(19)
(11)EP 3 206 275 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 17155738.2

(22)Date of filing:  10.02.2017
(51)International Patent Classification (IPC): 
G05B 11/01(2006.01)
H02J 3/00(2006.01)
H02J 3/38(2006.01)
H02J 13/00(2006.01)
H02M 1/00(2006.01)
H02M 7/44(2006.01)
H02J 7/35(2006.01)
H02J 3/32(2006.01)

(54)

OUTPUT CONTROL AND COMPENSATION FOR AC COUPLED SYSTEMS

AUSGANGSSTEUERUNG UND KOMPENSATION FÜR GEKOPPELTE AC SYSTEME

COMMANDE DE SORTIE ET COMPENSATION POUR SYSTÈMES COUPLÉS AC


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 10.02.2016 US 201662293715 P
07.02.2017 US 201715426960

(43)Date of publication of application:
16.08.2017 Bulletin 2017/33

(73)Proprietor: Eguana Technologies
Calgary, Alberta T2M 2H9 (CA)

(72)Inventors:
  • Ghotra, Daljit
    Calgary, Alberta T3H 5B8 (CA)
  • Nguyen, Hoang
    Calgary, Alberta T2Y 4L6 (CA)
  • Morash, Russell J.
    Calgary, Alberta T2K 4V4 (CA)
  • Johnston, Keith W.
    Calgary, Alberta T2M 1S5 (CA)
  • Harris, Brent E.
    Millarville, Alberta T0L 0A4 (CA)

(74)Representative: Haseltine Lake Kempner LLP 
Lincoln House, 5th Floor 300 High Holborn
London WC1V 7JH
London WC1V 7JH (GB)


(56)References cited: : 
EP-A1- 2 685 582
WO-A1-2013/015192
WO-A1-2014/147294
KR-A- 20150 090 371
US-A1- 2001 004 170
US-A1- 2014 217 826
US-A1- 2015 022 004
WO-A1-2012/049910
WO-A1-2014/080599
WO-A1-2015/128359
US-A- 5 324 990
US-A1- 2004 021 445
US-A1- 2014 239 724
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] One or more implementations relate generally to power output control and compensation for AC coupled systems.

    BACKGROUND



    [0002] Multiple distributed energy resources (DERs) are often deployed together at a single location in order to provide added system reliability, increased power capacity, or storage. An energy management system (EMS) coordinates power flow between various DERs, loads, and a power grid. The EMS may communicate with DERs throughout the power system and individually control the DERs to manage power flow and respond to varying grid conditions and external dispatch commands.

    [0003] A common DER system implementation includes a solar photovoltaic (PV) generator connected with a battery energy storage system (BESS) and loads. The energy storage capability of the BESS supplements the intermittent power produced by the PV generator and provides additional capabilities such as demand response and peak shifting.

    [0004] DERs may use modular designs with various types, sizes, and functions. It may be difficult or impractical to design products (e.g., PV inverters, battery systems, etc.) to manage the power flow through so many different combinations of configurable DER systems. This necessitates the use of an EMS to manage the aggregated DER system; however, the EMS used in the DER system is also hindered by communication latency, limiting the speed commands can be executed. Using the EMS for power flow control also means that any system or communication failure may compromise electrical system functionality. WO 2014/147294 A1 relates to compensating non-active currents in electrical power networks. US 2001/004170 A1 relates to a step wave power converter. US 2004/021445 A1 relates to power slope targeting for DC generators.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] The included drawings are for illustrative purposes and serve to provide examples of possible structures and operations for the disclosed inventive systems, apparatus, methods and computer-readable storage media.

    Figure 1 shows an example distributed energy resource (DER) system (prior art).

    Figure 2 shows an example DER system that uses a power output control and compensation (PCC) circuit for control of a photovoltaic (PV) system.

    Figure 3 shows the PCC circuit of Figure 2.

    Figure 4 shows an alternative version of the DER system that uses a PCC circuit for control of a PV system.

    FIG. 5 shows multiple PCC circuits connected to multiple different power sources and loads.

    Figure 6 shows a process performed by a PCC circuit.

    Figure 7 shows an example computer system used in the DER system.


    DETAILED DESCRIPTION



    [0006] A power output control and compensation (PCC) circuit operates within a distributed energy resource (DER) system. The PCC circuit is located in a battery power conversion system (PCS) and includes an input terminal to connect with a photovoltaic (PV) power system and an output terminal to connect with an electrical panel or load. A current sensing device (e.g., shunt resistor or current transducer) is coupled between the input and the output terminals to measure a power level of the PV system. A relay is coupled between the current sensing device and the output terminal and a processor selectively connects power from the PV system to the electrical panel or the load based on the measured PV power level or based on other power measurements within the DER system. PCS-control of multiple power sources decreases cycle times for controlling DERs. The present invention provides an apparatus according to claim 1. Optional features are defined in the dependent claims. The invention is set out in the appended set of claims.

    [0007] FIG. 1 shows a known DER system configuration. In one example, a PV array 52 connects through a PV inverter 56 to an electrical panel 62. A battery system 54 may connect to electrical panel 62 through PCS 60. Electrical panel 62 may supply power from PV array 52 and battery system 54 to different local loads 66 and/or to a power grid 64.

    [0008] PV array 52 may be any type of device capable of converting solar energy into electrical energy. In one example, PV inverter may convert direct current (DC) power from PV array 52 into alternating current (AC) power for different local AC loads 66 and/or other remote AC devices connected to power grid 64. PCS 60 also may charge battery system 54 using power supplied by PV array 52 or power grid 64 and also may convert stored DC energy in battery system 54 into AC power for powering local loads 66 and exporting power to the power grid 64.

    [0009] DER system 50 may use energy management system (EMS) 58 to coordinate power flow between PV array 52, battery system 54, local loads 66, and power grid 64. EMS 58 may communicate with other energy sources throughout the power system, manage power flow within DER 50, and respond to varying grid conditions or dispatch commands.

    [0010] Battery system 54 typically relies on three main components that interact with each other. These include a battery management system (BMS) 57, PCS 60, and EMS 58. BMS 57 monitors the state and condition of battery 55 and provides protection against unsafe operating states (e.g., high battery cell temperatures). BMS 57 also provides handshaking and information transfer with other power components. Battery 55 can be a single battery or multiple batteries combined within battery system 54.

    [0011] PCS 60 is a linking element that enables power transfer between battery 55 and loads 66 connected to electrical panel 62. PCS 60 is designed to convert DC power from battery 55 into AC power which may be used to power local loads 66 or to export to the power grid 64. PCS 60 may be bidirectional to convert AC power from power grid 64 and/or PV array 52 into DC power for charging battery 55.

    [0012] EMS 58 coordinates power flow between power grid 64, battery 55, local loads 66, and PV array 52. EMS 58 may implement algorithms to manage battery charging and discharging based upon electricity price structures such as time-of-use metering or demand charging.

    [0013] PCS 60 may act as a bridge between BMS 57 and EMS 58. PCS 60 converts power demand signals from EMS 58 into real power flow between the power converter and battery 55. As a result, PCS 60 is uniquely equipped to collect detailed information about battery system 54 in real-time. PCS 60 also has access to physical and operational parameters that would not otherwise be conveyed to EMS 58. For example, PCS 60 may communicate battery temperature, instantaneous power, and state of charge to EMS 58.

    [0014] Battery 55 in battery system 54 may store energy output from PV array 52. A digital signal processor (DSP) 118 operating within PCS 60 may measure current and/or voltage data from both battery system 54 and PV system 51 and perform primary PCS functions in PCS 60, such as power measurements, control, and inverter system switching.

    [0015] As described above, some EMSs 58 are hindered by communication latency (often several hundred milliseconds or greater), which limits the speed at which commands can be executed throughout DER system 50. Reliance on EMS 58 for all power flow control also means any system failure or communication issue may compromise electrical system functionality.

    PCS-based Output Control and Compensation



    [0016] Battery 55 in battery system 54 may store energy output from PV array 52. As a result, some of the functionality for the interaction between battery system 54 and PV array 52 may be incorporated into PCS 60. Since PCS 60 controls power flow between battery system 54 and the rest of DER system 50, a PCS-based output control and compensation circuit (PCC) 102 is used in PCS 60 to also control PV/battery interactions.

    [0017] FIG. 2 shows a DER 100 that uses a PCS-based PCC102. FIG. 3 shows PCC 102 in more detail. Referring to FIGS. 2 and 3, one leg 104 (either the line or neutral conductor) of an AC output from PV inverter 56 is connected to PCS 60 through an independent terminal 106 (referred to as IN). In one example, a single line or neutral conductor from the PV inverter 56 connected through PCC 102 to electrical panel 62. The other line or neutral conductor is connected directly to electrical panel 62. In one implementation of a grid-interactive battery product, PCC 102 is located on an external circuit board that can be accessed by installers or maintenance personnel.

    [0018] Power from PV inverter 56 is routed from terminal 106 through a current sensing device 110, such as a current transducer, and then through a relay 112 rated to break the PV current. An output terminal 114 is alternatively referred to as OUT. Power from PV inverter 56 is routed through output terminal 114 to electrical panel 62, which also receives the power from the PCS 60 through circuit branch 108. The electrical panel contains the protection circuitry (e.g., fuse or circuit breaker for the PV inverter 56 output circuit loop. Electrical panel 62 then interfaces with power grid 64 and local loads 66 as described above. Circuit branch 108 separately carries PCS current that is combined with the PV current from OUT 114 after reaching electrical panel 62 and being routed through the protection circuitry.

    [0019] An optional terminal 116 is referred to as MID and is placed between current sensor 110 and relay 112 to enable only the current sensing capability. MID 116 may divert PV power through the current sensing device 110 before routing PV power to electrical panel 62. In this example, MID may operate as OUT 114 in FIG. 2.

    [0020] PCC 102 may operate independently from the remainder of the power circuitry in PCS 60. Only a single cable 104 (line or neutral) from PV inverter 56 needs to be routed to PCS 60, thus minimizing the number of terminals and simplifying cable management.

    [0021] A digital signal processor (DSP) 118 measures PV current from current sensor 110 and controls relay 112. DSP 118 may receive current data from both battery system 54 and PV system 51 and perform other primary functions in PCS 60, such as power measurements, control, and inverter system switching. In this way, PCC 102 may execute some control over PV inverter 56 via power disconnection through relay 112.

    [0022] One feature of PCC 102 enables PCS 60 to control different power operations within DER system 100 rather than relying on the EMS 58. For example, DSP 118 may adjust the discharge current from battery system 54 to maintain consistent total cumulative power delivery by the combination of PV system 51 and battery storage system 54.

    [0023] In one configuration, battery power output from battery system 54 is controlled according to the following equation:



    [0024] Where Pbatt is the power delivered by battery system 54 through PCS 60, Pnet is the aggregated total power delivered by DER system 100 to electrical panel 62, and Pps is the power delivered by PV system 51.

    [0025] Equation 1.0 describes an output compensation mechanism useful when grid interconnection regulations limit the net DER export to the power grid 64 below a certain level (or zero). Self-consumption protocols within certain jurisdictions (e.g., Hawaii) fall into this category. In these examples, PCC 102 may reduce the amount of power output from battery system 54 to electrical panel 62 when a total combined output power from PV system 51 and battery system 54 exceeds a power threshold limit. This is performed by responding to the dynamic power output from the PV array 52 by adjusting the power setpoint in the PCS 60. The real-time monitoring of the PV output current by the PCC 102 enables the DSP 118 to process this information and adjust the PCS 60 power setpoint with minimal latency. In this example, the DSP has information about the power draw by the local loads 66 that may be predetermined or provided by the EMS 58.

    [0026] A second feature of PCC 102 is used to interrupt current from PV system 51 by opening PCS-controlled relay 112. This may enhance safety functionality. For example, if a current spike is detected on PV system 51 by a sensor monitored by DSP 118, DSP 118 may open relay 112 and interrupt power flow from PV system 51 to electrical panel 62. PCC 102 may prevent these irregular current flows from propagating into larger problems such as charge build-up (electrical hazards) or electrical fires. The disconnection of PV system 51 triggers the PV inverter 56 to disconnect because of the loss of the grid voltage reference, and the PV inverter 56 further isolates the PV array 52 from the rest of the DER system 100.

    [0027] This feature may also be used to curtail PV power flow in the event that the battery system 54 cannot accommodate the required charging power. This may happen when the state-of-charge of the battery 55 has reached an upper limit and the battery system 54 cannot store additional energy from the PV system 51. This is particularly relevant if the DER system 100 is operating off-grid such that the power grid 64 is unavailable to accept excess power from the PV system 51. It is also relevant when self-consumption protocols require that PV power is not exported to the power grid 64. PV curtailment can also be used when the PV output power exceeds the electrical ratings of the circuitry in the PCS 60 or battery system 54. In either case, the curtailment relay 112 opens in response to a command from the DSP 118 based on the current detected by current sensor 110 and the additional system information available to the DSP 118. In one example, DSP 118 may operate independently of other controller circuitry operating within PCS 60.

    [0028] PCC 102 may keep PV inverter 56 disconnected until PCS 60 is online and ready to respond to power setpoint commands from the DSP 118. Relay 112 may be normally-open and remain open, disconnecting PV system 51 from electrical panel 62 until PCS 60 is connected to the battery system 54 or power grid 64 and is ready to manage power flow. Thus, PCC 102 provides a system integrity check that ensures power from PV system 51 can either flow to battery system 54, local loads 66, or power grid 64 before relay 112 is closed again.

    [0029] For the capabilities described above, direct control of DER system 100 by PCS 60 and PCC 102 may provide much faster response than possible through EMS 58. PCC 102 may control output compensation for PV system 51 and disconnection of PV system 51 on a step-by-step basis at the sampling frequency of DSP 118.

    [0030] FIG. 4 shows another embodiment of PCC 102 where the OUT terminal 114 in FIG. 3 may be routed internally to the PCS output terminal 109 such that the PV system 51 is connected to the PCS within the circuitry of the PCS 60 rather than at the electrical panel 62. This eliminates the need for two circuit branches (PCS and PV) between the PCS 60 and electrical panel 62, thereby simplifying system installation and reducing cost. In exchange, both wires from the PV inverter 56 are routed to and terminated in the PCS 60. That is, the AC output branch 104 from PV inverter 56 includes both conductors (line and neutral), and both are terminated at the PCS output terminal 108. In this example, the PV inverter AC output branch 104 may be protected by an external circuit breaker rather relying on a circuit breaker contained within the electrical panel 62.

    [0031] The above examples describes a single PV system 51 coupled with a battery system 54. However, PCC 102 may operate with any combination of power sources that interact with PCS 60 through an AC coupled DER system 100. For example, a modified version of PCC 102 may connect to a specific load or may use other meters to monitor current from any alternative power source, compensate output power from PCS 60, and interrupt power flow from the alternative power source using relay 112.

    [0032] FIG. 5 shows how multiple PCCs 102 control and compensate any number of DER power sources 70 or loads 72 operating in an AC coupled system. AC power sources 70 may include any combination of PV systems 51 or any other AC generation system. Multiple different AC branches from multiple different power sources 70 and/or loads 72 can each be connected to a separate PCCs 102 in PCS 60. For each different power source and/or load, PCCs 102 are used to monitor current, compensate output power from PCS 60, and/or interrupt power flow using relay 112 before being connected to electrical panel 62. In one example, a single line or neutral conductor from each power source 70 or load 72 is connected through an associated PCC 102 to electrical panel 62. The other line or neutral conductor is connected directly to electrical panel 62.

    [0033] DSP 118 may monitor and control the connected power sources 70 and/or loads 72 connected to PCCs 102. DSP 118 may use PCCs 102 to disconnect the associated power sources 70 or loads 72 from power grid 64 or local loads 66 based on the output power of the monitored power sources 70 or loads, or based on a combination of output power from multiple monitored power sources. For example, DSP 118 may use PCCs 102 to disconnect one or more power sources 70 when the total output power reaches a power threshold limit or when a power disruption or power surge is detected in the power source. In this example, equation 1.0 must be modified as follows:



    [0034] Where Pbatt is the power delivered by battery system 54 through PCS 60, Pnet is the aggregated total power delivered by DER system 100 to electrical panel 62, ΣPps is the total power delivered by AC power sources 70, and ΣPlaod is the total power delivered to loads 72.

    [0035] Equation 2.0 describes an output compensation mechanism useful when grid interconnection regulations limit the net DER export to the power grid 64 below a certain level (or zero). Self-consumption protocols within certain jurisdictions (e.g., Hawaii) fall into this category. In these examples, PCC 102 may reduce the amount of power output from battery system 54 to electrical panel 62 when a total combined output power from AC power sources 70 and battery system 54 less the power delivered to loads 72 exceeds a power threshold limit. This is performed by responding to the dynamic power from the AC power sources 70 and into the loads 72 by adjusting the power setpoint in the PCS 60. The real-time monitoring of the AC power source and load currents by the PCCs 102 enables the DSP 118 to process this information and adjust the PCS 60 power setpoint with minimal latency. This embodiment is able to capture the power flow to between all power supplies 70 and loads 72 connected to the electrical panel 62, so it is possible to calculate the required power setpoint in the PCS without relying on additional information from EMS 58.

    [0036] PCS-control of output power compensation decreases the cycle time for any control involving battery system 54, PV system 51, AC power sources 70, or any DER or load 66 or 72. The improved control granularity reduces the risk of set-point overshoot, improving grid stability during DER power export.

    [0037] PCC 102 may try to interrupt power flow as quickly as possible to prevent system damage, personnel injury, and any other problems. Communication latency and power control response times for safety-critical functions may be reduced since PCS-controlled relay 112 bypasses EMS 58 and more closely couples power detection to power sources 51 and 70 and PCS 60. Preventing DER power flow until the battery system 54 is online further improves grid stability. PCC 102 provides significant value-added flexibility since grid interconnection requirements continue to locate more functionality within PCS 60.

    [0038] FIG. 6 shows an example process performed by the DSP 118 in the PCC 102 located in the PCS 60. In operation 200A, the processor monitors the output power from the DER system 100. For example, the PCC may include a current meter connected to the DSP 118 or the DSP 118 may receive a power indication from the inverter connected to the power source.

    [0039] In operation 200B, the DSP 118 adjusts the discharge current from the battery system 54 to maintain a consistent cumulative power delivery from the DER system 100. For example, the DSP 118 may reduce the discharge current from the battery system 54 when the output power from the power source increases and increase the battery discharge current when the output power decreases.

    [0040] In operation 200C, the DSP 118 may monitor the power source output for current spikes, power surges, or any other irregularity. In operation 200D, the processor may disconnect the power source from the power grid and/or any loads when the power irregularity is detected. In operation 200E, the DSP 118 keeps the power source disconnected from the power grid until the PCS is powered by the battery and/or power grid and is ready to manage the power flow. For example, the PCC 102 may include a normally open relay 112 that maintains the open state until activated by the DSP 118.

    [0041] FIG. 7 shows a computing device 1000 that may be used for implementing or operating in combination with DSP 118, PV inverter 56, power supplies 70, PCS 60, EMS 58, and any combination of processes discussed above. The computing device 1000 may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. In other examples, computing device 1000 may be a personal computer (PC), a tablet, a Personal Digital Assistant (PDA), a cellular telephone, a smart phone, a web appliance, or any other machine or device capable of executing instructions 1006 (sequential or otherwise) that specify actions to be taken by that machine.

    [0042] While only a single computing device 1000 is shown, the computing device 1000 may include any collection of devices or circuitry that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the operations discussed above. Computing device 1000 may be part of an integrated control system or system manager, or may be provided as a portable electronic device configured to interface with a networked system either locally or remotely via wireless transmission.

    [0043] Processors 1004 may comprise a central processing unit (CPU), a graphics processing unit (GPU), programmable logic devices, dedicated processor systems, micro controllers, or microprocessors that may perform some or all of the operations described above. Processors 1004 may also include, but may not be limited to, an analog processor, a digital processor, a microprocessor, multi-core processor, processor array, network processor, etc.

    [0044] Some of the operations described above may be implemented in software and other operations may be implemented in hardware. One or more of the operations, processes, or methods described herein may be performed by an apparatus, device, or system similar to those as described herein and with reference to the illustrated figures.

    [0045] Processors 1004 may execute instructions or "code" 1006 stored in any one of memories 1008, 1010, or 1020. The memories may store data as well. Instructions 1006 and data can also be transmitted or received over a network 1014 via a network interface device 1012 utilizing any one of a number of well-known transfer protocols.

    [0046] Memories 1008, 1010, and 1020 may be integrated together with processing device 1000, for example RAM or FLASH memory disposed within an integrated circuit microprocessor or the like. In other examples, the memory may comprise an independent device, such as an external disk drive, storage array, or any other storage devices used in database systems. The memory and processing devices may be operatively coupled together, or in communication with each other, for example by an I/O port, network connection, etc. such that the processing device may read a file stored on the memory.

    [0047] Some memory may be "read only" by design (ROM) by virtue of permission settings, or not. Other examples of memory may include, but may be not limited to, WORM, EPROM, EEPROM, FLASH, etc. which may be implemented in solid state semiconductor devices. Other memories may comprise moving parts, such a conventional rotating disk drive. All such memories may be "machine-readable" in that they may be readable by a processing device.

    [0048] "Computer-readable storage medium" (or alternatively, "machine-readable storage medium") may include all of the foregoing types of memory, as well as new technologies that may arise in the future, as long as they may be capable of storing digital information in the nature of a computer program or other data, at least temporarily, in such a manner that the stored information may be "read" by an appropriate processing device. The term "computer-readable" may not be limited to the historical usage of "computer" to imply a complete mainframe, mini-computer, desktop, wireless device, or even a laptop computer. Rather, "computer-readable" may comprise storage medium that may be readable by a processor, processing device, or any computing system. Such media may be any available media that may be locally and/or remotely accessible by a computer or processor, and may include volatile and non-volatile media, and removable and non-removable media.

    [0049] Computing device 1000 can further include a video display 1016, such as a liquid crystal display (LCD) or a cathode ray tube (CRT)) and a user interface 1018, such as a keyboard, mouse, touch screen, etc. All of the components of computing device 1000 may be connected together via a bus 1002 and/or network.


    Claims

    1. An apparatus, comprising:

    a power conversion system, PCS; and

    a power control and compensation, PCC, circuit (102) configured to operate with the PCS (60), the PCS being configured to control the conversion between direct current, DC, power for a battery system (54) and alternating current, AC, power based on power command signals from an energy management system, EMS, (58) that controls the PCS and coordinates power flow between a power system (51) and an electrical panel (62) or a load (66) connected to the electrical panel, and the PCC circuit including:

    an input terminal (106) to connect with an output from the power system;

    an output terminal (114) to connect with the electrical panel or the load connected to the electrical panel, wherein the output terminal of the PCC is connected to an output terminal (109) of the PCS;

    a relay (112) coupled between the input terminal and the output terminal;

    a current measurement device (110) coupled between the input and output terminal of the PCC configured to measure the power level from the power system; and

    a processor (118) configured to monitor a power state for the power system, monitor a power state for the battery system, and selectively activate the relay to connect the power from the power system to the electrical panel or the load connected to the electrical panel based on the power states of the power system and the battery system, wherein

    the PCC circuit is configured to control the output of the power system separately from the power demand signals sent by the EMS to the PCS, and characterised in that
    the relay is configured to remain open until PCS (60) is connected to the battery system (54) or a power grid (64) connected to the electrical panel and until the PCS is ready to manage power flow, thereby disconnecting the power system from the electrical panel, and configured to close based on the measured power level from the current measurement device that ensures that power can flow to the battery system, to the load connected to the electrical panel, or to the power grid connected to the electrical panel.


     
    2. The apparatus of claim 1, wherein the processor varies an amount of power discharged from or charged into the battery system based on the measured power level.
     
    3. The apparatus of claim 1 or 2, further comprising a middle-terminal (116) connected between the current measurement device and the relay configured to divert the power from the power system through a PCS-based circuit branch without including the relay.
     
    4. The apparatus of any preceding claim, wherein the power system includes a photovoltaic array and an inverter configured to convert DC power from the photovoltaic array (52) into AC power.
     
    5. The apparatus of any preceding claim, further comprising:
    a plurality of PCCs including multiple sets of input terminals, output terminals, and relays operating within the PCS and connected to different associated power systems (70) and loads (72), the processor configured to selectively connect the different associated power systems and loads to the electrical panel through the multiple sets of relays in the plurality of PCCs.
     
    6. The apparatus of claim 5, including multiple current measurement devices coupled between the multiple sets of input and output terminals configured to measure power levels for the different power systems and loads, the processor configured to to selectively activate the relays based on the measured power levels from the current measurement devices.
     
    7. The apparatus of any preceding claim, including:
    an inverter (60) to connect to a battery system and being configured to convert direct current, DC, power from the battery system into the, AC, power, wherein the processor is configured to:

    monitor a power state delivered by a photovoltaic, PV, power source; and

    control power output by the PV power source and the battery system to the load or electrical panel based on the monitored power states of the PV power source and battery system.


     
    8. The apparatus of claim 7, wherein the processor is configured to cause the inverter to adjust an amount of AC power discharged from or charged into the battery system based on the power states of the PV power source.
     
    9. The apparatus of claim 7 or 8, wherein the processor is further configured to monitor for power disruptions in the PV power source and disconnect the PV power source from the load or electrical panel based on a detection of the power disruptions.
     
    10. The apparatus of any of claims 7 to 9, wherein the processor is further configured to monitor a state of the battery system and to disconnect the PV power source when the battery system cannot accommodate charging power from the PV power source.
     


    Ansprüche

    1. Vorrichtung, umfassend:

    ein Energieumwandlungssystem, PCS (Power Conversion System); und

    eine Leistungssteuerungs- und -kompensations-(PCC, Power Control and Compensation-)Schaltung (102), die konfiguriert ist, um mit der PCS (60) zu arbeiten, wobei die PCS konfiguriert ist, um die Umwandlung zwischen Gleichstrom-(DC-)Leistung für ein Batteriesystem (54) und Wechselstrom-(AC-)Leistung basierend auf Leistungsbefehlssignalen von einem Energiemanagementsystem (EMS) (58), das die PCS steuert und den Leistungsfluss zwischen einem Energiesystem (51) und einer elektrischen Schalttafel (62) oder einer mit der elektrischen Schalttafel verbundenen Last (66) koordiniert, zu steuern, wobei die PCC-Schaltung beinhaltet:

    einen Eingangsanschluss (106) zum Verbinden mit einem Ausgang des Stromversorgungssystems;

    einen Ausgangsanschluss (114) zum Verbinden mit der elektrischen Schalttafel oder der mit der elektrischen Schalttafel verbundenen Last, wobei der Ausgangsanschluss der PCC mit einem Ausgangsanschluss (109) der PCS verbunden ist;

    ein Relais (112), das zwischen dem Eingangsanschluss und dem Ausgangsanschluss gekoppelt ist;

    eine Strommessvorrichtung (110), die zwischen den Eingangs- und Ausgangsanschluss des PCC gekoppelt ist, die konfiguriert ist, um den Leistungspegel aus dem Leistungssystem zu messen; und

    einen Prozessor (118), der konfiguriert ist, um einen Leistungszustand für das Stromversorgungssystem zu überwachen, einen Leistungszustand für das Batteriesystem zu überwachen und selektiv das Relais zu aktivieren, um die Leistung aus dem Stromversorgungssystem mit der elektrischen Schalttafel oder der mit der elektrischen Schalttafel verbundenen Last basierend auf den Leistungszuständen des Stromversorgungssystems und des Batteriesystems zu verbinden, wobei

    die PCC-Schaltung konfiguriert ist, um den Ausgang des

    Stromversorgungssystems getrennt von den Leistungsbedarfssignalen zu steuern, die vom EMS an das PCS gesendet werden, und dadurch gekennzeichnet, dass
    das Relais konfiguriert ist, um offen zu bleiben, bis PCS (60) mit dem Batteriesystem (54) oder einem mit der elektrischen Schalttafel verbundenen Stromnetz (64) verbunden ist, und bis die PCS bereit ist, den Leistungsfluss zu steuern, wodurch das Stromnetz von der elektrischen Schalttafel getrennt wird, und konfiguriert ist, um basierend auf dem gemessenen Leistungspegel von der Strommessvorrichtung, die sicherstellt, dass Strom zum Batteriesystem, zu der mit der elektrischen Schalttafel verbundenen Last oder zu dem mit der elektrischen Schalttafel verbundenen Stromnetz fließen kann, zu schließen.


     
    2. Vorrichtung nach Anspruch 1, wobei der Prozessor eine Menge an Leistung, die aus dem Batteriesystem entladen oder in das Batteriesystem geladen wird, basierend auf dem gemessenen Leistungspegel variiert.
     
    3. Vorrichtung nach Anspruch 1 oder 2, ferner umfassend eine Mittelklemme (116), die zwischen der Strommessvorrichtung und dem Relais verbunden ist, das konfiguriert ist, um die Leistung aus dem Stromversorgungssystem durch einen PCS-basierten Schaltungszweig umzuleiten, ohne das Relais einzubeziehen.
     
    4. Vorrichtung nach einem beliebigen vorhergehenden Anspruch, wobei das Stromversorgungssystem eine Photovoltaikanordnung und einen Wechselrichter beinhaltet, die konfiguriert sind, um Gleichstrom aus der Photovoltaikanordnung (52) in Wechselstrom umzuwandeln.
     
    5. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, ferner umfassend:
    eine Vielzahl von PCCs, die mehrere Sätze von Eingangsanschlüssen, Ausgangsanschlüssen und Relais beinhalten, die innerhalb der PCS arbeiten und mit verschiedenen zugehörigen Stromversorgungssystemen (70) und Lasten (72) verbunden sind, wobei der Prozessor konfiguriert ist, um die verschiedenen zugeordneten Stromversorgungssysteme und Lasten selektiv mit der elektrischen Schalttafel über die mehreren Sätze von Relais in der Vielzahl von PCCs zu verbinden.
     
    6. Vorrichtung nach Anspruch 5, umfassend mehrere Strommessvorrichtungen, die zwischen den mehreren Sätzen von Eingangs- und Ausgangsanschlüssen gekoppelt sind, die konfiguriert sind, um Leistungspegel für die verschiedenen Leistungssysteme und -lasten zu messen, wobei der Prozessor konfiguriert ist, um die Relais basierend auf den gemessenen Leistungspegeln der Strommessvorrichtungen selektiv zu aktivieren.
     
    7. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, umfassend:
    einen Wechselrichter (60) zum Verbinden mit einem Batteriesystem und der konfiguriert ist, um Gleichstrom-(DC-)Leistung aus dem Batteriesystem in Wechselstrom-(AC-)Leistung umzuwandeln, wobei der Prozessor konfiguriert ist zum:

    Überwachen eines Leistungszustands, der von einer Photovoltaik-(PV-)Stromquelle geliefert wird; und

    Steuern der Leistungsausgabe der PV-Stromquelle und des Batteriesystems an die Last oder der elektrischen Schalttafel basierend auf den überwachten Leistungszuständen der PV-Stromquelle und des Batteriesystems.


     
    8. Vorrichtung nach Anspruch 7, wobei der Prozessor konfiguriert ist, um den Wechselrichter zu veranlassen, eine Menge an Wechselstrom, die aus dem Batteriesystem entladen oder in das Batteriesystem geladen wird, basierend auf den Leistungszuständen der PV-Leistungsquelle einzustellen.
     
    9. Vorrichtung nach Anspruch 7 oder 8, wobei der Prozessor ferner konfiguriert ist, um Leistungsunterbrechungen in der PV-Leistungsquelle zu überwachen und die PV-Leistungsquelle von der Last oder der elektrischen Schalttafel zu trennen, basierend auf einer Erfassung der Leistungsunterbrechungen.
     
    10. Vorrichtung nach einem der Ansprüche 7 bis 9, wobei der Prozessor ferner konfiguriert ist, um einen Zustand des Batteriesystems zu überwachen und die PV-Stromquelle zu trennen, wenn das Batteriesystem keine Ladeleistung von der PV-Stromquelle aufnehmen kann.
     


    Revendications

    1. Appareil, comprenant :

    un système de conversion de puissance, PCS ; et

    un circuit de compensation et de commande de puissance, PCC, (102) configuré de manière à fonctionner avec le système PCS (60), le système PCS étant configuré de manière à commander la conversion entre puissance en courant continu, CC, pour un système de batterie (54) et puissance en courant alternatif, CA, sur la base de signaux d'instruction de puissance en provenance d'un système de gestion d'énergie, EMS, (58) qui commande le système PCS et coordonne un flux de puissance entre un système d'alimentation (51) et un panneau électrique (62) ou une charge (66) connectée au panneau électrique, et le circuit PCC incluant :

    une borne d'entrée (106) destinée à être connectée à une sortie du système d'alimentation ;

    une borne de sortie (114) destinée à être connectée au panneau électrique ou à la charge connectée au panneau électrique, dans lequel la borne de sortie du circuit PCC est connectée à une borne de sortie (109) du système PCS ;

    un relais (112) couplé entre la borne d'entrée et la borne de sortie ;

    un dispositif de mesure de courant (110) couplé entre la borne d'entrée et la borne de sortie du circuit PCC, configuré de manière à mesurer le niveau de puissance en provenance du système d'alimentation ; et

    un processeur (118) configuré de manière à surveiller un état de puissance pour le système d'alimentation, à surveiller un état de puissance pour le système de batterie, et à activer sélectivement le relais pour connecter l'alimentation du système d'alimentation au panneau électrique ou à la charge connectée au panneau électrique, sur la base des états de puissance du système d'alimentation et du système de batterie, dans lequel :

    le circuit PCC est configuré de manière à commander la sortie du système d'alimentation séparément des signaux de demande de puissance envoyés par le système de gestion EMS au système PCS, et caractérisé en ce que :
    le relais est configuré de manière à rester ouvert jusqu'à ce que le système PCS (60) soit connecté au système de batterie (54), ou à un réseau électrique (64) connecté au panneau électrique, et jusqu'à ce que le système PCS soit prêt à gérer un flux de puissance, déconnectant par conséquent le système d'alimentation du panneau électrique, et configuré de manière à se fermer sur la base du niveau de puissance mesuré à partir du dispositif de mesure de courant qui garantit que de la puissance peut transiter vers le système de batterie, vers la charge connectée au panneau électrique, ou vers le réseau électrique connecté au panneau électrique.


     
    2. Appareil selon la revendication 1, dans lequel le processeur fait varier une quantité de puissance déchargée à partir du système de batterie, ou chargée dans le système de batterie, sur la base du niveau de puissance mesuré.
     
    3. Appareil selon la revendication 1 ou 2, comprenant en outre une borne centrale (116) connectée entre le dispositif de mesure de courant et le relais, configurée de manière à dévier la puissance en provenance du système d'alimentation à travers une branche de circuit à base de système PCS, sans inclure le relais.
     
    4. Appareil selon l'une quelconque des revendications précédentes, dans lequel le système d'alimentation comprend un réseau photovoltaïque, et un onduleur configuré de manière à convertir une puissance en courant continu en provenance du réseau photovoltaïque (52) en une puissance en courant alternatif.
     
    5. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre :
    une pluralité de circuits PCC incluant de multiples ensembles de bornes d'entrée, de bornes de sortie et de relais fonctionnant dans le système PCS et connectés à différents systèmes d'alimentation associés (70) et à différentes charges associés (72), le processeur étant configuré de manière à connecter sélectivement les différents systèmes d'alimentation associés et différentes charges associées, au panneau électrique, à travers les multiples ensembles de relais dans la pluralité de circuits PCC.
     
    6. Appareil selon la revendication 5, incluant de multiples dispositifs de mesure de courant couplés entre les multiples ensembles de bornes d'entrée et de bornes de sortie, configurés de manière à mesurer des niveaux de puissance pour les différents systèmes d'alimentation et les différentes charges, le processeur étant configuré de manière à activer sélectivement les relais sur la base des niveaux de puissance mesurés par les dispositifs de mesure de courant.
     
    7. Appareil selon l'une quelconque des revendications précédentes, incluant :
    un onduleur (60) destiné à se connecter à un système de batterie et configuré de manière à convertir une puissance en courant continu, CC, en provenance du système de batterie en une puissance en courant alternatif, CA, dans lequel le processeur est configuré de manière à :

    surveiller un état de puissance fourni par une source de puissance photovoltaïque, PV ; et

    commander une puissance fournie en sortie par la source de puissance PV et le système de batterie, à la charge ou au panneau électrique, sur la base des états de puissance surveillés de la source de puissance PV et du système de batterie.


     
    8. Appareil selon la revendication 7, dans lequel le processeur est configuré de manière à amener l'onduleur à ajuster une quantité de puissance en courant alternatif déchargée vers le système de batterie ou chargée dans le système de batterie, sur la base des états de puissance de la source de puissance PV.
     
    9. Appareil selon la revendication 7 ou 8, dans lequel le processeur est en outre configuré de manière à surveiller des interruptions d'alimentation dans la source de puissance PV et à déconnecter la source de puissance PV de la charge ou du panneau électrique sur la base d'une détection des interruptions d'alimentation.
     
    10. Appareil selon l'une quelconque des revendications 7 à 9, dans lequel le processeur est en outre configuré de manière à surveiller un état du système de batterie et à déconnecter la source de puissance PV lorsque le système de batterie ne peut pas supporter une puissance de charge en provenance de la source de puissance PV.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description