(19)
(11)EP 3 212 941 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 15854877.6

(22)Date of filing:  30.10.2015
(51)Int. Cl.: 
F04D 29/063  (2006.01)
F04D 25/06  (2006.01)
F04D 29/58  (2006.01)
F04D 29/046  (2006.01)
F04D 29/42  (2006.01)
(86)International application number:
PCT/US2015/058310
(87)International publication number:
WO 2016/070043 (06.05.2016 Gazette  2016/18)

(54)

SYSTEMS AND METHODS TO PROVIDE LUBRICANT TO A BEARING

SYSTEME UND VERFAHREN ZUR BEREITSTELLUNG EINES SCHMIERMITTELS FÜR EIN LAGER

SYSTÈMES ET PROCÉDÉS DE FOURNITURE DE LUBRIFIANT À UN PALIER


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.10.2014 US 201462073485 P

(43)Date of publication of application:
06.09.2017 Bulletin 2017/36

(73)Proprietor: Trane International Inc.
Piscataway, NJ 08855 (US)

(72)Inventors:
  • HARRISON, Mark, W.
    Onalaska, WI 54650 (US)
  • JOHNSON, Jon, C.
    New Albin, IA 52160 (US)
  • SMITH, Todd, W.
    Onalaska, WI 54650 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
EP-A1- 0 228 040
EP-A1- 2 177 760
EP-A2- 1 267 081
JP-A- 2011 185 175
US-A- 4 140 441
US-A- 5 051 007
US-A1- 2011 016 913
EP-A1- 1 698 783
EP-A1- 2 530 320
JP-A- 2009 215 931
US-A- 3 499 503
US-A- 4 940 341
US-A- 5 207 291
US-A1- 2014 241 926
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field



    [0001] The disclosure herein relates to a compressor, such as for example a centrifugal compressor in a chiller of a heating, ventilation and air conditioning (HVAC) system. More specifically, the disclosure relates to systems and methods to provide lubrication to a bearing.

    Background



    [0002] In a compressor, e.g. a centrifugal compressor, one or more impellers may be used to compress a fluid (e.g. gaseous refrigerant). Typically, the one or more impellers are mounted on a shaft, which is driven by a motor. The shaft can be supported by one or more bearings, which can be configured to withstand axial and radial forces in operation. Some bearings require lubrication in operation.

    [0003] EP0228040 discloses a centrifugal compressor wherein the lubricating oil is drawn up from an oil reservoir through the rotating shaft to the bearings.

    [0004] US2014/0241926 discloses a method of operating a refrigeration system, including a plurality of compressors connected in parallel. Oil is supplied from one of the compressors to the another one of the compressors.

    [0005] EP2177760 discloses a fluid machine and refrigeration cycle device which has a first and second compressor. The first compressor has an oil space with a larger volume than an oil space of the second compressor.

    [0006] US4140441 discloses a turbomolecular pump having a lubrication system. The pump has a rotating spindle, whose lower end extends into a reservoir of fluid lubricant.

    [0007] EP1267081 discloses a regenerative vacuum pump, having a rotatable shaft with an axial bore, with the lower end of the shaft extending into a sump containing lubrication fluid. The rotation of the shaft causes lubricant to pass along the axial bore.

    Summary



    [0008] Embodiments disclosed herein generally are directed to systems and methods to deliver a lubricant flow to a bearing (e.g. a bearing surfaces) in a compressor, where the lubricant flow relies on the rotation of the shaft in the compressor. The embodiments as disclosed herein can help maintain a lubricant flow, for example, when there is a power outage, so that the bearing can be lubricated during a period of time for the shaft to stop in a power outage situation. The compressor can be included, for example, in a chiller of a HVAC system.

    [0009] The invention is defined in the attached independent claims to which reference should now be made. Further, optional features may be found in the sub-claims appended thereto.

    [0010] In an aspect, a centrifugal compressor includes a shaft, a lubricant sump covering an end of the shaft, and a bearing configured to support the shaft, the bearing having a bearing access. The centrifugal compressor is characterized in that it includes a shroud located within the lubricant sump and covering the end of the shaft, the shroud having an aperture, the aperture allowing a lubricant inlet to extend out of the shroud, such that the lubricant inlet can take in lubricant from the lubricant sump, and wherein the lubricant inlet is positioned on an axis of the shaft. The centrifugal compressor is further characterized in that the shaft has a first opening at the end of the shaft in fluid communication with the lubricant inlet and a second opening in fluid communication with the bearing access; and the first opening and the second openings are in fluid communication with a lubricant delivery channel.

    [0011] In some optional embodiments, the lubricant delivery system may include a lubricant pump that is configured to take in a lubricant from the lubricant sump when the centrifugal compressor is in operation and the lubricant pump is configured to deliver the lubricant into the lubricant delivery channel.

    [0012] In some optional embodiments, the lubricant pump may be configured to rotate along with the shaft. The rotation of the lubricant pump may help deliver the lubricant from the lubricant sump to the lubricant delivery channel. In some optional embodiments, the lubricant pump may be a centrifugal lubricant pump.

    [0013] In some optional embodiments, the lubricant pump may be positioned at the end of the shaft. In some optional embodiments, the lubricant pump may have a lubricant inlet positioned in the sump volume of the lubricant sump.

    [0014] In some optional embodiments, the lubricant sump may have an overflow opening and a lubricant drainage opening. The overflow opening may be located at an upper portion of the lubricant sump and the oil drainage opening may be located at a lower portion of the lubricant sump.

    [0015] Other features and aspects of the systems, methods, and control concepts will become apparent by consideration of the following detailed description and accompanying drawings.

    Brief Description of the Drawings



    [0016] Reference is now made to the drawings in which like reference numbers represent corresponding parts throughout.

    Fig. 1 illustrates one embodiment of a chiller, with which the embodiments as disclosed herein can be practiced.

    Figs. 2A-2D illustrate one embodiment of a motor of an exemplary centrifugal compressor including a lubricant delivery system, according to one embodiment. Fig. 2A illustrates a sectional view of the motor including the lubricant delivery system. Fig. 2B illustrates an enlarged perspective section view of the motor showing a close up view of the lubricant delivery system. Fig. 2C illustrates a perspective side view of an exemplary thrust bearing part that can be used in the motor of the compressor. Fig. 2D illustrates another perspective side view of an exemplary thrust bearing part that can be used in the motor of the compressor.

    Figs. 3A-C illustrate one embodiment of a lubricant sump of the motor of the compressor. Fig. 3A illustrates a perspective view thereof. Fig. 3B illustrates an end view thereof. Fig. 3C illustrates a section view thereof taken from line A-A of Fig. 3B.


    Detailed Description



    [0017] A compressor can be used in various applications to compress a fluid, such as for example to compress a refrigerant gas in a chiller of a HVAC system. In the example of a centrifugal compressor, one or more impellers can be arranged in series on a shaft. The refrigerant gas is compressed by a centrifugal force of the impeller(s).

    [0018] The shaft of the compressor may be supported by one or more bearings, which can be configured to withstand axial forces and/or radial forces in operation. Some bearings require lubrication in operation. Lack of lubrication during operation can result in an elevated operation temperature such as by friction, wear and tear of the bearings, causing early termination of their service lives, malfunction or failure. In some cases (such as for example in a hydrodynamic bearing, lack of lubricant can cause a wiped bearing, where a portion of the bearing surface may melt and the melted material may move for example to an edge of the bearing where the material may be re-solidified.

    [0019] In one specific example, one or more hydrodynamic bearings can be used to support the shaft in the compressor. A hydrodynamic bearing typically relies on a layer of lubricant to separate two bearing surfaces during operation. If lubricant is not sufficiently delivered between the bearing surfaces, the two bearing surfaces can contact directly during operation, which can cause detrimental effect (e.g. an elevated operation temperature, wear and tear, a wiped bearing) on the bearing surfaces.

    [0020] A compressor can have a lubricant delivery system to provide lubricant to the bearing(s). The lubricant delivery system can include a lubricant pump. But in some operation conditions, such as for example during power outage, the lubricant pump may not function properly. In such a condition, the bearing(s) can lose lubricant quickly. However, there may be still a relatively long period of time before the shaft comes to a stop. The period of the time for the shaft to come to a stop may depend on, for example, a mass of the shaft and the impeller(s) mounted on the shaft, and a pressure differential between a suction side and a discharge side of the compressor. In some compressors using a relatively high pressure refrigerant (e.g. R-245a, R-1233zd), the period of time for the shaft to stop can be relatively long due to e.g. a relatively high pressure differential between the suction side and the discharge side of the compressor. In some circumstances, the pressure differential can push the shaft to rotate in an opposite direction relative to its normal operation.

    [0021] The lubricant on the bearing(s) may become insufficient to provide appropriate lubrication to the bearings during such a period of time for the shaft to stop. In addition, the bearing(s) may still carry a thrust load due to the pressure differential. These factors can cause damage to the bearing(s). In some cases, when for example a hydrodynamic bearing is used, lack of sufficient lubricant can cause the two bearing surfaces to contact and rub against each other. In some situations, the bearing surfaces may even be melted due to friction, and the melted material of the bearing surfaces may re-solidify at for example an edge of the bearing surface, causing a melted bearing.

    [0022] Embodiments as disclosed herein are directed to systems and methods to help provide lubricant to a bearing in a compressor. The embodiments disclosed herein generally are directed to systems and methods to provide a lubricant flow to the bearing (e.g. a bearing access) that relies on the rotation of a shaft of the compressor, so that the lubricant flow can be independent of a power supply. The embodiments as disclosed herein can help reduce wear and tear and the occurrence of a wiped bearing, and increase the reliability of the bearing.

    [0023] References are made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration of the embodiments in which the embodiments may be practiced. It is to be understood that the terms used herein are for the purpose of describing the figures and embodiments and should not be regarded as limiting in scope.

    [0024] Fig. 1 illustrates an exemplary multi-stage centrifugal compressor 150, with which the embodiments as disclosed herein can be practiced. It is to be understood that the embodiments as disclosed herein may be used with a single stage centrifugal compressor, other dual-stage centrifugal compressors, three-stage centrifugal compressors, or other suitable single or multi-stage compressors. The embodiments as disclosed herein may also be suitable for other types of compressors that may produce axial/radial thrusts during operation, such as for example a turbo compressor.

    [0025] The centrifugal compressor 150 includes a motor 100, and is illustrated to work in a chiller 110, which can be part of a HVAC system, with the understanding that a centrifugal compressor may also be used in other systems or applications.

    [0026] The chiller 110 typically includes a condenser 120 and an evaporator 130 to form a refrigeration circuit together with the compressor 150. The chiller 110 may also include a control system 140 to control the operation of the chiller 110.

    [0027] In the illustrated embodiment, the compressor 150 includes impellers located at 102, which are mounted on a shaft in series (see e.g. shaft 205 in example of Figs. 2A and 2B). In operation, the impellers 102 compress gaseous refrigerant in a sequential manner, which increases a pressure of the refrigerant during the process. In operation, the shaft may need to be supported by one or more bearings, which may require lubrication.

    [0028] Figs. 2A to 2D illustrates one embodiment of a lubricant delivery system 220 that is configured to provide lubricant (e.g. oil) to a bearing 202 that is configured to support the shaft 205.

    [0029] Referring to Fig. 2A, a motor 200 for a compressor is illustrated. The motor 200 can drive a shaft 205 to rotate, thereby rotating one or more impellers (not shown in Fig. 2A, see e.g. 102 in Fig. 1). An end 206 of the shaft 205 is positioned inside a cavity 234 defined by a bearing housing 232 and a cover 230. The cavity 234 may be configured to contain, for example, the lubricant and/or refrigerant. The lubricant delivery system 220 is located at the end 206 and is inside the bearing housing 232.

    [0030] Referring to Figs. 2A and 2B, in an embodiment, a lubricant sump 250 (labeled in Fig. 2B) includes an overflow opening 251 and a drainage opening 252. In an embodiment, the overflow opening includes a rib section 253, which can provide reinforcement of the opening and a support for line(s) 280, e.g. wires, to pass along the top of the lubricant sump 250. In an embodiment, the lines 280 are temperature sensor lines for a bearing part, e.g. 203, which in some embodiments is a bearing pad. In an embodiment, the lubricant sump 250 includes a deflector 270 to protect and/or shield for example lines 280 from overflow fluid that may exit the opening 250, which may be potentially damaging to the lines 280. Details of the deflector 270 are further described with respect to Figs. 3A-C.

    [0031] Referring to Fig. 2B, an enlarged view of the lubricant delivery system 220 is illustrated at an end 210 of the motor 200. The end 206 of the shaft 205 can be equipped with a lubricant pump 240 configured to deliver the lubricant to a bearing access 213, wherein the bearing 202 is in contact with the shaft 205. The lubricant can then be delivered to bearing surfaces between the bearing 202 and a thrust collar 265 to provide lubrication (e.g. the bearing surface 207).

    [0032] Referring to Fig. 2C, in some embodiments, a thrust bearing part 203, which may be a part of the bearing 202 as illustrated in Fig. 2B, may include one or more bearing channels 204. In operation, lubricant at the bearings access can be delivered to the bearing surfaces 207 through the bearing channels 204.

    [0033] Referring to Fig. 2D, in some embodiments, another side of the thrust bearing part 203 of the bearing 202 as illustrated in Fig. 2B, may include one or more bearing channels 205. In operation, lubricant at the bearings access 213 can be delivered to the bearing surfaces 209 through the bearing channels 205.

    [0034] In the illustrated embodiment, the lubricant pump may include a centrifugal lubricant pump 240 that is positioned at the end 206 of the shaft 205. The centrifugal lubricant pump 240 includes a lubricant inlet 241, which forms a fluid communication with a lubricant delivery channel 242.

    [0035] The shaft 205 has an axis A. In the illustrated embodiment, the lubricant inlet 241 is positioned to be centered by the axis A. The lubricant delivery channel 242 includes a first portion 242a that extends for example along the axis A and a second portion(s) 242b that extends outwardly from (e.g. perpendicular to) the axis A. As illustrated, the second portion 242b has one or more openings 243, which lead to the bearing access 203. The second portion 242b of the lubricant delivery channel 242 helps form a fluid communication between the lubricant inlet 241, the first portion 242a, and the bearing access 213. In the illustrated embodiment, the second portion 242b can be a cross-drilled hole for example along a diameter of the shaft 205. The one or more openings 243 form a fluid communication of the bearing 202 with the centrifugal lubricant pump 240, so that lubricant taken up by the centrifugal lubricant pump 240 at the lubricant inlet 241 can be delivered to the one or more openings 243 and be directed to the bearing access 213.

    [0036] In the illustrated embodiment, a lubricant sump 250 may be positioned in the cavity 234 to define a sump volume 255. The sump volume 255 may be filled with lubricant to a level that is sufficient to allow lubricant to be taken up by the lubricant pump 240 during operation. In some examples, the level may be sufficient to flood the lubricant inlet 241 during operation., The sump 250 and the sump volume 255 in some circumstances provide a lubricant supply to the lubricant pump 240 so as to keep the lubricant inlet 241 flooded during operation. The lubricant sump 250 may include the overflow opening 251 configured to allow lubricant to flow out of the lubricant sump 250. The lubricant sump 250 may also include the drainage opening 252 configured to direct the lubricant out of the sump volume 255. It is noted that in some embodiments, a separate sump (e.g. the lubricant sump 250) may not be necessary as the cavity 234 may serve as the sump, which may be used to contain a sufficient amount of lubricant to be taken up by the lubricant inlet 241.

    [0037] In the illustrated embodiment, the shaft 205 is horizontally positioned. The overflow opening 251 is positioned at an upper portion of the lubricant sump 250, and the drainage opening 252 is positioned at a lower portion of the lubricant sump 250. The overflow opening 251 and the drainage opening 252 allow the lubricant to circulate through the lubricant sump 250, which can help keep the lubricant warm during operation. In some embodiments, a circulation taking up the lubricant through the sump 250 can be at or about 7 gallon per minute (gpm).

    [0038] In some embodiments, the end 206 of the shaft can be covered by a shroud 260, as illustrated. The shroud 260 is shaped to generally follow an outer shape of the end 206 so that the shroud 260 can cover the end 206 for example in a relatively close proximity to the end 206 of the shaft 205. The shroud 260 in some examples can also be shaped to cover other components, such as the thrust collar 265, in a relatively close proximity. Generally, the shroud 260 can be shaped to cover components that are in contact with the lubricant directly and that have relative motion with respect to the lubricant inside the lubricant sump 250 during operation. The relative motion of such components (e.g. the end 206 of the shaft 205, the thrust collar 265) with respect to the lubricant may cause lubricant turbulence in the lubricant sump 250 in operation. By covering such components with the shroud 260 in close proximity, e.g. suitably close enough to prevent splashing, the lubricant turbulence in operation can be reduced, resulting in a relatively calm lubricant environment inside the lubricant sump 250.

    [0039] The shroud 260 includes an aperture 261 that allows the lubricant inlet 241 to extend out of the shroud 260, so that the lubricant inlet 241 can take in lubricant from the sump volume 255.

    [0040] In operation, the lubricant sump 250 can help keep a sufficient amount of lubricant available to be taken up by the centrifugal lubricant pump 240. The shroud 260 helps provide a relatively calm lubricant environment in operation. The centrifugal lubricant pump 240 can rotate along with the shaft 205. The rotation of the centrifugal lubricant pump 240 helps direct the lubricant from the lubricant inlet 241 into the lubricant delivery channel 242. The lubricant can then be delivered to the bearing access 213 and be directed to lubricate the bearing surfaces (e.g. the bearing surface 207 in Fig. 2C and/or bearing surface 209 in Fig. 2D). Because the function of the centrifugal lubricant pump 240 depends on the rotation of the centrifugal lubricant pump 240 along with the shaft 205, but does not require a power supply, lubricant can still be delivered to the bearing access 213 even during a power outage. Generally, any suitable passive lubricant pump that does not depend on a power supply can be used.

    [0041] Referring to Figs. 3A-C, further details are shown of an embodiment of the lubricant sump 250 having the deflector 270 and rib 253. Fig. 3A illustrates a perspective view thereof, Fig. 3B illustrates an end view thereof, and Fig. 3C illustrates a section view thereof taken from line A-A of Fig. 3B. The deflector 270 can have connecting portions 272, which in an embodiment connect to the lubricant sump 250 at the rib 253. In an embodiment, extended portions 274 connect to the connecting portions, and extend from the connecting portions 272 and over the opening 251. In an embodiment, the rib 253 also provides a surface on which lines, e.g. lines 280, may pass. The deflector 270 and/or the rib 253 shield and/or protect such lines from fluid, e.g. high velocity fluid(s), that may exit or overflow from opening 251. In an embodiment, the rib 253 can help prevent deformation lubricant sump 250 and/or the opening 251 during operation, such as by increased temperature.

    [0042] It is to be appreciated that the embodiments as disclosed herein can not only be applied to a compressor, but also to other rotatory machines (e.g. a pump, a turbocharge compressor) having one or more bearings that require lubrication. It is to be appreciated that the illustrated embodiment shows that the shaft 205 is positioned in a horizontal positon. This is exemplary, and the embodiments as disclosed herein can also be used when the shaft is in a vertical position.


    Claims

    1. A centrifugal compressor (150), comprising:

    a shaft (205);

    a lubricant sump (250), the lubricant sump (250) covering an end (206) of the shaft (205); and

    a bearing (202) configured to support the shaft (205), the bearing (202) having a bearing access (213);

    characterized in that the centrifugal compressor further comprises:

    a shroud (260), located within the lubricant sump (250) and covering the end (206) of the shaft (205), the shroud (260) having an aperture (261), the aperture (261) allowing a lubricant inlet (241) to extend out of the shroud (260), such that the lubricant inlet (241) can take in lubricant from the lubricant sump (250), wherein the lubricant inlet (241) is positioned on an axis of the shaft (205);

    wherein the shaft (205) has a first opening at the end (206) of the shaft (205) in fluid communication with the lubricant inlet (241) and a second opening in fluid communication with the bearing access (213); and the first opening and the second openings are in fluid communication with a lubricant delivery channel (242).


     
    2. The centrifugal compressor (150) of claim 1, further comprising:
    a lubricant pump (240); wherein the pump (240) is configured to take in lubricant from the lubricant sump (250) when the shaft (205) of the centrifugal compressor (150) is rotating and the lubricant pump (240) is configured to deliver the lubricant to the lubricant delivery channel (242).
     
    3. The centrifugal compressor (150) of claim 2, wherein the lubricant pump (240) is a centrifugal lubricant pump that rotates along with the shaft (205).
     
    4. The centrifugal compressor (150) of claim 2, wherein the lubricant pump (240) is positioned at the end (206) of the shaft (205).
     
    5. The centrifugal compressor (150) of claim 1, wherein the lubricant sump (250) has an overflow opening (251) and a lubricant drainage opening (252), the overflow opening (251) is located at an upper portion of the lubricant sump (250), and the lubricant drainage opening (252) is located at a lower portion of the lubricant sump (250).
     
    6. The centrifugal compressor (150) of claim 1, wherein the lubricant sump (250) is constructed by a bearing housing (232) and cover (230).
     
    7. A chiller (110) comprising a centrifugal compressor (150) of claim 1.
     
    8. A method of lubricating a bearing (202) in a centrifugal compressor (150), comprising:

    rotating a shaft (205) of the centrifugal compressor (150);

    rotating a lubricant pump (240) connected to an end (206) of the shaft (205);

    directing lubricant from a lubricant sump (250) into an inlet (241) of the lubricant pump (240);

    directing lubricant through a lubricant delivery channel (242) located in the shaft (205) to a bearing access (213); and

    lubricating a bearing surface (207, 209) with the lubricant that was delivered to the bearing access (213);

    characterized in that a shroud (260) covers an end (206) of the shaft (205) within the lubricant sump (250), and the shroud has an aperture (261), the aperture (261) allows the inlet (241) of the lubricant pump (240) to extend out of the shroud (260) such that the inlet (241) can take in lubricant from the lubricant sump (250), wherein the inlet (241) of the lubricant pump (240) is positioned on an axis of the shaft.


     


    Ansprüche

    1. Zentrifugalkompressor (150), Folgendes umfassend:

    eine Welle (205);

    einen Schmiersumpf (250), wobei der Schmiersumpf (250) ein Ende (206) der Welle (205) bedeckt; und

    ein Lager (202), das dazu ausgelegt ist, die Welle (205) zu tragen, wobei das Lager (202) einen Lagerzugang (213) aufweist;

    dadurch gekennzeichnet, dass der Zentrifugalkompressor ferner Folgendes umfasst:

    eine Verkleidung (260), die sich innerhalb des Schmiermittelsumpfs (250) befindet und das Ende (206) der Welle (205) bedeckt, wobei die Verkleidung (260) eine Öffnung (261) aufweist, wobei die Öffnung (261) zulässt, dass sich ein Schmiermitteleinlass (241) aus der Verkleidung (260) heraus erstreckt, sodass der Schmiermitteleinlass (241) Schmiermittel vom Schmiermittelsumpf (250) aufnehmen kann, wobei der Schmiermitteleinlass (241) auf einer Achse der Welle (205) positioniert ist;

    wobei die Welle (205) eine erste Öffnung am Ende (206) der Welle (205), die mit dem Schmiermitteleinlass (241) in Fluidverbindung steht, und eine zweite Öffnung, die mit dem Lagerzugang (213) in Fluidverbindung steht, aufweist; und die erste Öffnung und die zweite Öffnung mit einem Schmiermittelzufuhrkanal (242) in Fluidverbindung stehen.


     
    2. Zentrifugalprozessor (150) nach Anspruch 1, ferner Folgendes umfassend:
    eine Schmiermittelpumpe (240); wobei die Pumpe (240) dazu ausgelegt ist, Schmiermittel vom Schmiermittelsumpf (250) aufzunehmen, wenn sich die Welle (205) des Zentrifugalkompressors (150) dreht, und wobei die Schmiermittelpumpe (240) dazu ausgelegt ist, dem Schmiermittelzufuhrkanal (242) das Schmiermittel zuzuführen.
     
    3. Zentrifugalkompressor (150) nach Anspruch 2, wobei die Schmiermittelpumpe (240) eine Zentrifugalschmiermittelpumpe ist, die sich mit der Welle (205) dreht.
     
    4. Zentrifugalkompressor (150) nach Anspruch 2, wobei die Schmiermittelpumpe (240) am Ende (206) der Welle (205) positioniert ist.
     
    5. Zentrifugalkompressor (150) nach Anspruch 1, wobei der Schmiermittelsumpf (250) eine Überlauföffnung (251) und eine Schmiermittelablassöffnung (252) aufweist, wobei sich die Überlauföffnung (251) an einem oberen Abschnitt des Schmiermittelsumpfs (250) befindet und sich die Schmiermittelablassöffnung (252) an einem unteren Abschnitt des Schmiermittelsumpfs (250) befindet.
     
    6. Zentrifugalkompressor (150) nach Anspruch 1, wobei der Schmiermittelsumpf (250) durch ein Lagergehäuse (232) und eine Abdeckung (230) entsteht.
     
    7. Kältemaschine (110), die einen Zentrifugalkompressor (150) nach Anspruch 1 umfasst.
     
    8. Verfahren zum Schmieren eines Lagers (202) in einem Zentrifugalkompressor (150), Folgendes umfassend:

    Drehen einer Welle (205) des Zentrifugalkompressors (150);

    Drehen einer Schmiermittelpumpe (240), die mit einem Ende (206) der Welle (205) verbunden ist;

    Leiten von Schmiermittel von einem Schmiermittelsumpf (250) in einen Einlass (241) der Schmiermittelpumpe (240);

    Leiten von Schmiermittel durch einen sich in der Welle (205) befindenden Schmiermittelzufuhrkanal (242) zu einem Lagerzugang (213); und

    Schmieren einer Lagerfläche (207, 209) mit dem dem Lagerzugang (213) zugeführten Schmiermittel;

    dadurch gekennzeichnet, dass eine Verkleidung (260) ein Ende (206) der Welle (205) innerhalb des Schmiermittelsumpfs (250) bedeckt, und die Verkleidung (260) eine Öffnung (261) aufweist, wobei die Öffnung (261) zulässt, dass sich der Einlass (241) der Schmiermittelpumpe (240) aus der Verkleidung (260) heraus erstreckt, sodass der Einlass (241) Schmiermittel vom Schmiermittelsumpf (250) aufnehmen kann, wobei der Einlass (241) der Schmiermittelpumpe (240) auf einer Achse der Welle positioniert ist.


     


    Revendications

    1. Compresseur centrifuge (150), comprenant :

    un arbre (205);

    un bac de lubrifiant (250), le bac de lubrifiant (250) couvrant une extrémité (206) de l'arbre (205); et

    un palier (202) conçu pour supporter l'arbre (205), le palier (202) comportant un accès de palier (213) ;

    caractérisé en ce que le compresseur centrifuge comprend en outre :

    une flasque (260), située à l'intérieur du bac de lubrifiant (250) et couvrant l'extrémité (206) de l'arbre (205), la flasque (260) comportant une ouverture (261), l'ouverture (261) permettant à une entrée de lubrifiant (241) de s'étendre à l'extérieur de la flasque (260), de sorte que l'entrée de lubrifiant (241) puisse saisir du lubrifiant depuis le bac de lubrifiant (250), dans lequel l'entrée de lubrifiant (241) est positionnée sur un axe de l'arbre (205) ;

    dans lequel l'arbre (205) comporte une première ouverture au niveau de l'extrémité (206) de l'arbre (205) en communication fluidique avec l'entrée de lubrifiant (241) et une seconde ouverture en communication fluidique avec l'accès de palier (213) ; et la première ouverture et la seconde ouverture sont en communication fluidique avec un canal de distribution de lubrifiant (242).


     
    2. Compresseur centrifuge (150) selon la revendication 1, comprenant en outre :
    une pompe à lubrifiant (240) ; dans lequel la pompe (240) est conçue pour saisir du lubrifiant depuis le bac de lubrifiant (250) lorsque l'arbre (205) du compresseur centrifuge (150) tourne et la pompe à lubrifiant (240) est conçue pour distribuer le lubrifiant au canal de distribution de lubrifiant (242).
     
    3. Compresseur centrifuge (150) selon la revendication 2, dans lequel la pompe à lubrifiant (240) est une pompe à lubrifiant centrifuge qui tourne avec l'arbre (205).
     
    4. Compresseur centrifuge (150) selon la revendication 2, dans lequel la pompe à lubrifiant (240) est positionnée au niveau de l'extrémité (206) de l'arbre (205) .
     
    5. Compresseur centrifuge (150) selon la revendication 1, dans lequel le bac de lubrifiant (250) comporte une ouverture de trop-plein (251) et une ouverture de vidange de lubrifiant (252), l'ouverture de trop-plein (251) est située sur une partie supérieure du bac de lubrifiant (250), et l'ouverture de vidange de lubrifiant (252) est située sur une partie inférieure du bac de lubrifiant (250).
     
    6. Compresseur centrifuge (150) selon la revendication 1, dans lequel le bac de lubrifiant (250) est constitué d'un logement de palier (232) et d'un couvercle (230).
     
    7. Refroidisseur (110) comprenant un compresseur centrifuge (150) selon la revendication 1.
     
    8. Procédé de lubrification d'un palier (202) dans un compresseur centrifuge (150), comprenant :

    la rotation d'un arbre (205) du compresseur centrifuge (150) ;

    la rotation d'une pompe à lubrifiant (240) raccordée à une extrémité (206) de l'arbre (205) ;

    l'orientation du lubrifiant d'un bac de lubrifiant (250) à une entrée (241) de la pompe à lubrifiant (240) ;

    l'orientation du lubrifiant par l'intermédiaire d'un canal de distribution de lubrifiant (242) situé dans l'arbre (205) vers un accès de palier (213) ; et

    la lubrification d'une surface de palier (207, 209) au moyen du lubrifiant qui a été distribué à l'accès de palier (213) ;

    caractérisé en ce qu'une flasque (260) couvre une extrémité (206) de l'arbre (205) à l'intérieur du bac de lubrifiant (250), et la flasque comporte une ouverture (261), l'ouverture (261) permet à l'entrée (241) de la pompe à lubrifiant (240) de s'étendre à l'extérieur de la flasque (260) de sorte que l'entrée (241) puisse saisir du lubrifiant depuis le bac de lubrifiant (250), dans lequel l'entrée (241) du bac de lubrifiant (240) est positionnée sur un axe de l'arbre.


     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description