(19)
(11)EP 3 203 810 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.05.2018 Bulletin 2018/19

(21)Application number: 16174737.3

(22)Date of filing:  16.06.2016
(51)Int. Cl.: 
H05B 6/06  (2006.01)
A47G 19/22  (2006.01)
A47J 36/24  (2006.01)
H05B 6/12  (2006.01)

(54)

WIRELESS TEMPERATURE MAINTENANCE CONTAINER

DRAHTLOSER TEMPERATURERHALTUNGSBEHÄLTER

RÉCIPIENT DE MAINTIEN DE LA TEMPÉRATURE SANS FIL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.02.2016 TW 105202107 U

(43)Date of publication of application:
09.08.2017 Bulletin 2017/32

(73)Proprietor: PENG FA DESIGN INTERNATIONAL CO. LTD.
Zhubei City, Hsinchu County 302 (TW)

(72)Inventors:
  • PENG, Yen-Chun
    Zhubei City, Hsinchu County 302 (TW)
  • TING, Yun-Yi
    Taipei City 111 (TW)

(74)Representative: Viering, Jentschura & Partner mbB Patent- und Rechtsanwälte 
Kennedydamm 55 / Roßstrasse
40476 Düsseldorf
40476 Düsseldorf (DE)


(56)References cited: : 
WO-A1-2015/088150
CN-A- 105 231 753
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The invention relates to a wireless temperature maintenance container; in particular, to a wireless temperature maintenance container that maintains the temperature of the contents via wireless power transmission.

    2. Description of Related Art



    [0002] With the development of technology, wireless power transmission has flourished. There are three major standard protocols in the wireless power transmission technology, which are respectively the Power Matters Alliance (PMA) standard protocol, the Wireless Power Consortium (WPC) standard protocol and the Alliance for Wireless Power (A4WP) standard protocol.

    [0003] Compared with the traditional wired power transmission, the advantage of the wireless power transmission is that, all electric elements of the transmitter circuit and the receiver circuit are not exposed so that the electric elements can be protected from moisture or other gasses, which provides a usage security for a user and a longer service life for the electric elements. However, currently, most of the applications of wireless power transmission are portable electric products such as the smart phone or the like.

    [0004] A wireless temperature maintenance container is disclosed in CN 105231753 A. With respect to the food container with the temperature maintenance function, the internal heater or cooling circuit is provided power by a utility power or a battery via the wired power transmission. In this case, the electric elements for the power transmission in the food container are exposed to moisture or other gases all the time, and thus these electric elements are easily oxidized or etched.

    SUMMARY OF THE INVENTION



    [0005] The invention provides a wireless temperature maintenance container that has an accommodating space at its bottom to accommodate a transmitter circuit and a receiver circuit. The transmitter circuit comprises a first power processing circuit and a transmitter coil. The first power processing circuit receives a utility power and outputs a first direct current. The transmitter coil is connected to the first power processing circuit. The transmitter coil receives a first direct current and generates a magnetic field based on the electromagnetic induction. The receiver circuit comprises a receiver coil, a second power processing circuit and a temperature controller such as a heater or a cooler. The magnetic field passes the receiver coil and an alternating current is generated based on the electromagnetic induction. The second power processing circuit is connected to the receiver coil. The second power processing circuit receives the alternating current and outputs a second direct current. The temperature controller is connected to the second power processing circuit. The temperature controller receives the second direct current to control the temperature of the wireless temperature maintenance container. The transmitter circuit is configured on the first circuit board, and the receiver circuit is configured on the second circuit board. In addition, there is a predetermined distance between the first circuit board and the second board.

    [0006] In one embodiment of the wireless temperature maintenance container provided by the invention, the predetermined distance between the first circuit board and the second board is 2mm∼4mm.

    [0007] To sum up, in the wireless temperature maintenance container provided by the invention, the power is transmitted wirelessly from the transmitter circuit to the receiver circuit to provide a current to the temperature controller such as a heater or a cooler. Additionally, the transmitter circuit and the receiver circuit are accommodated in an accommodating space at the bottom of the wireless temperature maintenance container, so the temperature of the contents in the wireless temperature maintenance container can be maintained directly by the wireless power transmission between the transmitter circuit and the receiver circuit.

    [0008] For further understanding of the invention, reference is made to the following detailed description illustrating the embodiments of the instant disclosure. The description is only for illustrating the instant disclosure, not for limiting the scope of the claim.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:

    Fig. 1 shows a block diagram of a wireless temperature maintenance container of one embodiment of the invention.

    Fig. 2 shows a block diagram of a wireless temperature maintenance container of another embodiment of the invention.

    Fig. 3 shows a schematic diagram showing the structure of a wireless temperature maintenance container of one embodiment of the invention.


    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS



    [0010] The aforementioned illustrations and following detailed descriptions are exemplary for the purpose of further explaining the scope of the invention. Other objectives and advantages related to the invention will be illustrated in the subsequent descriptions and appended drawings.

    [0011] It should be understood that, although the terms first, second, third, and the like, may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only to distinguish one element from another region or section discussed below. For example, a first element could be termed a second element and, similarly, a second element could be termed a first element, without departing from the teachings of the instant disclosure. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

    [One embodiment of the wireless temperature maintenance container]



    [0012] Refer to Fig. 1. Fig. 1 shows a block diagram of a wireless temperature maintenance container of one embodiment of the invention. As shown in Fig. 1, the wireless temperature maintenance container 1 in this embodiment comprises a transmitter circuit 10 and a receiver circuit 12. The transmitter circuit 10 comprises a first power processing circuit 20 and a transmitter coil 22. The first power processing circuit 20 receives a utility power and outputs a first direct current. The transmitter coil 22 is connected to the first power processing circuit 20, and receives the first direct current to generate a magnetic field based on the electromagnetic induction. The receiver circuit 12 comprises a receiver coil 24, a second power processing circuit 26 and a temperature controller 28. The magnetic field passes through the receiver coil 24, and an alternating current is generated based on the electromagnetic induction. The second power processing circuit 26 is connected to the receiver coil 24, receives the alternating current and outputs a second direct current. The temperature controller 28 is connected to the second power processing circuit 26 and receives the second direct current to control the temperature of the wireless temperature maintenance container. It is worth mentioning that, the transmitter circuit 10 is configured on a first circuit board (not shown), and the receiver circuit 12 is configured on a second circuit board (not shown). In addition, there is a predetermined distance between the first circuit board and the second circuit board. Moreover, the first circuit board having the transmitter circuit 10 and the second circuit board having the receiver circuit 12 are accommodated in the accommodating space (not shown) at the bottom of the wireless temperature maintenance container 1.

    [0013] In other words, once the transmitter circuit 10 of the wireless temperature maintenance container 1 is connected to a utility power, the transmitter circuit 10 wirelessly transmits power to the receiver circuit 12, such that the temperature controller 28 of the receiver circuit 12 can work.

    [0014] It is worth mentioning that, in practice, both of the first circuit and the second circuit are designed to have a housing for protection. In addition, the second circuit board is configured upon the first circuit board, and thus there is a distance between the transmitter circuit 10 and the receiver circuit, wherein the distance refers to a total thickness of the housings of the first circuit board and the second circuit board. However, in this embodiment, power can be wirelessly transmitted between the transmitter circuit 10 and the receiver circuit 12 within a predetermined distance. Thus, even though the total thickness of the housings of the first circuit board and the second circuit board forms a distance between the transmitter circuit 10 and the receiver circuit, the transmitter circuit 10 of the wireless temperature maintenance container 1 can still transmit power to the receiver circuit 12 of the wireless temperature maintenance container 1 in a wireless way.

    [0015] Thereby, in the wireless temperature maintenance container 1, the housings of the first circuit board and the second circuit board can protect the electric elements on the first circuit board and the second circuit board from damage without affecting the power transmission between the first circuit board and the second circuit board. That is, there is no electrical contact point between the first circuit board and the second circuit board, but the power can still be successfully transmitted from the first circuit board to the second circuit. It should be noted that, in a preferred embodiment, the predetermined distance between the first circuit board having the transmitter circuit 10 and the second circuit board having the receiver circuit 12 is 2mm∼4mm. In other words, the thickness of the housings of the first circuit board and the second circuit board can be 2mm∼4mm in total. However, it is not limited herein.

    [0016] It should also be noted that, in the wireless temperature maintenance container 1, the wireless power transmission between the transmitter circuit 10 and the receiver circuit 12 is suited to the WPC standard protocol, the PMA standard protocol or the A4WP standard protocol.

    [Another embodiment of the wireless temperature maintenance container]



    [0017] Refer to Fig. 2. Fig. 2 shows a block diagram of a wireless temperature maintenance container of another embodiment of the invention. The working principles and the structures of the wireless temperature maintenance container 2 in this embodiment and the wireless temperature maintenance container 1 shown in Fig. 1 are similar but have differences in that, the first power processing circuit 20 of the wireless temperature maintenance container 2 in this embodiment comprises an AC-DC converter 30, a driver 31 and a first controller 32. Receiving a utility power, the AC-DC converter 30 transforms the utility power to output a first direct voltage. The driver 31 is connected to the AC-DC converter 30. Receiving the first direct voltage, the driver 31 outputs a first direct current to drive the transmitter coil 22 to generate a magnetic field based on the electromagnetic induction. The first controller 32 is connected to the driver 31 and the transmitter coil 22 to control the driver 31 and the transmitter coil 22. Another difference is that, the second power processing circuit 26 of the wireless temperature maintenance container 2 comprises a rectifier 33, a current regulator 34 and a second controller 35. The rectifier 33 is connected to the receiver coil 24. The rectifier 33 rectifies the alternating current output by the receiver coil 24 and generates a second direct current. The current regulator 34 is connected to the rectifier 33 to stabilize the second direct current. The second controller 35 is connected to the temperature controller 28, the receiver coil 24, the rectifier 33 and the current regulator 34, to control the temperature controller 28, the receiver coil 24, the rectifier 33 and the current regulator 34.

    [0018] The following description illustrates how the first controller 32 of the first power processing circuit 20 and the second controller 35 of the second power processing circuit 26 work.

    [0019] In this embodiment, the temperature controller 28 comprises a heater circuit (not shown) to heat up or maintain the temperature of the contents in the wireless temperature maintenance container 2. The heater circuit comprises at least a thermal resistor (not shown), wherein the thermal resistor is connected to the second controller 35. When the temperature controller 28 is heating up the contents in the wireless temperature maintenance container 2, the second controller 35 continually feeds back a data signal to the transmitter coil 22 via the receiver coil 24 according to a temperature value detected by the thermal resistor, and the first controller 32 determines whether to stop supplying power to the temperature controller 28 according to the data signal. Specifically speaking, if the temperature value of the temperature controller 28 detected by the thermal resistor is equal to or larger than a threshold temperature, the first controller 32 determines and controls the driver 31 to adjust the first direct current received by the transmitter coil 22 according to the data signal, and thus the power supplied to the temperature controller 28 is adjusted. At this moment, instead of heating up the contents in the wireless temperature maintenance container 2, the temperature controller 28 maintains the temperature of the contents in the wireless temperature maintenance container 2. It should be noted that, in this embodiment, the threshold temperature of the temperature controller 28 can be set by a user depending on need, and it is not limited herein.

    [0020] Thereby, the power supplied to the temperature controller 28 can be appropriately adjusted by the first controller 32 of the first power processing circuit 20 and the second controller 35 of the second power processing circuit 26, such that the contents in the wireless temperature maintenance container 2 can be effectively heated up or can be maintained at a constant temperature, and a better usage security can be provided.

    [0021] On the other hand, the type of the temperature controller 28 is not limited herein. In other words, instead of a heater circuit, the temperature controller 28 can comprises a cooling circuit (not shown) in another embodiment, to cool the contents in the wireless temperature maintenance container 2 or to maintain the temperature of the contents.

    [0022] In addition, in this embodiment, the transmitter circuit 10 further comprises a status display (not shown), and the status display is connected to the first controller 32 of the first power processing circuit 20. At the moment when the wireless temperature maintenance container 2 is connected to a utility power and the power is transmitted wirelessly from the transmitter circuit 10 to the receiver circuit 12, the first controller 32 controls the status display to flick once or several times, to indicate that power is now provided to the temperature controller 28. For example, the status display can be an LED, but it is not limited herein.

    [0023] It should be noted that, in the wireless temperature maintenance containers 2, the wireless power transmission between the transmitter circuit 10 and the receiver circuit 12 is suited to the WPC standard protocol, the PMA standard protocol or the A4WP standard protocol.

    [0024] The following description illustrates the structure of the wireless temperature maintenance containers in the above embodiments. Fig. 3 shows a schematic diagram showing the structure of a wireless temperature maintenance container of one embodiment of the invention.

    [0025] As shown in Fig. 3, in one embodiment, a transmitter circuit configured on a first circuit board and a receiver circuit configured on a second circuit board are accommodated in an accommodating space at the bottom of a wireless temperature maintenance container 3. For example, the wireless temperature maintenance container 3 can be a bottle, a cup, a pot or the like, and there is an accommodating space at its bottom, wherein the transmitter circuit configured on a first circuit board and a receiver circuit configured on a second circuit board are accommodated in an accommodating space at the bottom of a wireless temperature maintenance container 3, as shown in Fig. 3. Once a user connects the transmitter circuit inside the wireless temperature maintenance container 3 to a utility power, the transmitter circuit can wirelessly transmit power to the receiver circuit for heating up or cooling the contents in the wireless temperature maintenance container 3 or for maintaining the temperature of the contents in the wireless temperature maintenance container 3.

    [0026] To sum up, in the wireless temperature maintenance container provided by the instant disclosure, the power is transmitted wirelessly from the transmitter circuit to the receiver circuit to provide a current to the temperature controller such as a heater or a cooler. Additionally, the transmitter circuit and the receiver circuit are accommodated in an accommodating space at the bottom of the wireless temperature maintenance container, so the temperature of the contents in the wireless temperature maintenance container can be maintained directly by the wireless power transmission between the transmitter circuit and the receiver circuit.

    [0027] The descriptions illustrated supra set forth simply the preferred embodiments of the invention; however, the characteristics of the invention are by no means restricted thereto. All changes, alterations, or modifications conveniently considered by those skilled in the art are deemed to be encompassed within the scope of the invention delineated by the following claims.


    Claims

    1. A wireless temperature maintenance container, having an accommodating space at its bottom, comprising:

    a transmitter circuit (10), configured in the accommodating space, comprising:

    a first power processing circuit (20), receiving a utility power and outputting a first direct current; and

    a transmitter coil (22), connected to the first power processing circuit (20), receiving the first direct current and generating a magnetic field based on the electromagnetic induction;

    a receiver circuit (12), configured in the accommodating space, comprising:

    a receiver coil (24), the magnetic field passing through the receiver coil (24) to generate an alternating current based on the electromagnetic induction;

    a second power processing circuit (26), connected to the receiver coil (24), receiving the alternating current and outputting a second direct current; and

    a temperature controller (28), connected to the second power processing circuit (26), receiving the second direct current and controlling the temperature of the wireless temperature maintenance container (3) according to the second

    direct current;

    wherein the transmitter circuit (10) is configured on a first circuit board, the receiver circuit (12) is configured on a second circuit board, and there is a predetermined distance between the first circuit board and the second circuit board.


     
    2. The wireless temperature maintenance container according to claim 1, wherein the predetermined distance between the first circuit board and the second circuit board is 2mm∼4mm.
     
    3. The wireless temperature maintenance container according to claim 1, wherein the first power processing circuit (20) comprises:

    an AC-DC converter (30), receiving the utility power, transforming the utility power to output a first direct voltage;

    a driver (31), connected to the AC-DC converter (30), receiving the first direct voltage and outputting the first direct current, to drive the transmitter coil (22) to generate the magnetic field based on the electromagnetic induction; and

    a first controller (32), connected to the driver (31) and the transmitter coil (22), controlling the driver (31) and the transmitter coil (22).


     
    4. The wireless temperature maintenance container according to claim 3, wherein the second power processing circuit (26) comprises:

    a rectifier (33), connected to the receiver coil (24), rectifying the alternating current and generating the second direct current;

    a current regulator (34), connected to the rectifier (33), stabilizing the second direct current; and

    a second controller (35), connected to the temperature controller (28), the receiver coil (24), the rectifier (33) and the current regulator (34), to control the temperature controller (28), the receiver coil (24), the rectifier (33) and the current regulator (34).


     
    5. The wireless temperature maintenance container according to claim 4, wherein the temperature controller (28) comprises a heater circuit, the heater circuit comprises at least one thermal resistor and the thermal resistor is connected to the second controller (35).
     
    6. The wireless temperature maintenance container according to claim 5, wherein when the wireless temperature maintenance container is working, the second controller (35) continually feeds back a data signal to the transmitter coil (22) via the receiver coil (24) according to a temperature value detected by the thermal resistor, and the first controller (32) determines whether to stop supplying power to the temperature controller (28) according to the data signal.
     
    7. The wireless temperature maintenance container according to claim 6, wherein the first controller (32) determines and controls the driver (31) to adjust the first direct current received by the transmitter coil (22) according to the data signal if the temperature value detected by the thermal resistor is equal to or larger than a threshold temperature.
     
    8. The wireless temperature maintenance container according to claim 4, wherein the temperature controller (28) comprises a cooling circuit.
     
    9. The wireless temperature maintenance container according to claim 3, wherein the transmitter circuit (10) further comprises a status display connected to the first controller (32) of the first power processing circuit (20).
     
    10. The wireless temperature maintenance container according to claim 1, wherein the wireless power transmission between the transmitter circuit (10) and the receiver circuit (12) is suited to the WPC standard protocol, the PMA standard protocol or the A4WP standard protocol.
     


    Ansprüche

    1. Kabelloser Temperaturhaltebehälter mit einem Aufnahmeraum an seinem Boden, umfassend:

    eine Sendeschaltung (10), die in dem Aufnahmeraum konfiguriert ist, umfassend:

    eine erste Leistungsverarbeitungsschaltung (20), die eine Nutzleistung empfängt und einen ersten Gleichstrom ausgibt; und

    eine Sendespule (22), die mit der ersten Leistungsverarbeitungsschaltung (20) verbunden ist und den ersten Gleichstrom empfängt und ein Magnetfeld basierend auf der elektromagnetischen Induktion erzeugt;

    eine Empfangsschaltung (12), die in dem Aufnahmeraum konfiguriert ist, umfassend:

    eine Empfangsspule (24), wobei das Magnetfeld durch die Empfangsspule (24) hindurch verläuft, um basierend auf der elektromagnetischen Induktion einen Wechselstrom zu erzeugen;

    eine zweite Leistungsverarbeitungsschaltung (26), die mit der Empfangsspule (24) verbunden ist, den Wechselstrom empfängt und einen zweiten Gleichstrom ausgibt; und

    eine Temperatursteuerung (28), die mit der zweiten Energieverarbeitungsschaltung (26) verbunden ist, den zweiten Gleichstrom empfängt und die Temperatur des kabellosen Temperaturhaltebehälter (3) entsprechend dem zweiten Gleichstrom steuert; wobei die Sendeschaltung (10) auf einer ersten Leiterplatte konfiguriert ist, die Empfangsschaltung (12) auf einer zweiten Leiterplatte konfiguriert ist und ein vorbestimmter Abstand zwischen der ersten Leiterplatte und der zweiten Leiterplatte ausgebildet ist.


     
    2. Kabelloser Temperaturhaltebehälter nach Anspruch 1,
    wobei der vorbestimmte Abstand zwischen der ersten Leiterplatte und der zweiten Leiterplatte 2mm ∼ 4mm ist.
     
    3. Kabelloser Temperaturhaltebehälter nach Anspruch 1,
    wobei die erste Leistungsverarbeitungsschaltung (20) umfasst:

    einen AC-DC-Wandler (30), der die Nutzleistung empfängt und die Nutzleistung so umwandelt, dass dieser eine erste Gleichspannung ausgibt;

    einen Treiber (31), der mit dem AC-DC-Wandler (30) verbunden ist und die erste Gleichspannung empfängt und den ersten Gleichstrom ausgibt, um die Sendespule (22) zu betreiben, um basierend auf der elektromagnetischen Induktion das Magnetfeld zu erzeugen; und

    eine erste Steuerung (32), die mit dem Treiber (31) und der Sendespule (22) verbunden ist und den Treiber (31) und die Sendespule (22) steuert.


     
    4. Kabelloser Temperaturhaltebehälter nach Anspruch 3,
    wobei die zweite Leistungsverarbeitungsschaltung (26) umfasst:

    einen Gleichrichter (33), der mit der Empfangsspule (24) verbunden ist, den Wechselstrom gleichrichtet und den zweiten Gleichstrom erzeugt;

    einen Stromregler (34), der mit dem Gleichrichter (33) verbunden ist und den zweiten Gleichstrom stabilisiert; und

    eine zweite Steuerung (35), die mit der Temperatursteuerung (28), der Empfangsspule (24), dem Gleichrichter (33) und dem Stromregler (34) verbunden ist, um die Temperatursteuerung (28), die Empfangsspule (24), den Gleichrichter (33) und den Stromregler (34) zu steuern.


     
    5. Kabelloser Temperaturhaltebehälter nach Anspruch 4, wobei die Temperatursteuerung (28) eine Heizschaltung umfasst, wobei die Heizschaltung mindestens einen thermischen Widerstand umfasst und der thermische Widerstand mit der zweiten Steuerung (35) verbunden ist.
     
    6. Kabelloser Temperaturhaltebehälter nach Anspruch 5, wobei, wenn der kabelloser Temperaturhaltebehälter arbeitet, die zweite Steuerung (35) kontinuierlich ein Datensignal an die Sendespule (22) über die Empfangsspule (24) entsprechend eines Temperaturwerts, der durch den Wärmewiderstand erfasst wird, zurücksendet, und die erste Steuerung (32) bestimmt, ob die Zufuhr von Energie zu der Temperatursteuerung (28) dem Datensignal entsprechend zu stoppen ist.
     
    7. Kabelloser Temperaturhaltebehälter nach Anspruch 6, wobei die erste Steuerung (32) den Treiber (31) bestimmt und steuert, um den von der Sendespule (22) empfangenen ersten Gleichstrom entsprechend dem Datensignal einzustellen, wenn der Temperaturwert, der durch den Wärmewiderstand erfasst wird, gleich oder größer als eine Schwellentemperatur ist.
     
    8. Kabelloser Temperaturhaltebehälter nach Anspruch 4, wobei die Temperatursteuerung (28) einen Kühlkreislauf aufweist.
     
    9. Kabelloser Temperaturhaltebehälter nach Anspruch 3, wobei die Sendeschaltung (10) ferner eine Statusanzeige aufweist, die mit der ersten Steuerung (32) der ersten Leistungsverarbeitungsschaltung (20) verbunden ist.
     
    10. Kabelloser Temperaturhaltebehälter nach Anspruch 1, wobei die kabellose Energieübertragung zwischen der Sendeschaltung (10) und der Empfangsschaltung (12) für das WPC-Standardprotokoll, das PMA-Standardprotokoll oder das A4WP-Standardprotokoll geeignet ist.
     


    Revendications

    1. Conteneur de maintien de température sans fil, ayant un espace au niveau de sa partie inférieure, comprenant :

    un circuit de transmission (10), placé dans l'espace, comprenant :

    un premier circuit de traitement d'énergie (20), qui reçoit une énergie secteur et qui délivre un premier courant continu ; et

    une bobine de transmission (22), reliée au premier circuit de traitement d'énergie (20), qui reçoit le premier courant continu et génère un champ magnétique sur la base de l'induction électromagnétique ;

    un circuit de réception (12), placé dans l'espace, comprenant :

    une bobine de réception (24), le champ magnétique traversant la bobine de réception (24) afin de générer un courant alternatif sur la base de l'induction électromagnétique ;

    un second circuit de traitement d'énergie (26), relié à la bobine de réception (24), qui reçoit le courant alternatif et délivre un second courant continu ; et

    un régulateur de température (28), relié au second circuit de traitement d'énergie (26), qui reçoit le second courant continu et qui contrôle la température du conteneur de maintien de température sans fil (3) selon le second courant continu ;

    dans lequel le circuit de transmission (10) est placé sur une première carte de circuit imprimé, le circuit de réception (12) étant placé sur une seconde carte de circuit imprimé, et une distance prédéterminée existant entre la première carte de circuit imprimé et la seconde carte de circuit imprimé.


     
    2. Conteneur de maintien de température sans fil selon la revendication 1,
    dans lequel la distance prédéterminée entre la première carte de circuit imprimé et la seconde carte de circuit imprimé est de 2 mm à 4 mm.
     
    3. Conteneur de maintien de température sans fil selon la revendication 1,
    dans lequel le premier circuit de traitement d'énergie (20) comprend :

    un convertisseur CA/CC (30), qui reçoit l'énergie, et qui transforme l'énergie de façon à délivrer une première tension continue ;

    un excitateur (31), relié au convertisseur CA/CC (30), qui reçoit la première tension continue et délivre le premier courant continu, afin d'exciter la bobine de transmission (22) de façon à générer le champ magnétique sur la base de l'induction électromagnétique ; et

    un premier régulateur (32), relié à l'excitateur (31) et à la bobine de transmission (22), qui contrôle l'excitateur (31) et la bobine de transmission (22).


     
    4. Conteneur de maintien de température sans fil selon la revendication 3,
    dans lequel le second circuit de traitement d'énergie (26) comprend :

    un redresseur (33), relié à la bobine de réception (24), qui redresse le courant alternatif et qui génère le second courant continu ;

    un régulateur de courant (34), relié au redresseur (33), qui stabilise le second courant continu ; et

    un second régulateur (35), relié au régulateur de température (28), à la bobine de réception (24), au redresseur (33) et au régulateur de courant (34), afin de contrôler le régulateur de température (28), la bobine de réception (24), le redresseur (33) et le régulateur de courant (34).


     
    5. Conteneur de maintien de température sans fil selon la revendication 4,
    dans lequel le régulateur de température (28) comprend un circuit chauffant, le circuit chauffant comprenant au moins une résistance thermique et la résistance thermique étant reliée au second régulateur (35).
     
    6. Conteneur de maintien de température sans fil selon la revendication 5,
    dans lequel, lorsque le conteneur de maintien de température sans fil fonctionne, le second régulateur (35) fournit en continu un signal de données à la bobine de transmission (22) via la bobine de réception (24) selon une valeur de température détectée par la résistance thermique, et le premier régulateur (32) détermine si l'alimentation en énergie du régulateur de température (28) doit être arrêtée ou non selon le signal de données.
     
    7. Conteneur de maintien de température sans fil selon la revendication 6,
    dans lequel le premier régulateur (32) détermine et contrôle l'excitateur (31) afin de régler le premier courant continu reçu par la bobine de transmission (22) selon le signal de données si la valeur de température détectée par la résistance thermique est égale ou supérieure à une température de seuil.
     
    8. Conteneur de maintien de température sans fil selon la revendication 4,
    dans lequel le régulateur de température (28) comprend un circuit de refroidissement.
     
    9. Conteneur de maintien de température sans fil selon la revendication 3,
    dans lequel le circuit de transmission (10) comprend en outre un afficheur de statut relié au premier régulateur (32) du premier circuit de traitement d'énergie (20).
     
    10. Conteneur de maintien de température sans fil selon la revendication 1,
    dans lequel la transmission d'énergie sans fil entre le circuit de transmission (10) et le circuit de réception (12) est adaptée au protocole WPC, au protocole PMA ou au protocole A4WP.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description