (174) aufweist, der einen Innenraum des Zylinders (132) in eine Absenkkammer (136) und eine Liftkammer (134) unterteilt,

    wobei sich die Absenkkammer (136) in einer Fluidverbindung mit dem Regelanschluss (158) befindet und wobei die Liftregelleitung (120) die Liftkammer (134) in eine Fluidverbindung mit dem Liftregeldurchlass (116) bringt,

    wobei das Anpressdruckregelventil (140) ein Solenoid (142) aufweist und konfiguriert ist, um einen beliebigen Druck aus einer durchgehenden Bandbreite von Drücken an dem Regelanschluss (158) wahlweise beizubehalten, wobei dies auf einem Signal basiert, das durch das Solenoid (142) erhalten wurde, um einen Betriebszustand des Anpressdruckregelventils (140) zu verändern, um den Regeldruck an dem Regelanschluss (158) zu modifizieren, dadurch gekennzeichnet, dass der Zylinder (132) an dem Verteilerkörper (102) montiert ist.


     
    2. Anpressdruckregler (100) nach Anspruch 1, wobei das Anpressdruckregelventil (140) ein elektro-hydraulisches Drucksenk- und -entlastungsventil ist.
     
    3. Anpressdruckregler (100) nach Anspruch 1, wobei sich der Versorgungsdurchlass (112) in einer Fluidverbindung mit dem Versorgungsanschluss (152) und sich der Rückkehrdurchlass (41) in einer Fluidverbindung mit dem Rückkehranschluss (154) befindet.
     
    4. Pflanzmaschinenreiheneinheit (200) mit einem Anpressdruckregler nach Anspruch 1 und einem Paar von Furchen öffnenden Scheibenklingen (244) und einem Paar von Messrädern (248), die durch einen Tiefeneinstellmechanismus (268) relativ zu den Scheibenklingen (244) wahlweise vertikal einstellbar sind.
     
    5. Anpressdruckregler (100) nach Anspruch 4, wobei der Tiefeneinstellmechanismus (268) um einen Anpressdrucksensor (362) verschwenkt.
     
    6. Anpressdruckregler (100) nach Anspruch 5, weiterhin mit dem Folgenden:
    einem elektrischen Regelsystem (300), wobei das elektrische Regelsystem (300) einen Monitor (310) aufweist, der konfiguriert ist, um ein Anpressdrucksignal von dem Anpressdrucksensor (31) zu erhalten und einen Ziel-Netto-Anpressdruck auszuwählen, der auf die Reiheneinheit (200) anzuwenden ist.
     
    7. Anpressdruckregler (100) nach Anspruch 6, wobei der Monitor (310) angeordnet ist, um ein Regelsignal an das Anpressdruckregelventil (140) und ein Liftdruckregelventil (740) zu senden, sodass ein durch den Anpressdruckregler (100) aufgebrachter Netto-Anpressdruck annähernd einem entsprechenden Netto-Anpressdruck entspricht, der für den Anpressdruckregler (100) ausgewählt wurde.
     


    Revendications

    1. Unité de commande de pression au sol (100) destinée à une unité de plantation en sillon (200), l'unité de commande de pression au sol (100) comprenant :

    un collecteur (110) comportant un corps de collecteur (102) et une cavité dimensionnée afin de recevoir une vanne de commande de pression de descente (140), ledit collecteur (110) étant en communication fluidique avec une source de pression (430) et comprenant un passage d'alimentation (112), un passage de retour (114), un passage de commande de levage (116) et un conduit de commande de levage (120) ;

    la vanne de commande de pression de descente (140) étant couplée audit corps de collecteur (102) et supportée par celui-ci, la vanne de commande de pression de descente (140) comportant une vanne de commande de débit (150) comprenant un orifice d'alimentation (152), un orifice de retour (154) et un orifice de commande (158), la vanne de commande de débit (150) étant configurée de manière à établir une pression de commande au niveau de l'orifice de commande (158) en permettant de manière sélective un écoulement entre l'orifice de commande (158), l'orifice d'alimentation (152) et l'orifice de retour (154) ; et

    un vérin à double action (130) comportant un fût (132), une tige et un presse-étoupe (138), dans laquelle la tige (170) comporte un piston (174) séparant un volume intérieur du fût (132) en un compartiment de descente (136) et un compartiment de levage (134),

    dans laquelle ledit compartiment de descente (136) est en communication fluidique avec ledit orifice de commande (158) et dans laquelle le conduit de commande de levage (120) place le compartiment de levage (134) en communication fluidique avec le passage de commande de levage (116),

    dans laquelle la vanne de commande de pression de descente (140) comporte une bobine (142) et est configurée de manière à maintenir sélectivement l'une quelconque d'une plage continue de pressions au niveau de l'orifice de commande (158) sur la base d'un signal reçu par la bobine (142) afin de modifier un état de fonctionnement de la vanne de commande de pression de descente (140) de manière à modifier la pression de commande au niveau de l'orifice de commande (158),

    caractérisée en ce que le fût (132) est monté sur le corps de collecteur (102).


     
    2. Unité de commande de pression au sol (100) selon la revendication 1 dans laquelle la vanne de commande de pression de descente (140) est une vanne de limitation-réduction de pression électro-hydraulique.
     
    3. Unité de commande de pression au sol (100) selon la revendication 1, dans laquelle ledit passage d'alimentation (112) est en communication fluidique avec ledit orifice d'alimentation (152), et dans laquelle ledit passage de retour (114) est en communication fluidique avec ledit orifice de retour (154).
     
    4. Unité de plantation en sillon (200) comprenant l'unité de commande de pression au sol selon la revendication 1 et comportant une paire de lames en disque de formation de sillon (244) et une paire de roues de calibrage (248) pouvant être réglées sélectivement verticalement par rapport aux lames en disque (244) par un mécanisme de réglage de profondeur (268).
     
    5. Unité de plantation en sillon (200) selon la revendication 4, dans laquelle le mécanisme de réglage de profondeur (268) pivote par rapport à un capteur de pression au sol (362).
     
    6. Unité de plantation en sillon (200) selon la revendication 5, comprenant, en outre :
    un dispositif de commande électrique (300), le dispositif de commande électrique (300) comprenant un dispositif de contrôle (310) configuré de manière à recevoir un signal de pression au sol à partir du capteur de pression au sol (362) et à sélectionner une pression au sol nette de consigne à appliquer sur ladite unité de plantation en sillon (200).
     
    7. Unité de plantation en sillon (200) selon la revendication 6, dans laquelle ledit dispositif de contrôle (310) est agencé de manière à envoyer un signal de commande sur la vanne de commande de pression de descente (140) et une vanne de commande de pression de levage (740) de telle sorte qu'une pression au sol nette appliquée par l'unité de commande de pression au sol (100) se rapproche d'une pression au sol nette de consigne correspondante, sélectionnée par l'unité de commande de pression au sol (100).
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description