(19)
(11)EP 3 202 805 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.08.2022 Bulletin 2022/31

(21)Application number: 15847806.5

(22)Date of filing:  09.09.2015
(51)International Patent Classification (IPC): 
C08G 18/24(2006.01)
C08G 18/76(2006.01)
G02C 7/02(2006.01)
C08G 18/38(2006.01)
G02B 1/04(2006.01)
(52)Cooperative Patent Classification (CPC):
C08G 18/76; C08G 18/38; G02B 1/04; G02C 7/02
(86)International application number:
PCT/JP2015/075664
(87)International publication number:
WO 2016/052120 (07.04.2016 Gazette  2016/14)

(54)

POLYMERIZABLE COMPOSITION, TRANSPARENT RESIN, OPTICAL MATERIAL, PLASTIC LENS, AND METHOD FOR MANUFACTURING TRANSPARENT RESIN

POLYMERISIERBARE ZUSAMMENSETZUNG, TRANSPARENTES HARZ, OPTISCHES MATERIAL, KUNSTSTOFFLINSE UND VERFAHREN ZUR HERSTELLUNG EINES TRANSPARENTEN HARZES

COMPOSITION POLYMÉRISABLE, RÉSINE TRANSPARENTE AINSI QUE PROCÉDÉ DE FABRICATION DE CELLE-CI, MATÉRIAU OPTIQUE, ET LENTILLE EN PLASTIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.09.2014 JP 2014202415

(43)Date of publication of application:
09.08.2017 Bulletin 2017/32

(73)Proprietor: Hoya Lens Thailand Ltd.
Pathumthani 12130 (TH)

(72)Inventors:
  • IIJIMA, Takayuki
    Tokyo 160-8347 (JP)
  • KOUSAKA, Masahisa
    Tokyo 160-8347 (JP)

(74)Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56)References cited: : 
EP-A1- 0 676 428
JP-A- H11 167 006
JP-A- S59 172 459
JP-A- 2001 039 945
JP-A- 2011 088 933
US-A1- 2004 026 658
WO-A1-2010/067489
JP-A- S59 152 367
JP-A- 2000 047 003
JP-A- 2009 536 257
US-A- 3 981 901
US-A1- 2012 225 996
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a polymerizable composition containing a polythiol compound and a polyisocyanate compound, a transparent resin obtained from the polymerizable composition, an optical material containing the transparent resin, a plastic lens containing the optical material, and a method for manufacturing the transparent resin.

    Background Art



    [0002] It is known that a plastic lens having a high refractive index is obtained by a reaction between a polyisocyanate compound and a polythiol compound. For example, Patent Literature 1 discloses a method for manufacturing a polyurethane plastic lens having a high refractive index by heating a composition obtained by mixing an aliphatic polyisocyanate compound and an aliphatic polythiol compound such as pentaerythritol tetrakis-(thioglycolate) or trimethylolpropane tris-(thioglycolate).

    [0003]  Patent Literature 2 discloses a method of using a tetrafunctional polythiol compound such as pentaerythritol tetrakis(thioglycolate) or pentaerythritol tetrakis(mercaptopropionate) together with a bifunctional polythiol compound having a thiol group in order to increase the crosslinking degree of a resin.

    [0004] In addition, an ester compound of mercaptopropionic acid or mercaptoglycolic acid and a polyhydric alcohol is widely used as a polythiol compound which is a raw material of a plastic lens. As for a raw material of the ester compound, some literatures disclose a correlation among quality of the raw material, impurities contained in the raw material, and quality of an obtained lens.

    [0005] For example, Patent Literatures 3 to 6 disclose that the following problem occurs when the amount of impurities contained in pentaerythritol and mercaptocarboxylic acid as raw materials of pentaerythritol mercaptocarboxylate is increased. When the amount of impurities is increased, viscosity of a polymerizable composition obtained by mixing pentaerythritol mercaptocarboxylate and a polyiso(thio)cyanate compound is increased, and it may be difficult to handle the polymerizable composition. In addition, when the amount of impurities is increased, for example, a hue of a lens may be worse, or turbidity may be generated in a lens disadvantageously.

    [0006] Therefore, a method for manufacturing a plastic lens described in Patent Literature 3 suppresses turbidity of an obtained lens by setting the content of bispentaerythritol in pentaerythritol to 5.0% by mass or less. In addition, a method for manufacturing a plastic lens described in Patent Literature 4 suppresses turbidity of an obtained lens by setting the total content of sodium and calcium in pentaerythritol to 1.0% by mass or less and by setting the content of bispentaerythritol to 5.0% by mass or less. Furthermore, a method for manufacturing a plastic lens described in Patent Literature 5 suppresses turbidity of an obtained lens by setting the content of a bimolecular condensation thioester in mercaptocarboxylic acid to a predetermined value or less. In addition, a method for manufacturing a plastic lens described in Patent Literature 6 suppresses turbidity of an obtained lens by setting the total content of an alkali metal and an alkaline earth metal in pentaerythritol to 1.0% by mass or less.

    Citation List


    Patent Literature



    [0007] 

    Patent Literature 1: JP 60-199016 A

    Patent Literature 2: JP 63-46213 A

    Patent Literature 3: JP 10-120646 A

    Patent Literature 4: JP 2005-336104 A

    Patent Literature 5: WO 2007/122810 A

    Patent Literature 6: WO 2007/052329 A



    [0008] EP 0 676 428 A1 relates to different urethane-based plastic lenses having good optical properties and impact resistance. US 2004/026658 A1 equally relates to different compositions suitable for producing optical materials.

    [0009] US 2012/225996 A1 relates to a process for producing an internal mold release agent for optical material and a different polymerizable composition, a molded product and an optical lens.

    [0010] JP 2000 047003 A relates to a method of manufacturing plastic lenses but does not disclose a composition in which a combination of a specific isocyanate and a specific polythiol as defined in the claims of the present invention is used and the thiol equivalent ratio is set in a specific range defined in the claims.

    Summary of Invention


    Technical Problem



    [0011] However, according to methods described in Patent Literatures 1 and 2, a rate of polymerization between a polyisocyanate compound and a polythiol compound is high, and therefore reaction heat is high. Therefore, it is difficult to prevent generation of optical distortion and striae in an obtained plastic lens by thermal control of polymerization heat. Therefore, according to the methods described in Patent Literatures 1 and 2, optical distortion of a plastic lens may be increased to make it difficult to obtain a practical lens. Furthermore, according to the methods described in Patent Literatures 1 and 2, viscosity of a composition obtained by mixing a polyisocyanate compound and a polythiol compound is increased significantly with lapse of time, and therefore it may be difficult to inject the composition into a mold.

    [0012] In addition, among plastic lenses obtained by a reaction between a polyisocyanate compound and a polythiol compound, a plastic lens obtained by polymerizing a polymerizable composition containing a polythiol compound having at least three mercapto groups and a polyiso(thio)cyanate compound having at least one aromatic ring is expected as a plastic lens having a high refractive index and low dispersion. However, according to methods described in Patent Literatures 3 to 6, it is impossible to suppress generation of turbidity, optical distortion, or striae in a plastic lens obtained by polymerizing a polymerizable composition containing a polythiol compound having at least three mercapto groups and a polyiso(thio)cyanate compound having at least one aromatic ring.

    [0013]  Therefore, an object of an Example of the present invention is to provide a polymerizable composition which can suppress generation of turbidity, optical distortion, and striae in a transparent resin obtained therefrom, a transparent resin obtained from the polymerizable composition, an optical material containing the transparent resin, a plastic lens containing the optical material, and a method for manufacturing the transparent resin.

    Solution to Problem



    [0014] The present inventors made intensive studies in order to solve the above problem. As a result, the present inventors have found that a polythiol compound having at least three mercapto groups generates turbidity, optical distortion, and striae in a transparent resin obtained by polymerizing a polymerizable composition containing a polythiol compound having at least three mercapto groups and a
    polyiso (thio) cyanate compound having at least one aromatic ring. Intensive studies were further continued. As a result, surprisingly, the present inventors have found that the above problem can be solved by using a polythiol compound having at least three mercapto groups, having a value obtained by dividing a measured value of a thiol equivalent by a theoretical value of the thiol equivalent within a specific range. That is, the present invention is as follows.
    1. [1] A polymerizable composition comprising a polythiol compound having at least three mercapto groups and a polyiso (thio) cyanate compound which is at least one of tolylene diisocyanate, 4, 4'-diphenylmethane diisocyanate, and phenylene diisocyanate, wherein the thiol equivalent ratio which is a measured value of the thiol equivalent and is as defined in the description, is 0.975-0.995.
    2. [2] The polymerizable composition if [1], wherein the polythiol compound is an ester compound of a polyol compound and at least one of thioglycolic acid, mercaptopropionic acid, thiolactic acid and thiosalicylic acid.
    3. [3] The polymerizable composition of [2], wherein the polyol compound is at least one of pentaerythritol, glycerin, and trimethylol propane.
    4. [4] The polymerizable composition of any of [1]-[3], wherein the polyiso(thio)cyanate compound comprises tolylene diisocyanate.
    5. [5] A transparent resin obtained by polymerizing the polymerizable composition of any of [1]-[4].
    6. [6] The transparent resin of [5], wherein the ratio of the total number of urethane bonds with respect to the total number of thiourethane bonds contained in the transparent resin is ≤0.026.
    7. [7] Anoptical material comprising the transparent resin described in [5] or [6].
    8. [8] A plastic lens comprising the optical material described in [7].
    9. [9] A method for manufacturing a transparent resin, comprising subjecting the polymerizable composition described in any of [1]-[4] to casting polymerization.

    Advantageous Effects of Invention



    [0015] An Example of the present invention can provide a polymerizable composition which can suppress generation of turbidity, optical distortion, and striae in a transparent resin obtained therefrom, a transparent resin obtained from the polymerizable composition, an optical material containing the transparent resin, a plastic lens containing the optical material, and a method for manufacturing the transparent resin.

    Description of Embodiments


    [Polymerizable composition]



    [0016] The present invention is a polymerizable composition containing a polythiol compound having at least three mercapto groups and a polyiso(thio)cyanate compound which is at least one of tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and phenylene diisocyanate, wherein the thiol equivalent ratio which is a measured value of a thiol equivalent of the polythiol compound and is defined as hereinafter, is 0.975-0.995.. Hereinafter, the polymerizable composition of the present invention will be described in detail.

    (Polythiol compound having at least three mercapto groups)



    [0017] The polythiol compound having at least three mercapto groups, used for the polymerizable composition of the present invention is not particularly limited as long as being a compound used for manufacturing a transparent resin. Examples of the polythiol compound having at least three mercapto groups, used for the polymerizable composition of the present invention include an ester compound of a polyol compound such as pentaerythritol, glycerin, or trimethylol propane and an acid such as thioglycolic acid, mercaptopropionic acid, thiolactic acid, or thiosalicylic acid, 1,2,3-propanetrithiol, 1,2,3-trimercapto benzene, 1,2,4-trimercapto benzene, 1,3,5-trimercapto benzene, 1,2,3-tris(mercaptomethyl) benzene, 1,2,4-tris(mercaptomethyl) benzene, 1,3,5-tris(mercaptomethyl) benzene, 1,2,3-tris(2-mercaptoethyl) benzene, 1,2,4-tris(2-mercaptoethyl) benzene, 1,3,5-tris(2-mercaptoethyl) benzene, 1,2,3-tris(2-mercaptoethyleneoxy) benzene, 1,2,4-tris(2-mercaptoethyleneoxy) benzene, 1,3,5-tris(2-mercaptoethyleneoxy) benzene, 1,2,3,4-tetramercapto benzene, 1,2,3,5-tetramercapto benzene, 1,2,4,5-tetramercapto benzene, 1,2,3,4-tetrakis(mercaptomethyl) benzene, 1,2,3,5-tetrakis(mercaptomethyl) benzene, 1,2,4,5-tetrakis(mercaptomethyl) benzene, 1,2,3,4-tetrakis(2-mercaptoethyl) benzene, 1,2,3,5-tetrakis(2-mercaptoethyl) benzene, 1,2,4,5-tetrakis(2-mercaptoethyl) benzene, 1,2,3,4-tetrakis(2-mercaptoethyleneoxy) benzene, 1,2,3,5-tetrakis(2-mercaptoethyleneoxy) benzene, 1,2,4,5-tetrakis(2-mercaptoethyleneoxy) benzene, 1,2,3-tris(2-mercaptoethylthio) benzene, 1,2,4-tris(2-mercaptoethylthio) benzene, 1,3,5-tris(2-mercaptoethylthio) benzene, 1,2,3,4-tetrakis(2-mercaptoethylthio) benzene, 1,2,3,5-tetrakis(2-mercaptoethylthio) benzene, 1,2,4,5-tetrakis(2-mercaptoethylthio) benzene, 1,2,3-tris(2-mercaptoethylthio) propane, and tetrakis(2-mercaptoethylthiomethyl) methane. Note that examples of the ester compound of a polyol compound and an acid include trimethylolpropane tris(2-mercaptoacetate), trimethylolpropane tris(3-mercaptopropionate), pentaerythritol tetrakis(2-mercapto acetate), and pentaerythritol tetrakis(3-mercaptopropionate). These polythiol compounds may be used singly or in combination of two or more kinds thereof.

    [0018] Among these polythiol compounds, an ester compound of a polyol compound and at least one selected from a group consisting of thioglycolic acid, mercaptopropionic acid, thiolactic acid, and thiosalicylic acid is preferable because of reduced odors during polishing of an obtained transparent resin, or the like. In addition, the polyol compound is preferably at least one selected from a group consisting of pentaerythritol, glycerin, and trimethylol propane.

    [0019] The polythiol compound contained in the polymerizable composition of the present invention may contain only a polythiol compound having at least three mercapto groups. In addition, the polythiol compound contained in the polymerizable composition of the present invention may contain a polythiol compound other than the polythiol compound having at least three mercapto groups within a range not impairing an effect of the present invention.

    (Polyiso(thio)cyanate compound having at least one aromatic ring)



    [0020] The polyiso(thio)cyanate compound having at least one aromatic ring, used for the polymerizable composition of the present invention is not particularly limited as long as being a compound having at least one aromatic ring in one molecule, having two or more iso(thio)cyanate groups, and used for manufacturing a transparent resin. The polyiso(thio)cyanate compound having at least one aromatic ring is preferably an aromatic isocyanate. Examples of the polyiso(thio)cyanate compound include an aromatic polyisocyanate compound such as 1,2-diisocyanatobenzene, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, ethyl phenylene diisocyanate, isopropyl phenylene diisocyanate, dimethyl phenylene diisocyanate, diethyl phenylene diisocyanate, diisopropyl phenylene diisocyanate, trimethylbenzene triisocyanate, benzene triisocyanate, biphenyl diisocyanate, toluidine diisocyanate, 4,4'-methylene bis(phenyl isocyanate), 4,4'-methylene bis(2-methylphenyl isocyanate), bibenzyl-4,4'-diisocyanate, or bis(isocyanatophenyl) ethylene;

    a polyisocyanate compound containing an aromatic ring compound, such as xylylene diisocyanate, bis(isocyanatoethyl) benzene, bis(isocyanatopropyl) benzene, α,α,α',α'-tetramethyl xylylene diisocyanate, bis(isocyanatobutyl) benzene, bis(isocyanatomethyl) naphthalene, or bis(isocyanatomethyl phenyl) ether;

    an aromatic sulfide polyisocyanate compound such as 2-isocyanatophenyl-4-isocyanatophenyl sulfide, bis(4-isocyanatophenyl) sulfide, or bis(4-isocyanatomethyl phenyl) sulfide; an aromatic disulfide isocyanate compound such as bis(4-isocyanatophenyl) disulfide, bis(2-methyl-5-isocyanatophenyl) disulfide, bis(3-methyl-5-isocyanatophenyl) disulfide, bis(3-methyl-6-isocyanatophenyl) disulfide, bis(4-methyl-5-isocyanatophenyl) disulfide, bis(3-methoxy-4-isocyanatophenyl) disulfide, or bis(4-methoxy-3-isocyanatophenyl) disulfide; and

    an aromatic polyisothiocyanate compound such as 1,2-diisothiocyanatobenzene, 1,3-diisothiocyanatobenzene, 1,4-diisothiocyanatobenzene, 2,4-diisothiocyanatotoluene, 2,5-diisothiocyanato-m-xylene, 4,4'-methylene bis(phenyl isothiocyanate), 4,4'-methylene bis(2-methylphenyl isothiocyanate), 4,4'-methylene bis(3-methylphenyl isothiocyanate), 4,4'-diisothiocyanatobenzophenone, 4,4'-diisothiocyanato-3,3'-dimethyl benzophenone, or bis(4-isothiocyanatophenyl) ether. These polyiso(thio)cyanate compounds may be used singly or in combination of two or more kinds thereof.



    [0021] Among these polyiso(thio)cyanate compounds, at least one selected from a group consisting of tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and phenylene diisocyanate is used from a viewpoint of suppressing generation of turbidity, optical distortion, and striae in an obtained transparent resin.

    [0022] The polyiso(thio)cyanate compound contained in the polymerizable composition of the present invention may contain only a polyiso(thio)cyanate compound having at least one aromatic ring. In addition, the polyiso (thio) cyanate compound contained in the polymerizable composition of the present invention may contain another polyiso(thio)cyanate compound containing no aromatic ring in addition to the polyiso (thio) cyanate compound having at least one aromatic ring within a range not impairing an effect of the present invention.

    [0023] The other polyisocyanate compound is not particularly limited as long as being a compound containing no aromatic ring, used for a transparent resin. Examples of the other polyiso(thio)cyanate compound include an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, 2,2-dimethyl pentane diisocyanate, 2,2,4-trimethyl hexane diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethyl hexamethylene diisocyanate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyl octane, bis(isocyanatoethyl) carbonate, bis(isocyanatoethyl) ether, lysine diisocyanatomethyl ester, or lysine triisocyanate;

    a sulfur-containing aliphatic polyisocyanate compound such as bis(isocyanatomethyl) sulfide, bis(isocyanatoethyl) sulfide, bis(isocyanatopropyl) sulfide, bis(isocyanatohexyl) sulfide, bis(isocyanatomethyl) sulfone, bis(isocyanatomethyl) disulfide, bis(isocyanatoethyl) disulfide, bis(isocyanatopropyl) disulfide, bis(isocyanatomethyl thio) methane, bis(isocyanatoethyl thio) methane, bis(isocyanatomethyl thio) ethane, bis(isocyanatoethyl thio) ethane, 1,5-diisocyanate-2-isocyanatomethyl-3-apentane, 1,2,3-tris(isocyanatomethyl thio) propane, 1,2,3-tris(isocyanatoethyl thio) propane, 3,5-dithia-1,2,6,7-heptane tetraisocyanate, 2,6-diisocyanatomethyl-3,5-dithia-1,7-heptane diisocynate, 2,5-diisocyanatomethyl thiophene, or 4-isocyanatoethyl thio-2,6-dithia-1,8-octane diisocyanate;

    an aliphatic polyisothiocyanate compound such as 1,2-diisothiocyanatoethane or 1,6-diisothiocyanatohexane; an alicyclic polyisothiocyanate compound such as cyclohexane diisothiocyanate;

    a carbonyl isothiocyanate compound such as 1,3-benzene dicarbonyl diisothiocyanate, 1,4-benzene dicarbonyl diisothiocyanate, or (2,2-pyridine)-4,4-dicarbonyl diisothiocyanate; a sulfur-containing aliphatic iso(thio)cyanate compound such as thiobis(3-isothiocyanatopropane), thiobis(2-isothiocyanatoethane), or dithiobis(2-isothiocyanatoethane).

    a sulfur-containing alicyclic polyisocyanate compound such as natomethyl-2-methyl-1,3-dithiolane; a sulfur-containing alicyclic compound such as 2,5-diisothiocyanatothiophene or 2,5-diisothiocyanato-1,4-dithiane; and

    a compound having an isocyanato group and an isothiocyanato group, such as 1-isocyanato-6-isothiocyanatohexane, 1-isocyanato-4-isothiocyanatocyclohexane, 1-isocyanato-4-isothiocyanatobenzene, 4-methyl-3-isocyanato-1-isothiocyanatobenzene, 2-isocyanato-4,6-diisothiocyanato 1,3,5-triazine, 4-isocyanatophenyl-4-isothiocyanatophenyl sulfide, or 2-isocyanatoethyl-2-isothiocyanatoethyl disulfide. These polyiso(thio)cyanate compounds may be used singly or in combination of two or more kinds thereof.



    [0024] In addition to the polyiso (thio) cyanate compound having at least one aromatic ring, a halogen substitution product thereof such as a chlorine substitution product thereof or a bromine substitution product thereof, an alkyl substitution product thereof, alkoxy substitution product thereof, a nitro substitution product thereof, a prepolymer type modified product thereof with a polyhydric alcohol, a carbodiimide modified product thereof, a urea modified product thereof, a biuret modified product thereof, a dimerization or trimerization reaction product thereof can be used. These compounds may be used singly or in combination of two or more kinds thereof.

    (Thiol equivalent)



    [0025] Here, a thiol equivalent of a polythiol compound is a value obtained by dividing the number of thiol groups included in one molecule by a molecular weight. A measured value of a thiol equivalent of a polythiol compound is a thiol equivalent obtained as follows.

    [0026] To about 0.1 g of a polythiol compound, 30 mL of chloroform and 30 mL of 2-propanol are added to obtain a sample solution. To the sample solution, an iodine solution of 0.05 mol/L is dropwise added, and a point at which the brown color of the iodine solution dropwise added does not disappear is used as an end point. A measured value of a thiol equivalent is calculated from the following formula.



    [0027] Here, a theoretical value of a thiol equivalent of a polythiol compound is a calculation value obtained by dividing the number of thiol groups included in one molecule by a molecular weight.

    [0028] A thiol equivalent ratio which is a measured value of a thiol equivalent of a polythiol compound having at least three mercapto groups with respect to a theoretical value of the thiol equivalent is 0.975 -0.995. When the above value is 0.975 or more and 0.995 or less, it is possible to suppress generation of turbidity, optical distortion, and striae in a transparent resin obtained from a polymerizable composition.

    [0029] Note that the thiol equivalent ratio is a value obtained by rounding off the fourth digit after the decimal point.

    (Use ratio)



    [0030] A use ratio between a polythiol compound having at least three mercapto groups and a polyiso(thio)cyanate compound having at least one aromatic ring is preferably within a range of a SH group/NCO group = 0.3 to 2.0, and more preferably within a range of a SH group/NCO group = 0.7 to 1.5.

    (Other components)



    [0031] The polymerizable composition of the present invention may contain only a polythiol compound having at least three mercapto groups and a polyiso (thio) cyanate compoundwhich is at least one of tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and phenylene diisocyanate. However, the polymerizable composition of the present invention may contain a compound other than the polythiol compound having at least three mercapto groups and the polyiso(thio)cyanate compound having at least one aromatic ring within a range not impairing an effect of the present invention, as necessary. Examples of such a compound include a compound copolymerizable with the above compounds, an active hydrogen compound such as an amine, an epoxy compound, an olefin compound, a carbonate compound, an ester compound, a metal, a metal oxide, an organic metal compound, and an inorganic substance. These compounds may be used singly or in combination of two or more kinds thereof.

    [0032] In addition, various substances such as a chain extender, a crosslinker, a light stabilizer, an ultraviolet absorber, an antioxidant, an oil-soluble dye, a filler, a release agent, or a bluing agent may be added to the polymerizable composition of the present invention according to a purpose. In addition, in order to adjust a reaction rate to a desired reaction rate, a known reaction catalyst used in manufacturing polyurethane can be added appropriately to the polymerizable composition of the present invention.

    [Transparent resin]



    [0033] The transparent resin of the present invention is obtained by polymerizing the polymerizable composition of the present invention. A ratio of the total number of urethane bonds with respect to the total number of thiourethane bonds contained in the transparent resin is preferably 0.026 or less, and more preferably 0.020 or less. When the ratio of the total number of urethane bonds with respect to the total number of thiourethane bonds is 0.026 or less, optical distortion or striae is hardly generated disadvantageously in the transparent resin even when the transparent resin has a large central thickness or a large peripheral thickness. Hereinafter, a method for manufacturing the transparent resin of the present invention will be exemplified.

    (Method for manufacturing transparent resin)



    [0034] A method for manufacturing the transparent resin of the present invention includes a step of subjecting the polymerizable composition of the present invention to casting polymerization. Specifically, first, a polymerizable composition is manufactured by mixing a polythiol compound having at least three mercapto groups and a polyiso (thio) cyanate compound according to the invention. The polymerizable composition is degassed, as necessary. Thereafter, the polymerizable composition is injected into a mold, and the polymerizable composition which has been injected into the mold is polymerized. For example, a mold formed of glass or metal is used for the mold. When the polymerizable composition is polymerized in the mold, for example, polymerization time is from 3 to 96 hours, and a polymerization temperature is from 0 to 130°C. In order to improve a releasing property of the transparent resin manufactured by polymerizing the polymerizable composition from the mold, a release agent may be applied to a release surface of the mold, or a release agent may be added to the polymerizable composition.

    [0035] Turbidity, optical distortion, or striae is hardly observed in the transparent resin obtained in this manner. In addition, the transparent resin has a high refractive index and low dispersion, further has excellent heat resistance, durability, and impact resistance, and has a light weight. Therefore, the transparent resin of the present invention is preferably used as an optical material of an optical element such as a lens for eyeglasses or a lens for a camera.

    [Optical material]



    [0036] The optical material of the present invention comprises the transparent resin of the present invention. Therefore, turbidity, optical distortion, or striae is hardly observed in the optical material of the present invention. In addition, the optical material of the present invention has a high refractive index and low dispersion, further has excellent heat resistance, durability, and impact resistance, and has a light weight. The optical material of the present invention may contain only the transparent resin of the present invention or may comprise another transparent resin as well. Examples of the other transparent resin include polymethyl methacrylate, polycarbonate, a cycloolefin polymer, an acrylic resin, a fluorine resin, polyimide, an epoxy resin, a styrene polymer, polyethylene terephthalate, and polyethylene.

    [Plastic lens]



    [0037] The plastic lens of the present invention comprises the optical material of the present invention. Therefore, turbidity, optical distortion, or striae is hardly observed in the plastic lens of the present invention. In addition, the plastic lens of the present invention has a high refractive index and low dispersion, further has excellent heat resistance, durability, and impact resistance, and has a light weight. The plastic lens of the present invention may contain only the optical material of the present invention or may comprise another optical material.

    [0038] In order to impart anti-reflection or high hardness, improve wear resistance, improve chemical resistance, or impart an anti-fogging property or a fashion property, the plastic lens of the present invention may be subjected to a physical or chemical treatment such as surface polishing, an antistatic treatment, a hard coat treatment, a non-reflective coat treatment, a dyeing treatment, or a dimming treatment, as necessary.

    [0039] In the present invention, as for the examples of components, contents, and physical properties, matters exemplified or described as a preferable range in the detailed description of the invention may be combined with each other arbitrarily.

    [0040] In addition, by adjusting the composition described in Examples so as to be the composition described in the detailed description of the invention, the invention can be performed in a similar manner to Examples in the entire claimed

    composition range.


    [Examples]



    [0041] Hereinafter, the present invention will be described more specifically based on Examples.

    [0042] A refractive index, Abbe number, transparency, optical distortion, and striae were evaluated for plastic lenses in Examples and Comparative Examples.

    (Refractive index and Abbe number)



    [0043] A refractive index of a plastic lens was measured for light having a wavelength of F' line (488.0 nm), C' line (643.9 nm) or e-line (546.1 nm) using a KPR-2000 type precision refractometer manufactured by Kalnew optical Industry Co., Ltd. at 20°C. Abbe number was calculated from the following formula.

    ne indicates a refractive index measured with light having a wavelength of e-line. nF' indicates a refractive index measured with light having a wavelength of F' line. nC' indicates a refractive index measured with light of C' line.

    (Transparency)



    [0044] The resulting plastic lens was visually observed under a fluorescent lamp in the dark, and transparency of the plastic lens was evaluated in the following three stages.

    No fogging or precipitation of an opaque substance is observed: VG (Very Good)

    Fogging and/or precipitation of an opaque substance is slightly observed: G (Good)

    Terrible fogging or precipitation of an opaque substance is clearly observed: B (Bad)



    [0045] A plastic lens having an evaluation result of VG or G has no practical problem in transparency. On the other hand, a plastic lens having an evaluation result of B is unsuitable practically.

    (Optical distortion)



    [0046] The resulting plastic lens was visually observed using a strain scope, and optical distortion of the plastic lens was evaluated in the following three stages.

    No optical distortion is observed: VG (Very Good)

    Optical distortion is slightly observed: G (Good)

    Much optical distortion is observed: B (Bad)



    [0047] A plastic lens having an evaluation result of VG or G has no practical problem in optical distortion. On the other hand, a plastic lens having an evaluation result of B is unsuitable practically.

    (Striae)



    [0048] The resulting plastic lens was visually observed by a schlieren method, and striae of the plastic lens was evaluated in the following three stages.

    No striae is observed: VG (Very Good)

    Striae is slightly observed: G (Good)

    Much striae is observed: B (Bad)



    [0049] A plastic lens having an evaluation result of VG or G has no practical problem in striae. On the other hand, a plastic lens having an evaluation result of B is unsuitable practically.

    [0050] A theoretical value of a thiol equivalent of a polythiol compound used in manufacturing each of plastic lenses in Examples and Comparative Examples was calculated as follows, and a measured value was measured as follows. A thiol equivalent ratio was calculated using these results.

    (Theoretical value of thiol equivalent and measured value thereof)



    [0051] A theoretical value of a thiol equivalent was calculated by dividing the number of thiol groups included in one molecule of a polythiol compound used in manufacturing a plastic lens by a molecular weight. In addition, a measured value of a thiol equivalent of a polythiol compound used in manufacturing a plastic lens was measured by the following method.

    [0052] To about 0.1 g of a polythiol compound, 30 mL of chloroform and 30 mL of 2-propanol were added to obtain a sample solution. To the sample solution, an iodine solution of 0.05 mol/L was dropwise added, and a point at which the brown color of the iodine solution dropwise added did not disappear was used as an end point. A measured value of a thiol equivalent was calculated from the following formula.


    (Thiol equivalent ratio)



    [0053] A thiol equivalent ratio was calculated by dividing a measured value of a thiol equivalent of a polythiol compound having at least three mercapto groups by a theoretical value of the thiol equivalent.

    [0054] Subsequently, plastic lenses in Examples and Comparative Examples were manufactured as follows.

    (Example 1)



    [0055] A mixture obtained by thoroughly stirring and mixing 49.7 parts by weight of pentaerythritol tetrakismercaptoacetate (hereinafter, referred to as PETMA), 50.7 parts by weight of tolylene diisocyanate (hereinafter referred to as TDI), 0.02 parts by weight of dimethyl tin dichloride, and 0.30 parts by weight of a mixture of butoxyethyl acid phosphate and dibutoxyethyl acid phosphate (trade name: JP-506 manufactured by Johoku Chemical Co., Ltd.) at room temperature was degassed under a reduced pressure of 5 mmHg to prepare a homogeneous monomer mixture. The monomer mixture was injected into a mold formed of a pair of glass molds and a resin gasket. Note that the above pair of glass molds had an upper mold curvature of 600 mm and a lower mold curvature of 120 mm, and the mold was assembled such that a plastic lens had a central thickness of 5 mm and a diameter of 75 mm.

    [0056] After the monomer mixture was injected into the mold, the temperature was raised from 20°C to 120°C over 15 hours, heating polymerization was performed at 120°C for four hours, cooling was performed, and a plastic lens was taken out from the mold to obtain a plastic lens in Example 1.

    (Example 2)



    [0057] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 2 except that 55.0 parts by weight of trimethylolpropane tris(3-mercaptopropionate) (hereinafter, referred to as TMTP) and 45.8 parts by weight of TDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 3)



    [0058] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 3 except that 116.8 parts by weight of pentaerythritol tetrakismercaptopropionate (hereinafter, referred to as PETMP) and 87.4 parts by weight of TDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 4)



    [0059] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 4 except that 58.9 parts by weight of 2,3-dimercaptoethylthio-1-mercaptopropane (hereinafter, referred to as DMMTP) and 59.1 parts by weight of TDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 5)



    [0060] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 5 except that 33.4 parts by weight of PETMA, 32.8 parts by weight of dimercaptomethyl dithiane (hereinafter, referred to as DMMD), and 53.8 parts by weight of TDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 6)



    [0061] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 6 except that 117.5 parts by weight of PETMP, 46.6 parts by weight of TDI, and 37.9 parts by weight of hexamethylene diisocyanate (hereinafter, referred to as HDI) were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 7)



    [0062] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 7 except that 54.5 parts by weight of PETMA, 20.9 parts by weight of diphenylmethane diisocyanate (hereinafter, referred to as MDI), and 27.1 parts by weight of HDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 8)



    [0063] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 8 except that 52.0 parts by weight of PETMP, 20.6 parts by weight of MDI, and 25.0 parts by weight of HDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 9)



    [0064] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 9 except that 59.4 parts by weight of 1,2,4-tris(mercaptomethyl) cyclohexane (hereinafter, referred to as MMCH) and 50.6 parts by weight of TDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Example 10)



    [0065] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 10 except that 35.5 parts by weight of PETMA, 26.8 parts by weight of PETMP, and 47.7 parts by weight of TDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of

    TDI.


    (Comparative Example 1)



    [0066] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 11 except that 113.0 parts by weight of PETMP and 87.0 parts by weight of xylylenediisocyanate (hereinafter, referred to as XDI) were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Comparative Example 2)



    [0067] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Example 12 except that 120.2 parts by weight of DMMTP and 130.8 parts by weight of XDI were used in place of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.

    (Comparative Example 3)



    [0068] A polymerizable composition was prepared in a similar manner to Example 1 to manufacture a plastic lens in Comparative Example 3 except that PETMA different from PETMA used in Example 1 was used.

    (Comparative Example4)



    [0069] A polymerizable composition was prepared in a similar manner to Example 2 to manufacture a plastic lens in Comparative Example 4 except that TMTP different from TMTP used in Example 2 was used.

    (Comparative Example5)



    [0070] A polymerizable composition was prepared in a similar manner to Example 3 to manufacture a plastic lens in Comparative Example5except that PETMP different from PETMP used in Example 3 was used.

    (Comparative Example6)



    [0071] A polymerizable composition was prepared in a similar manner to Example 7 to manufacture a plastic lens in Comparative Example 6 except that PETMA different from PETMA used in Example 7 was used.

    (Comparative Example7)



    [0072] A polymerizable composition was prepared in a similar manner to Example 10 to manufacture a plastic lens in Comparative Example 7 except that PETMA different from PETMA used in Example 10 was used and PETMP different from PETMP used in Example 10 was used.

    (Comparative Example8)



    [0073] A polymerizable composition was prepared in a similar manner to Comparative Example7 to manufacture a plastic lens in Comparative Example 8 except that PETMA different from PETMA used in Comparative Example 7 was used.

    (Comparative Example9)



    [0074] A polymerizable composition was prepared in a similar manner to Comparative Example 1 to manufacture a plastic lens in Comparative Example 9 except that PETMP different from PETMP used in Comparative Example 1 was used.

    (Result)



    [0075] The following Table 1 indicates a thiol equivalent of a polythiol compound used for manufacturing each of plastic lenses in Examples and Comparative Examples, and a thiol equivalent ratio thereof.

    [Table 1]



    [0076] 
    Table 1 Thiol equivalent of polythiol compound and thiol equivalent ratio thereof
     IsocyanatePolythiol compoundMeasured value of thiol equivalent (a) (meq/g)Theoretical value of thiol equivalent (b) (meq/g)Thiol equivalent ratio(a)/(b)
    Example 1 TDI PETMA 9.092 9.247 0.983
    Example 2 TDI TMTP 7.448 7.527 0.989
    Example 3 TDI PETMP 8.004 8.186 0.978
    Example 4 TDI DMMTP 11.382 11.516 0.988
    Example 5 TDI PETMA 9.092 9.247 0.983
    DMMD - - -
    Example 6 TDI, HDI PETMP 8.031 8.186 0.981
    Example 7 MDI, HDI PETMA 9.092 9.247 0.983
    Example 8 MDI, HDI PTEMP 8.031 8.186 0.981
    Example 9 TDI MMCH 13.175 13.488 0.977
    Example 10 TDI PETMA 9.092 9.247 0.983
    PETMP 8.031 8.186 0.981
    Comparative Example 1 XDI PETMP 8.031 8.186 0.981
    Comparative Example 2 XDI DMMTP 11.382 11.516 0.988
    Comparative Example 3 TDI PETMA 8.978 9.247 0.971
    Comparative Example4 TDI TMTP 7.265 7.527 0.965
    Comparative Example 5 TDI PETMP 7.943 8.186 0.970
    Comparative Example 6 MDI, HDI PETMA 8.962 9.247 0.969
    Comparative Example 7 TDI PETMA 9.015 9.247 0.975
    PETMP 7.943 8.186 0.970
    Comparative Example 8 TDI PETMA 8.927 9.247 0.965
    PETMP 7.943 8.186 0.970
    Comparative Example9 XDI PETMP 7.943 8.186 0.970


    [0077] Table 2 indicates an evaluation result of a refractive index, Abbe number, transparency, optical distortion, and striae in plastic lenses in Examples and Comparative Examples. Note that VG, G, or B as an evaluation result has a meaning described above.

    [Table 2]



    [0078] 
    Table 2 Evaluation result of plastic lenses in Examples and Comparative Examples
     Refractive index neAbbe number veTransparencyOptical distortionStriae
    Example 1 1.61 30 VG VG VG
    Example 2 1.61 30 VG VG VG
    Example 3 1.61 31 VG VG VG
    Example 4 1.66 30 VG VG VG
    Example 5 1.65 30 VG VG VG
    Example 6 1.59 32 VG VG VG
    Example 7 1.60 32 VG VG VG
    Example 8 1.60 31 VG VG VG
    Example 9 1.66 36 VG VG VG
    Example 10 1.60 35 VG VG VG
    Comparative Example 1 1.60 36 VG VG G
    Comparative Example 2 1.66 33 VG VG G
    Comparative Example 3 1.61 30 VG B B
    Comparative Example 4 1.61 30 G B B
    Comparative Example 5 1.61 31 VG B B
    Comparative Example 6 1.60 32 G B B
    Comparative Example 7 1.60 35 VG G B
    Comparative Example 8 1.60 35 VG B B
    Comparative Example 9 1.60 36 VG G B


    [0079] Plastic lenses in Examples 1 to 10 exhibited satisfactory results in all the evaluation items of a refractive index, Abbe number, transparency, optical distortion, and striae. On the other hand, plastic lenses in Comparative Examples 3 to 6 and 8 exhibited satisfactory results in the evaluation items of a refractive index, Abbe number, and transparency, but exhibited unsatisfactory results in the evaluation items of optical distortion and striae. In addition, plastic lenses in Comparative Examples 7 and 9 exhibited satisfactory results in the evaluation items of a refractive index, Abbe number, transparency, and optical distortion, but exhibited unsatisfactory results in striae.


    Claims

    1. A polymerizable composition comprising

    - a polythiol compound having at least three mercapto groups; and

    - a polyiso(thio)cyanate which is at least one of tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and phenylene diisocyanate,

    wherein the thiol equivalent ratio which is a measured value of a thiol equivalent of the polythiol compound with respect to a theoretical value of the thiol equivalent and is as defined in the description, is 0.975-0.995.
     
    2. The polymerizable composition of claim 1, wherein the polythiol compound is an ester compound of a polyol compound and at least one of thioglycolic acid, mercaptopropionic acid, thiolactic acid and thiosalicylic acid.
     
    3. The polymerizable composition of claim 2, wherein the polyol compound is at least one of pentaerythritol, glycerin, and trimethylol propane.
     
    4. The polymerizable composition of any of claims 1-3, wherein the polyiso(thio)cyanate compound comprises tolylene diisocyanate.
     
    5. A transparent resin obtained by polymerizing the polymerizable composition of any of claims 1-4.
     
    6. The transparent resin of claim 5, wherein the ratio of the total number of urethane bonds with respect to the total number of thiourethane bonds contained in the transparent resin is ≤ 0.026.
     
    7. An optical material comprising the transparent resin of claim 5 or 6.
     
    8. A plastic lens comprising the optical material of claim 7.
     
    9. A method for manufacturing a transparent resin, comprising subjecting the polymerizable composition of any of claims 1-4 to casting polymerization.
     


    Ansprüche

    1. Polymerisierbare Zusammensetzung, umfassend:

    - eine Polythiolverbindung mit mindestens drei Mercaptogruppen; und

    - ein Polyiso(thio)cyanat das mindestens eines aus Tolylendiisocyanat, 4,4'-Diphenylmethandiisocyanat und Phenylendiisocyanat ist,

    wobei das Thiol-Äquivalentverhältnis, das ein gemessener Wert eines Thiol-Äquivalents der Polythiolverbindung in Bezug auf einen theoretischen Wert des Thiol-Äquivalents ist und wie in der Beschreibung definiert ist, 0,975-0,995 beträgt.
     
    2. Polymerisierbare Zusammensetzung gemäß Anspruch 1, wobei die Polythiolverbindung eine Esterverbindung einer Polyolverbindung und mindestens einer aus Thioglykolsäure, Mercaptopropionsäure, Thiomilchsäure und Thiosalicylsäure ist.
     
    3. Polymerisierbare Zusammensetzung gemäß Anspruch 2, wobei die Polyolverbindung mindestens eine aus Pentaerythrit, Glycerin und Trimethylolpropan ist.
     
    4. Polymerisierbare Zusammensetzung gemäß mindestens einer der Ansprüche 1-3, wobei die Polyiso(thio)cyanatverbindung Tolylendiisocyanat umfasst.
     
    5. Transparentes Harz, erhalten durch Polymerisation der polymerisierbaren Zusammensetzung gemäß mindestens einem der Ansprüche 1-4.
     
    6. Transparentes Harz gemäß Anspruch 5, wobei das Verhältnis der Gesamtzahl der Urethanbindungen zur Gesamtzahl der in dem transparenten Harz enthaltenen Thiourethanbindungen ≤ 0,026 ist.
     
    7. Optisches Material, umfassend das transparente Harz gemäß Anspruch 5 oder 6.
     
    8. Kunststofflinse, umfassend das optische Material gemäß Anspruch 7.
     
    9. Verfahren zur Herstellung eines transparenten Harzes, umfassend das Unterziehen der polymerisierbaren Zusammensetzung gemäß mindestens einem der Ansprüche 1-4 einer Gießpolymerisation.
     


    Revendications

    1. Composition polymérisable comprenant

    - un composé polythiol présentant au moins trois groupes mercapto ; et

    - un polyiso(thio)cyanate qui est au moins l'un du diisocyanate de tolylène, du diisocyanate de 4,4'- diphénylméthane et du diisocyanate de phénylène,

    dans laquelle le rapport d'équivalent thiol qui est une valeur mesurée d'un équivalent thiol du composé polythiol par rapport à une valeur théorique de l'équivalent thiol et est tel que défini dans la description, est 0,975-0,995.
     
    2. Composition polymérisable selon la revendication 1, dans laquelle le composé polythiol est un composé ester d'un composé polyol et d'au moins l'un de l'acide thioglycolique, de l'acide mercaptopropionique, de l'acide thiolactique et de l'acide thiosalicylique.
     
    3. Composition polymérisable selon la revendication 2, dans laquelle le composé polyol est au moins l'un du pentaérythritol, de la glycérine et du triméthylol propane.
     
    4. Composition polymérisable selon l'une quelconque des revendications 1-3, dans laquelle le composé polyiso(thio)cyanate comprend du diisocyanate de tolylène.
     
    5. Résine transparente obtenue par polymérisation de la composition polymérisable selon l'une quelconque des revendications 1-4.
     
    6. Résine transparente selon la revendication 5, dans laquelle le rapport du nombre total de liaisons uréthane par rapport au nombre total de liaisons thiouréthane contenues dans la résine transparente est ≤ 0,026.
     
    7. Matériau optique comprenant la résine transparente selon la revendication 5 ou 6.
     
    8. Lentille en plastique comprenant le matériau optique selon la revendication 7.
     
    9. Procédé de fabrication d'une résine transparente, comprenant la soumission de la composition polymérisable selon l'une quelconque des revendications 1-4 à une polymérisation par coulée.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description