(19)
(11)EP 3 217 150 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.05.2019 Bulletin 2019/22

(21)Application number: 14905520.4

(22)Date of filing:  06.11.2014
(51)International Patent Classification (IPC): 
G01D 5/20(2006.01)
(86)International application number:
PCT/JP2014/079403
(87)International publication number:
WO 2016/071980 (12.05.2016 Gazette  2016/19)

(54)

ROTATION ANGLE DETECTION DEVICE AND ROTATION ANGLE DETECTION METHOD

VORRICHTUNG ZUR DREHWINKELERFASSUNG UND VERFAHREN ZUR DREHWINKELERFASSUNG

DISPOSITIF ET PROCÉDÉ DE DÉTECTION D'ANGLE DE ROTATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
13.09.2017 Bulletin 2017/37

(73)Proprietor: Mitsubishi Electric Corporation
Chiyoda-ku Tokyo 100-8310 (JP)

(72)Inventors:
  • FUJIE, Kenichi
    Tokyo 102-0073 (JP)
  • TSUJIMOTO, Katsuya
    Tokyo 102-0073 (JP)
  • TOTTORI, Isao
    Tokyo 100-8310 (JP)
  • SUETAKE, Naruki
    Tokyo 100-8310 (JP)

(74)Representative: Brevalex 
95, rue d'Amsterdam
75378 Paris Cedex 8
75378 Paris Cedex 8 (FR)


(56)References cited: : 
EP-A2- 1 424 264
US-B1- 6 331 759
JP-A- 2012 080 688
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a rotation angle detection device and a rotation angle detection method for detecting a rotation angle and rotation speed of a motor generator, by using a resolver.

    Background Art



    [0002] Resolvers, which have a simpler structure than optical encoders and show little error with temperature change, are widely used as rotation angle detection devices for detecting the rotation angle and rotation speed of a motor generator. However, resolvers are susceptible to the effects of external magnetic flux generated by the motor coil, etc. of the motor generator. Therefore, in order to reduce the effects of external magnetic flux, various structural measures have been devised for the coils of a resolver (see, for example, PTL 1).

    [0003] In a conventional rotation angle detection device using a resolver of this kind, in order to further reduce the effect of external magnetic flux, the S/N ratio of the induction signal induced in the induction coil of the resolver is improved by raising the amplitude or frequency of the excitation signal which is applied to the excitation coil of the resolver.

    Citation List


    Patent Literature



    [0004] [PTL 1] Japanese Patent Application Publication No. 2012-117862

    Summary of Invention


    Technical Problem



    [0005] However, if the amplitude or frequency of the excitation signal applied to the excitation coil is raised, then there is a problem in that the power consumption of the excitation circuit of the resolver rises. Furthermore, if the amplitude or frequency of the excitation signal applied to the excitation coil is raised, then there is a problem in that the rated capacitance of the switching elements, etc. used in the rotation angle detection device becomes greater, and the elements must be increased in size. Furthermore, in this case, there is a problem in that the amount of generated heat rises due to increased loss in the resolver and the excitation circuit.

    [0006] Moreover, when a motor generator is performing a power generating operation, a rotational force is applied from the engine which drives the motor generator, and therefore the detection accuracy of the rotation angle and rotation speed of the resolver (abbreviated as "resolver detection accuracy" below) is not required to be of the same level as during a driving operation of the motor generator. More specifically, the resolver detection accuracy during a power generating operation of the motor generator is sufficient provided that the detection accuracy enables the rotation speed to be detected.

    [0007] Furthermore, even when determining the presence/absence of an abnormality, such as disconnection or shorting, in the resolver, the resolver detection accuracy is not required to be of the same level as during a driving operation of the motor generator. Consequently, there is a problem in that it is inefficient to use the same excitation signal having a large amplitude or frequency during both, for instance, a driving operation, in which high resolver detection accuracy is required, and a power generating operation, in which it is sufficient to maintain a resolver detection accuracy that enables information about the rotation speed of the motor generator to be obtained.

    [0008] The present invention was devised in order to solve the abovementioned problem, an object thereof being to obtain a rotation angle detection device and a rotation angle detection method wherein downsizing can be achieved, and wherein a high resolver detection accuracy can be obtained during a driving operation of the motor generator, and when the motor generator is not performing a driving operation, the power consumption and amount of heat generated by the excitation circuit and resolver can be suppressed, while maintaining a resolver detection accuracy that enables information about the rotation speed of the motor generator to be obtained.

    Solution to Problem



    [0009] The rotation angle detection device according to the present invention includes: a resolver which has an excitation coil and an induction coil, and which a magnetic field formed by an excitation signal applied to the excitation coil is frequency-modulated by rotation of a motor generator and induced in the induction coil; an excitation circuit which applies the excitation signal, which is sinusoidal, to the excitation coil of the resolver; a power supply circuit which supplies power to the excitation circuit; an amplification circuit which amplifies and outputs an amplitude of an induction signal induced in the induction coil; and an angle calculation unit which detects a rotation angle and a rotation speed of the motor generator, which is capable of a driving operation and a power generating operation, from the excitation signal output by the excitation circuit and from the induction signal output by the amplification circuit, the rotation angle detection device further including: a first switching circuit which, in an on state, switches an amplitude or a frequency of the excitation signal to an "amplitude value when on", or a "frequency when on", by which a required value of a detection accuracy of the resolver during the driving operation of the motor generator is satisfied, and in an off state, switches the amplitude or frequency of the excitation signal to an amplitude value when off, or a frequency when off, by which a detection accuracy of the resolver that enables information about the rotation speed of the motor generator to be obtained is maintained; a second switching circuit which switches an amplification rate of the amplification circuit in such a manner that the amplitude of the induction signal output by the amplification circuit is maintained at a signal level required by the angle calculation unit, regardless of the on/off switching state of the first switching circuit; and a control unit which implements control of switching of on and off on the first switching circuit and the second switching circuit, wherein the control unit switches on both the first switching circuit and the second switching circuit when the motor generator is performing a driving operation and switches off both the first switching circuit and the second switching circuit when the motor generator is not performing a driving operation.

    [0010] The rotation angle detection method according to the present invention is a rotation angle detection method used in a rotation angle detection device including: a resolver which has an excitation coil and an induction coil, and in which a magnetic field formed by an excitation signal applied to the excitation coil is frequency-modulated by rotation of a motor generator and induced in the induction coil; an excitation circuit which applies the excitation signal, which is sinusoidal, to the excitation coil of the resolver; a power supply circuit which supplies power to the excitation circuit; an amplification circuit which amplifies and outputs an amplitude of an induction signal which is induced in the induction coil; and an angle calculation unit which detects a rotation angle and a rotation speed of the motor generator, which is capable of a driving operation and a power generating operation, from the excitation signal output by the excitation circuit and from the induction signal output by the amplification circuit, the method including: an on switching step in which an amplitude or a frequency of the excitation signal is switched to an amplitude value when on or a frequency when on, by which a required value of a detection accuracy of the resolver is satisfied, during the driving operation of the motor generator, and the amplification rate of the amplification circuit is switched in such a manner that the amplitude of the induction signal output by the amplification circuit is maintained at a signal level required by the angle calculation unit; and an off switching step in which, when the motor generator is not performing the driving operation, the amplitude or frequency of the excitation signal is switched to an amplitude value when off or a frequency when off, by which a detection accuracy of the resolver that enables information about the rotation speed of the motor generator to be obtained is maintained, and the amplification rate of the amplification circuit is switched in such a manner that the amplitude of the induction signal output by the amplification circuit is maintained at a signal level required by the angle calculation unit.

    Advantageous Effects of Invention



    [0011] In the present invention, when the motor generator is performing a driving operation, the resolver detection accuracy is improved by raising the amplitude or frequency of the excitation signal. Furthermore, when a driving operation of the motor generator is not being performed, the amount of heat generated by the resolver and the excitation circuit is suppressed by reducing the amplitude or frequency of the excitation signal. As a result of this, it is possible to obtain a rotation angle detection device and a rotation angle detection method wherein downsizing can be achieved, and wherein a high resolver detection accuracy can be obtained during a driving operation of the motor generator, and when a driving operation of the motor generator is not being performed, the power consumption and amount of heat generated by the excitation circuit and resolver can be suppressed, while maintaining a resolver detection accuracy that enables information about the rotation speed of the motor generator to be obtained.

    Brief Description of Drawings



    [0012] 

    Fig. 1 is a block drawing showing the configuration of a rotation angle detection device according to a first embodiment of the present invention.

    Fig. 2 is a circuit diagram illustrating one example of an excitation circuit in the rotation angle detection device according to the first embodiment of the present invention.

    Fig. 3 is a flowchart which illustrates a switching operation of a first switching circuit and a second switching circuit in the rotation angle detection device according to the first embodiment of the present invention.

    Fig. 4 is a block drawing showing the configuration of a rotation angle detection device according to a second embodiment of the present invention.

    Fig. 5 is an illustrative diagram depicting an output waveform of an excitation circuit in the rotation angle detection device according to the second embodiment of the present invention.


    Description of Embodiments



    [0013] Below, preferred embodiments of a rotation angle detection device and a rotation angle detection method according to the present invention are described with reference to the drawings. Parts which are the same or equivalent in the drawings are labelled with the same reference numerals.

    First Embodiment



    [0014] Fig. 1 is a block drawing showing the configuration of a rotation angle detection device 1 according to a first embodiment of the present invention. The rotation angle detection device 1 of the first embodiment comprises a resolver 10, an excitation circuit 11, a power supply circuit 12, an amplification circuit 13, an angle calculation unit 14, a first switching circuit 21, a second switching circuit 22, and a control unit 23.

    [0015] Furthermore, Fig. 2 is a circuit diagram illustrating one example of the excitation circuit 11 in the rotation angle detection device 1 according to the first embodiment of the present invention. Below, the constituent elements and functions of the rotation angle detection device 1 according to the first embodiment will be described with reference to Fig. 1 and Fig. 2.

    [0016] The resolver 10 has an excitation coil and an induction coil. A magnetic field produced by an excitation signal applied to the excitation coil of the resolver 10 is frequency-modulated by the rotation of a rotary shaft of the motor generator, and induced as an induction signal in the induction coil of the resolver 10. Consequently, by comparing the excitation signal and the induction signal, it is possible to detect the rotation angle and the rotation speed of the motor generator.

    [0017] The excitation circuit 11 applies a sinusoidal excitation signal to the excitation coil of the resolver 10. Here, if the amplitude or frequency of the excitation signal is made larger, then the magnetic field formed by the excitation signal becomes larger in relation to the effects of external magnetic flux, and therefore the S/N ratio of the resolver 10 is improved and the detection accuracy of the resolver 10 is improved. A push-pull circuit, such as a transistor or operating amplifier, which is illustrated in Fig. 2, is used for the excitation circuit 11, for example. If the excitation circuit 11 is a single power supply circuit, then a push-pull circuit is provided at each of the ends of the excitation coil of the resolver 10.

    [0018] The power supply circuit 12 supplies power to the excitation circuit 11. A series regulator, switching regulator or charge pump circuit, etc. is used as the power supply circuit 12. A configuration for outputting both positive and negative voltages may be required, depending on the configuration of the excitation circuit 11.

    [0019] The amplification circuit 13 is connected to the induction coil of the resolver 10 and amplifies the induction signal which is induced in the induction coil of the resolver 10 to a signal level required by the angle calculation unit 14, which is described hereinafter, and then outputs the amplified induction signal. A differential amplification circuit, or the like, using a voltage-dividing resistance or operating amplifier, etc. which adjusts the amplification rate for the amplitude of the envelope of the induction signal induced in the induction coil, is used as the amplification circuit 13.

    [0020] The angle calculation unit 14 detects the envelope of the induction signal output by the amplification circuit 13, in synchronism with the excitation signal output by the excitation circuit 11, and detects the rotation angle and the rotation speed of the motor generator by using a trigonometric addition theorem.

    [0021] The first switching circuit 21 according to the first embodiment is provided in the excitation circuit 11, and is controlled to be switched on and off by the control unit 23. The first switching circuit 21, when in an on state, switches a feedback resistance 20 of the operating amplifier which constitutes the excitation circuit 11 illustrated in Fig. 2 to a first resistance which has a larger resistance value. As a result of this, when the first switching circuit 21 was in an off state and the amplitude of the excitation signal, which was an amplitude value when off, is switched to an amplitude value when on, then the detection accuracy of the resolver 10 is improved, when the first switching circuit 21 is in an on state.

    [0022] For the first switching circuit 21, it is possible to use, for example, a circuit which is formed by serial connection of a transistor switch and a first resistance, and which is connected in parallel with the feedback resistance 20 of the operating amplifier illustrated in Fig. 2. Alternatively, a circuit formed by parallel connection of a transistor switch and the first resistance may be connected in series with the feedback resistance 20.

    [0023] Here, the amplitude value when on of the excitation signal is set to an amplitude value of the excitation signal by which the required value of the detection accuracy of the resolver 10 can be satisfied during a driving operation of the motor generator, taking the effects of the external magnetic flux into consideration.

    [0024] Furthermore, the amplitude value when off of the excitation signal is set to an amplitude value of the excitation signal which makes it possible to supress the amount of heat generated by the excitation circuit 11 and the resolver 10, while maintaining a detection accuracy of the resolver 10 by which information about the rotation speed of the motor generator can be obtained, when not performing a driving operation of the motor generator.

    [0025] Furthermore, the resistance value of the first resistance and the resistance value of the feedback resistance 20 are set such that the size of the amplitude of the excitation signal applied to the excitation coil respectively becomes the amplitude value when on, and the amplitude value when off.

    [0026] The second switching circuit 22 is provided in the amplification circuit 13, and is switched on and off, together with the first switching circuit 21, by the control unit 23. In an on state, the second switching circuit 22 suppresses the amplification rate of the amplification circuit 13, by switching a resistance (not illustrated) which sets the amplification rate of the amplification circuit 13 to a second resistance having a smaller resistance value.

    [0027] For the second switching circuit 22, it is possible to use, for example, a circuit which is formed by serial connection of a transistor switch and a second resistance, and which is connected in parallel with the resistance which sets the amplification rate of the amplification circuit 13. Alternatively, a circuit formed by parallel connection of a transistor switch and the second resistance may be connected in series with the resistance which sets the amplification rate of the amplification circuit 13.

    [0028] Here, the resistance value of the second resistance is set in such a manner that the effect of increasing the amplitude of the excitation signal by the first switching circuit 21 and the effect of suppressing the amplitude of the induction signal by the second switching circuit 22 cancel each other out exactly when the first switching circuit 21 and the second switching circuit 22 are both in the on state. Therefore, the amplitude of the induction signal output by the amplification circuit 13 can be maintained at a uniform signal level required by the angle calculation unit 14, regardless of the on/off switching state of the first switching circuit 21 and the first switching circuit 21.

    [0029] The control unit 23 improves the detection accuracy of the resolver 10 by switching on both the first switching circuit 21 and the second switching circuit 22 during a driving operation of the motor generator in which a higher detection accuracy is required of the resolver 10. On the other hand, when a driving operation of the motor generator is not being performed, the control unit 23 suppresses the amount of heat generated by the excitation circuit 11 and the resolver 10, while maintaining the minimum detection accuracy of the resolver 10 which enables information about the rotation speed of the motor generator to be obtained, by switching off both the first switching circuit 21 and the second switching circuit 22.

    [0030] Fig. 3 is a flowchart illustrating a switching operation of the first switching circuit 21 and the second switching circuit 22 in the rotation angle detection device 1 according to the first embodiment of the present invention. Below, the switching operation of the first switching circuit 21 and the second switching circuit 22 by the control unit 23 is described specifically with reference to the flowchart illustrated in Fig. 3.

    [0031] In step S100, the control unit 23 checks whether or not a controller which controls the motor generator (not illustrated) has output a motor drive signal for driving operation of the motor generator. The control unit 23 advances to step S101, if the motor drive signal has output a motor drive signal (YES). If this is not the case (NO), then the control unit 23 waits for the motor drive signal to be output.

    [0032] In step S101, the control unit 23 improves the detection accuracy of the resolver 10, by switching on both the first switching circuit 21 and the second switching circuit 22. The control unit 23 then advances to step S102.

    [0033] In step S102, the control unit 23 monitors whether the motor drive signal output by the controller which controls the motor generator has stopped. The control unit 23 advances to step S103 if the output of the motor drive signal has stopped (YES). If this is not the case (NO), then the control unit 23 waits for output of the motor drive signal to be stopped.

    [0034] In step S103, the control unit 23 suppresses the amount of heat generated by the excitation circuit 11 and the resolver 10, while maintaining a detection accuracy of the resolver 10 which enables information about the rotation speed of the motor generator to be obtained, by switching off both the first switching circuit 21 and the second switching circuit 22.

    [0035] When controlling the on/off switching of the first switching circuit 21 and the second switching circuit 22 by the control unit 23, there is a possibility of the rotation angle detection device 1 being erroneously detected as abnormal, due to discontinuity in the excitation signal and the induction signal of the resolver 10. Therefore, a filter is provided at the input portion of the transistor switches which is used in the first switching circuit 21 and the second switching circuit 22. Consequently, the first switching circuit 21 and the second switching circuit 22 are switched gradually using the voltage amplification characteristics of the transistor and the on resistance characteristics of the MOSFET, and therefore erroneous detection can be avoided.

    [0036] As described above, in the first embodiment, the resolver detection accuracy is improved by raising the amplitude of the excitation signal, during a driving operation of the motor generator. Furthermore, when a driving operation of the motor generator is not being performed, the amount of heat generated by the resolver and the excitation circuit is suppressed by reducing the amplitude of the excitation signal. As a result of this, it is possible to obtain a rotation angle detection device and a rotation angle detection method wherein downsizing can be achieved, and wherein a high resolver detection accuracy can be obtained during a driving operation of the motor generator, and when a driving operation of the motor generator is not being performed, the power consumption and amount of heat generated by the excitation circuit and resolver can be suppressed, while maintaining a resolver detection accuracy that enables information about the rotation speed of the motor generator to be obtained.

    [0037] Furthermore, by suppressing the amount of heat generated by the excitation circuit and the resolver, it is possible to suppress increase in the temperature of the inverter which drives the motor generator, and therefore the upper limit temperature which is set with the purpose of protecting against overheating can be relaxed, and the size of the power semiconductor switching elements in the inverter can be reduced.

    Second Embodiment



    [0038] The first embodiment above describes a method which increases the amplitude of the excitation signal to improve the detection accuracy of the resolver 10 by providing the first switching circuit 21 in the excitation circuit 11 and switching the feedback resistance 20 of the operating amplifier of the excitation circuit 11. Meanwhile, the second embodiment describes a method in which the amplitude of the excitation signal is raised in accordance with the output voltage of the power supply circuit 12 to improve the detection accuracy of the resolver 10, by providing the first switching circuit 21 in the power supply circuit 12 and switching the output voltage of the power supply circuit 12.

    [0039] Fig. 4 is a block drawing showing the configuration of the rotation angle detection device 2 according to the second embodiment of the present invention. Fig. 4 differs from Fig. 1 relating to the first embodiment in that the first switching circuit 21 is provided inside the power supply circuit 12 rather than inside the excitation circuit 11. The remainder of the configuration is the same as Fig. 1 and therefore explanation thereof is omitted here.

    [0040] The first switching circuit 21 according to the second embodiment illustrated in Fig. 4 is provided in the power supply circuit 12 and is controlled to be switched on and off by the control of the control unit 23. The first switching circuit 21, when in an on state, switches a feedback resistance (not illustrated) that sets the output voltage of the power supply circuit 12, to a third resistance which has a larger resistance value. As a result of this, the detection accuracy of the resolver 10 is improved, since the amplitude value of the excitation signal applied to the excitation coil becomes larger in accordance with the output voltage of the power supply circuit 12.

    [0041] For the first switching circuit 21, it is possible to use, for example, a circuit which is formed by serial connection of a transistor switch and a third resistance, and which is connected in parallel with the feedback resistance of the power supply circuit 12. Alternatively, a circuit formed by parallel connection of a transistor switch and the third resistance may be connected in series with the feedback resistance of the power supply circuit 12.

    [0042] Here, the resistance value of the third resistance, and the resistance value of the feedback resistance which sets the output value of the power supply circuit 12, are set in such a manner that the size of the amplitude of the excitation signal applied to the excitation coil respectively becomes the amplitude value when on, or the amplitude value when off, in accordance with the output voltage of the power supply circuit 12.

    [0043] Fig. 5 is an illustrative drawing showing an output waveform of the excitation circuit 11 of the rotation angle detection device 1 according to the second embodiment of the present invention. When the first switching circuit 21 is off, there is a possibility of increased error in the detection accuracy of the resolver 10 caused by distortion of the output waveform of the operating amplifier in the excitation circuit 11, as illustrated in Fig. 5, due to the fact that the output voltage of the power supply circuit 12 is set to a low voltage.

    [0044] However, the output voltage of the power supply circuit 12 is set to a low voltage in this way in cases where the motor generator is not performing a driving operation. Therefore, in cases such as this, the resolver detection accuracy is not required to be of the same level as during a driving operation of the motor generator, and therefore the distortion of the excitation signal has little effect on the detection accuracy of the resolver 10. Furthermore, when rotating idly, the motor generator rotates at a high number of revolutions, for example, about 1000 r/min, and therefore the effect of the distortion of the excitation signal on the detection accuracy of the resolver 10 is relatively small.

    [0045] In this way, with the configuration of the second embodiment also, it is possible to improve the detection accuracy of the resolver 10 by raising the amplitude of the excitation signal applied to the excitation coil of the resolver 10 in accordance with the output voltage of the power supply circuit 12, through switching on both the first switching circuit 21 and the second switching circuit 22 by a similar procedure to the first embodiment described above.

    [0046] As described above, in the second embodiment, the resolver detection accuracy is improved by raising the amplitude of the excitation signal in accordance with the output voltage of the power supply circuit, during a driving operation of the motor generator. Furthermore, when a driving operation of the motor generator is not being performed, the amount of heat generated by the resolver and the excitation circuit is suppressed by reducing the amplitude of the excitation signal in accordance with the output voltage of the power supply circuit. As a result of this, it is possible to obtain a rotation angle detection device and a rotation angle detection method wherein downsizing can be achieved, and wherein a high resolver detection accuracy can be obtained during a driving operation of the motor generator, and when a driving operation of the motor generator is not being performed, the power consumption and amount of heat generated by the excitation circuit and resolver can be suppressed, while maintaining a resolver detection accuracy that enables information about the rotation speed of the motor generator to be obtained.

    [0047] Furthermore, by suppressing the amount of heat generated by the power supply circuit, the excitation circuit and the resolver, it is possible to suppress increase in the temperature of the inverter which drives the motor generator, and therefore the upper limit temperature which is set with the purpose of protecting against overheating can be relaxed, and the size of the power semiconductor switching elements in the inverter can be reduced.

    Third Embodiment



    [0048] The first embodiment above describes a method which raises the amplitude of the excitation signal to improve the detection accuracy of the resolver 10 by switching the feedback resistance 20 of the operating amplifier of the excitation circuit 11. Meanwhile, a third embodiment of the present invention describes a method which raises the frequency of the excitation signal to improve the detection accuracy of the resolver 10, by switching the resistance of the excitation circuit 11 which sets the transmission frequency of the excitation signal.

    [0049] A block diagram illustrating the configuration of the rotation angle detection device 1 according to the third embodiment of the present invention is the same as Fig. 1 relating to the first embodiment described above. However, the third embodiment differs from the first embodiment described above in that the first switching circuit 21 switches the frequency of the excitation signal, rather than the size of the excitation signal. The remainder of the configuration is the same as Fig. 1 and therefore explanation thereof is omitted here.

    [0050] The first switching circuit 21 according to the third embodiment is provided in the excitation circuit 11, and is controlled to be switched on and off by the control of the control unit 23. When in an on state, the first switching circuit 21 switches a resistance (not illustrated) which sets the transmission frequency of the excitation circuit 11, to a fourth resistance. As a result of this, when the first switching circuit 21 was in the off state and the frequency of the excitation signal, which was the frequency when off, is switched to a frequency when on, then the detection accuracy of the resolver 10 is improved when the first switching circuit 21 is in the on state.

    [0051] For the first switching circuit 21, it is possible to use, for example, a circuit which is formed by serial connection of a transistor switch and a fourth resistance, and which is connected in parallel with the resistance which sets the transmission frequency of the excitation circuit 11. Alternatively, a circuit formed by parallel connection of a transistor switch and the fourth resistance may be connected in series with the resistance which sets the transmission frequency of the excitation circuit 11.

    [0052] Here, the frequency when on of the excitation signal is set to a frequency value of the excitation signal by which the required value of the detection accuracy of the resolver 10 can be satisfied during a driving operation of the motor generator, taking the effects of the external magnetic flux into consideration.

    [0053] Furthermore, the frequency value when off of the excitation signal is set to a frequency value of the excitation signal which makes it possible to supress the amount of heat generated by the excitation circuit 11 and the resolver 10, while maintaining a detection accuracy of the resolver 10 by which information about the rotation speed of the motor generator can be obtained, when not performing a driving operation of the motor generator.

    [0054] Furthermore, the resistance value of the fourth resistance and the resistance value of the feedback resistance 20 are set such that the size of the frequency of the excitation signal applied to the excitation coil respectively becomes the frequency when on, and the frequency when off, taking the impedance characteristics of the excitation coil into consideration.

    [0055] The frequency of the excitation signal is required to have a sufficiently large value compared to the maximum value of the number of revolutions of the motor generator. The frequency when off can also be reduced, since it is sufficient to maintain a detection accuracy of the resolver 10 that enables information about the rotation speed of the motor generator to be obtained.

    [0056] In this way, with the configuration of the third embodiment also, it is possible to improve the detection accuracy of the resolver 10 by raising the frequency of the excitation signal applied to the excitation coil of the resolver 10, through switching on both the first switching circuit 21 and the second switching circuit 22 by a similar procedure to the first embodiment described above.

    [0057] As described above, in the third embodiment, the resolver detection accuracy is improved by raising the frequency of the excitation signal, during a driving operation of the motor generator. Furthermore, when a driving operation of the motor generator is not being performed, the amount of heat generated by the resolver and the excitation circuit is suppressed by reducing the frequency of the excitation signal. As a result of this, it is possible to obtain a rotation angle detection device and a rotation angle detection method wherein downsizing can be achieved, and wherein a high resolver detection accuracy can be obtained during a driving operation of the motor generator, and when a driving operation of the motor generator is not being performed, the power consumption and amount of heat generated by the excitation circuit and resolver can be suppressed, while maintaining a resolver detection accuracy that enables information about the rotation speed of the motor generator to be obtained.

    [0058] Furthermore, by suppressing the amount of heat generated by the excitation circuit and the resolver, it is possible to suppress increase in the temperature of the inverter which drives the motor generator, and therefore the upper limit temperature which is set with the purpose of protecting against overheating can be relaxed, and the size of the power semiconductor switching elements in the inverter can be reduced.

    [0059] In the first to third embodiments described above, the first switching circuit 21 switches an existing resistance to the first resistance, the third resistance or the fourth resistance, when in an on state, but it is also possible to adopt a configuration wherein the first switching circuit 21 is provided with two resistances, a resistance for an on state and a resistance for an off state, and switches between these two resistances, when in the on state and the off state.

    [0060] In this case, when in the on state, the first switching circuit 21 is switched to the resistance for an on state which has a resistance value whereby the amplitude or frequency of the excitation signal becomes the amplitude value when on or the frequency when on described above, and when in the off state, the first switching circuit 21 is switched to the resistance for an off state which has a resistance value whereby the amplitude or frequency of the excitation signal becomes the amplitude value when off or the frequency when off described above.


    Claims

    1. A rotation angle detection device, comprising:

    a resolver (10) which has an excitation coil and an induction coil, and in which a magnetic field formed by an excitation signal applied to the excitation coil is frequency-modulated by rotation of a motor generator and induced in the induction coil;

    an excitation circuit (11) which applies the excitation signal, which is sinusoidal, to the excitation coil of the resolver (10);

    a power supply circuit (12) which supplies power to the excitation circuit (11);

    an amplification circuit (13) which amplifies an induction signal induced in the induction coil and outputs an amplified amplitude; and

    an angle calculation unit (14) which detects a rotation angle and a rotation speed of the motor generator, which is capable of a driving operation and a power generating operation, from the excitation signal output by the excitation circuit (11) and from the induction signal output by the amplification circuit (13),

    the rotation angle detection device further comprising:

    a first switching circuit (21) which, in an on state, switches an amplitude or a frequency of the excitation signal to an amplitude value when on, or a frequency when on, by which a required value of a detection accuracy of the resolver (10) during the driving operation of the motor generator is satisfied, and in an off state, switches the amplitude or frequency of the excitation signal to an amplitude value when off, or a frequency when off, by which a detection accuracy of the resolver (10) that enables information about the rotation speed of the motor generator to be obtained is maintained;

    a second switching circuit (22) which switches an amplification rate of the amplification circuit (13) in such a manner that the amplitude of the induction signal output by the amplification circuit (13) is maintained at a signal level required by the angle calculation unit (14), regardless of the on/off switching state of the first switching circuit (21); and

    a control unit (23) which implements control of on and off of switching on the first switching circuit (21) and the second switching circuit (22), wherein

    the control unit (23) switches on both the first switching circuit (21) and the second switching circuit (22) when the motor generator is performing the driving operation; and

    switches off both the first switching circuit (21) and the second switching circuit (22) when the motor generator is not performing the driving operation.


     
    2. The rotation angle detection device according to claim 1,
    wherein when the first switching circuit (21) is in an off state, a resistance value of a feedback resistance (20) of an operating amplifier constituting the excitation circuit (11) is set in such a manner that the amplitude of the excitation signal becomes the amplitude value when off; and
    the first switching circuit (21) is provided in the excitation circuit (11) and, when in an on state, switches the feedback resistance (20) of the operating amplifier of the excitation circuit (11) to a first resistance by which the amplitude of the excitation signal becomes the amplitude value when on, and, when in an off state, to the feedback resistance (20) of the operating amplifier of the excitation circuit (11).
     
    3. The rotation angle detection device according to claim 1,
    wherein when the first switching circuit (21) is in an off state, a resistance value of a feedback resistance (20) which sets an output voltage of the power supply circuit (12) is set in such a manner that the amplitude of the excitation signal becomes the amplitude value when off; and
    the first switching circuit (21) is provided in the power supply circuit (12) and, when in an on state, switches the feedback resistance (20) that sets the output voltage of the power supply circuit (12) to a third resistance by which the amplitude of the excitation signal which is set in accordance with the output voltage of the power supply circuit (12) becomes the amplitude value when on, and, when in an off state, to the feedback resistance (20) which sets the output voltage of the power supply circuit (12).
     
    4. The rotation angle detection device according to claim 1,
    wherein, when the first switching circuit (21) is in an off state, a resistance value of a resistance which sets a transmission frequency of the excitation circuit (11) is set in such a manner that the frequency of the excitation signal becomes the frequency when off; and
    the first switching circuit (21) is provided in the excitation circuit (11), and, when in an on state, switches the resistance that sets the transmission frequency of the excitation circuit (11) to a fourth resistance by which the frequency of the excitation signal becomes the frequency when on, and, when in an off state, to the resistance that sets the transmission frequency of the excitation circuit (11).
     
    5. The rotation angle detection device according to any one of claims 1 to 4,
    wherein the second switching circuit (22) is provided in the amplification circuit (13) and, when in an on state, switches a resistance that sets an amplification rate of the amplification circuit (13) to a second resistance which suppresses the amplification rate of the amplification circuit (13), and, when in an off state, to the resistance that sets an amplification state of the amplification circuit (13); and
    the second resistance is set in such a manner that an effect of increasing the amplitude of the excitation signal by the first switching circuit (21) and an effect of suppressing the amplitude of the induction signal by the second switching circuit (22) cancel each other out when both the first switching circuit (21) and the second switching circuit (22) are in an on state.
     
    6. A rotation angle detection method used in a rotation angle detection device including:

    a resolver (10) which has an excitation coil and an induction coil, and in which a magnetic field formed by an excitation signal applied to the excitation coil is frequency-modulated by rotation of a motor generator and induced in the induction coil;

    an excitation circuit (11) which applies the excitation signal, which is sinusoidal, to the excitation coil of the resolver (10);

    a power supply circuit (12) which supplies power to the excitation circuit (11);

    an amplification circuit (13) which amplifies an amplitude of an induction signal which is induced in the induction coil and outputs an amplified amplitude; and

    an angle calculation unit (14) which detects a rotation angle and a rotation speed of the motor generator, which is capable of a driving operation and a power generating operation, from the excitation signal output by the excitation circuit (11) and from the induction signal output by the amplification circuit (13),

    the method comprising:

    an on switching step in which, when the motor generator is performing the driving operation, an amplitude or a frequency of the excitation signal is switched to an amplitude value when on or a frequency when on by which a required value of a detection accuracy of the resolver (10) is satisfied, and the amplification rate of the amplification circuit (13) is switched in such a manner that the amplitude of the induction signal output by the amplification circuit (13) is maintained at a signal level required by the angle calculation unit (14); and

    an off switching step in which, when the motor generator is not performing the driving operation, the amplitude or frequency of the excitation signal is switched to an amplitude value when off or a frequency when off, by which a detection accuracy of the resolver (10) that enables information about the rotation speed of the motor generator to be obtained is maintained, and the amplification rate of the amplification circuit (13) is switched in such a manner that the amplitude of the induction signal output by the amplification circuit (13) is maintained at a signal level required by the angle calculation unit (14).


     


    Ansprüche

    1. Rotationswinkel-Erfassungsvorrichtung, aufweisend:

    einen Drehmelder (10), welcher eine Erregungsspule und eine Induktionsspule aufweist, und in welchem ein magnetisches Feld, das durch ein der Erregungsspule zugeführtes Erregungssignal ausgebildet ist, durch Rotation eines Motorgenerators frequenzmoduliert und in die Induktionsspule induziert ist;

    eine Erregungsschaltung (11), welche das Erregungssignal, welches sinusoidal ist, der Erregungsspule des Drehmelders (10) zuführt;

    eine Energieversorgungsschaltung (12), welche der Erregungsschaltung (11) Energie zuführt;

    eine Verstärkungsschaltung (13), welche ein in die Induktionsspule induziertes Induktionssignal verstärkt und eine verstärkte Amplitude ausgibt; und

    eine Winkelberechnungseinheit (14), welche einen Rotationswinkel und eine Rotationsgeschwindigkeit des Motorgenerators, welcher zu einem Antriebsbetrieb und einem Energieerzeugungsbetrieb in der Lage ist, aus dem durch die Erregungsschaltung (11) ausgegebenen Erregungssignal und aus dem durch die Verstärkungsschaltung (13) ausgegebenen Induktionssignal erfasst,

    wobei die Rotationswinkel-Erfassungsvorrichtung ferner aufweist:

    eine erste Umschaltschaltung (21), welche in einem Ein-Zustand eine Amplitude oder eine Frequenz des Erregungssignals zu einem Amplitudenwert, wenn ein, oder einer Frequenz, wenn ein, umschaltet, durch welche ein erforderlicher Wert einer Erfassungsgenauigkeit des Drehmelders (10) während des Antriebsbetriebs des Motorgenerators erfüllt ist, und in einem Aus-Zustand die Amplitude oder die Frequenz des Erregungssignals zu einem Amplitudenwert, wenn aus, oder einer Frequenz, wenn aus, umschaltet, durch welche eine Erfassungsgenauigkeit des Drehmelders (10), wodurch Informationen über die Rotationsgeschwindigkeit des Motorgenerators erhalten werden können, aufrechterhalten wird;

    eine zweite Umschaltschaltung (22), welche eine Verstärkungsrate der Verstärkungsschaltung (13) derart umschaltet, dass die Amplitude des durch die Verstärkungsschaltung (13) ausgegebenen Induktionssignals auf einem Signalpegel gehalten wird, der durch die Winkelberechnungseinheit (14) benötigt wird, ungeachtet des Ein-/Aus-Umschaltzustands der ersten Umschaltschaltung (21); und

    eine Steuerungseinheit (23), welche eine Ein- und AusSteuerung zum Umschalten bezüglich der ersten Umschaltschaltung (21) und der zweiten Umschaltschaltung (22) implementiert, wobei

    die Steuereinheit (23) sowohl die erste Umschaltschaltung (21) als auch die zweite Umschaltschaltung (22) einschaltet, wenn der Motorgenerator den Antriebsbetrieb durchführt; und

    sowohl die erste Umschaltschaltung (21) als auch die zweite Umschaltschaltung (22) ausschaltet, wenn der Motorgenerator den Antriebsbetrieb nicht durchführt.


     
    2. Rotationswinkel-Erfassungsvorrichtung nach Anspruch 1,
    wobei, wenn sich die erste Umschaltschaltung (21) in einem Aus-Zustand befindet, ein Widerstandswert eines Rückkopplungswiderstands (20) eines Operationsverstärkers, der die Erregungsschaltung (11) bildet, derart eingestellt ist, dass die Amplitude des Erregungssignals den Amplitudenwert annimmt, wenn aus; und
    die erste Umschaltschaltung (21) in der Erregungsschaltung (11) vorgesehen ist, und, wenn sie sich in einem Ein-Zustand befindet, den Rückkopplungswiderstand (20) des Operationsverstärkers der Erregungsschaltung (11) zu einem ersten Widerstand, durch welchen die Amplitude des Erregungssignals den Amplitudenwert annimmt, wenn ein, und, wenn sie sich in einem Aus-Zustand befindet, zu dem Rückkopplungswiderstand (20) des Operationsverstärkers der Erregungsschaltung (11) umschaltet.
     
    3. Rotationswinkel-Erfassungsvorrichtung nach Anspruch 1,
    wobei, wenn sich die erste Umschaltschaltung (21) in einem Aus-Zustand befindet, ein Widerstandswert eines Rückkopplungswiderstands (20), welcher eine Ausgangsspannung der Energieversorgungsschaltung (12) einstellt, derart eingestellt ist, dass die Amplitude des Erregungssignals den Amplitudenwert annimmt, wenn aus; und
    die erste Umschaltschaltung (21) in der Energieversorgungsschaltung (12) vorgesehen ist, und, wenn sie sich in einem Ein-Zustand befindet, den Rückkopplungswiderstand (20), der die Ausgangsspannung der Energieversorgungsschaltung (12) auf einen dritten Widerstand einstellt, durch welchen die Amplitude des Erregungssignals, welche gemäß der Ausgangsspannung der Energieversorgungsschaltung (12) eingestellt ist, den Amplitudenwert annimmt, wenn ein, und wenn sie sich in einem Aus-Zustand befindet, auf den Rückkopplungswiderstand (20), welcher die Ausgangsspannung der Energieversorgungsschaltung (12) einstellt, umschaltet.
     
    4. Rotationswinkel-Erfassungsvorrichtung nach Anspruch 1,
    wobei, wenn sich die erste Umschaltschaltung (21) in einem Aus-Zustand befindet, ein Widerstandswert eines Widerstands, welcher eine Übertragungsfrequenz der Erregungsschaltung (11) einstellt, derart eingestellt ist, dass die Frequenz des Erregungssignals die Frequenz annimmt, wenn aus; und
    die erste Umschaltschaltung (21) in der Erregungsschaltung (11) vorgesehen ist, und, wenn sie sich in einem Ein-Zustand befindet, den Widerstand, der die Übertragungsfrequenz der Erregungsschaltung (11) einstellt, zu einem vierten Widerstand, durch welchen die Frequenz des Erregungssignals die Frequenz annimmt, wenn ein, und, wenn sie sich in einem Aus-Zustand befindet, zu dem Widerstand, der die Übertragungsfrequenz der Erregungsschaltung (11) einstellt, umschaltet.
     
    5. Rotationswinkel-Erfassungsvorrichtung nach einem der Ansprüche 1-4,
    wobei die zweite Umschaltschaltung (22) in der Verstärkungsschaltung (13) vorgesehen ist, und, wenn sie sich in einem Ein-Zustand befindet, einen Widerstand, der eine Verstärkungsrate der Verstärkungsschaltung (13) einstellt, zu einem zweiten Widerstand, welcher die Verstärkungsrate der Verstärkungsschaltung (13) unterdrückt, und, wenn sie sich in einem Aus-Zustand befindet, zu dem Widerstand, der einen Verstärkungszustand der Verstärkungsschaltung (13) einstellt, umschaltet; und
    der zweite Widerstand derart eingestellt ist, dass ein Effekt zum Erhöhen der Amplitude des Erregungssignals durch die erste Umschaltschaltung (21) und ein Effekt zum Unterdrücken der Amplitude des Induktionssignals durch die zweite Umschaltschaltung (22) einander aufheben, wenn sich sowohl die erste Umschaltschaltung (21) als auch die zweite Umschaltschaltung (22) in einem Ein-Zustand befinden.
     
    6. Rotationswinkel-Erfassungsverfahren, das in einer Rotationswinkel-Erfassungsvorrichtung verwendet wird, umfassend:

    einen Drehmelder (10), welcher eine Erregungsspule und eine Induktionsspule aufweist, und in welchem ein magnetisches Feld, das durch ein der Erregungsspule zugeführtes Erregungssignal ausgebildet ist, durch Rotation eines Motorgenerators frequenzmoduliert und in die Induktionsspule induziert ist;

    eine Erregungsschaltung (11), welche das Erregungssignal, welches sinusoidal ist, der Erregungsspule des Drehmelders (10) zuführt;

    eine Energieversorgungsschaltung (12), welche der Erregungsschaltung (11) Energie zuführt;

    eine Verstärkungsschaltung (13), welche eine Amplitude eines in die Induktionsspule induzierten Induktionssignals verstärkt und eine verstärkte Amplitude ausgibt; und

    eine Winkelberechnungseinheit (14), welche einen Rotationswinkel und eine Rotationsgeschwindigkeit des Motorgenerators, welcher zu einem Antriebsbetrieb und einem Energieerzeugungsbetrieb in der Lage ist, aus dem durch die Erregungsschaltung (11) ausgegebenen Erregungssignal und aus dem durch die Verstärkungsschaltung (13) ausgegebenen Induktionssignal erfasst,

    wobei das Verfahren aufweist:

    einen Ein-Umschaltschritt, in welchem, wenn der Motorgenerator den Antriebsbetrieb durchführt, eine Amplitude oder eine Frequenz des Erregungssignals zu einem Amplitudenwert, wenn ein, oder einer Frequenz, wenn ein, umgeschaltet wird, durch welche ein erforderlicher Wert einer Erfassungsgenauigkeit des Drehmelders (10) erfüllt ist, und die Verstärkungsrate der Verstärkungsschaltung (13) derart umgeschaltet wird, dass die Amplitude des durch die Verstärkungsschaltung (13) ausgegebenen Induktionssignals auf einem Signalpegel gehalten wird, der durch die Winkelberechnungseinheit (14) benötigt wird; und

    einen Aus-Umschaltschritt, in welchem, wenn der Motorgenerator den Antriebsbetrieb nicht durchführt, die Amplitude oder die Frequenz des Erregungssignals zu einem Amplitudenwert, wenn aus, oder einer Frequenz, wenn aus, umgeschaltet wird, durch welche eine Erfassungsgenauigkeit des Drehmelders (10), wodurch Informationen über die Rotationsgeschwindigkeit des Motorgenerators erhalten werden können, aufrechterhalten wird, und die Verstärkungsrate der Verstärkungsschaltung (13) derart umgeschaltet wird, dass die Amplitude des durch die Verstärkungsschaltung (13) ausgegebenen Induktionssignals auf einem Signalpegel gehalten wird, der durch die Winkelberechnungseinheit (14) benötigt wird.


     


    Revendications

    1. Dispositif de détection d'angle de rotation, comprenant :

    un résolveur (10) qui a une bobine d'excitation et une bobine d'induction, et dans lequel un champ magnétique formé par un signal d'excitation appliqué à la bobine d'excitation est modulé en fréquence par une rotation d'un moteur générateur et induit dans la bobine d'induction ;

    un circuit d'excitation (11) qui applique le signal d'excitation, qui est sinusoïdal, à la bobine d'excitation du résolveur (10) ;

    un circuit d'alimentation électrique (12) qui alimente en énergie électrique le circuit d'excitation (11) ;

    un circuit d'amplification (13) qui amplifie un signal d'induction induit dans la bobine d'induction et délivre une amplitude amplifiée ; et

    une unité de calcul d'angle (14) qui détecte un angle de rotation et une vitesse de rotation du moteur générateur, qui est apte à une opération d'entraînement et une opération de génération d'énergie électrique, à partir du signal d'excitation délivré par le circuit d'excitation (11) et à partir du signal d'induction délivré par le circuit d'amplification (13),

    le dispositif de détection d'angle de rotation comprenant en outre :

    un premier circuit de commutation (21) qui, dans un état activé, change une amplitude ou une fréquence du signal d'excitation à une valeur d'amplitude lorsqu'il est activé, ou à une fréquence lorsqu'il est activé, grâce à laquelle une valeur requise d'une précision de détection du résolveur (10) pendant l'opération d'entraînement du moteur générateur est satisfaite, et dans un état inactivé, change l'amplitude ou la fréquence du signal d'excitation à une valeur d'amplitude lorsqu'il est inactivé, ou à une fréquence lorsqu'il est inactivé, grâce à laquelle une précision de détection du résolveur (10) qui permet d'obtenir des informations concernant la vitesse de rotation du moteur générateur est conservée ;

    un deuxième circuit de commutation (22) qui change un taux d'amplification du circuit d'amplification (13) de manière à ce que l'amplitude du signal d'induction délivré par le circuit d'amplification (13) soit conservée à un niveau de signal requis par l'unité de calcul d'angle (14), peu importe l'état d'activation/de désactivation du premier circuit de commutation (21) ; et

    une unité de commande (23) qui met en oeuvre une commande d'activation et de désactivation sur le premier circuit de commutation (21) et le deuxième circuit de commutation (22), dans lequel

    l'unité de commande (23) active à la fois le premier circuit de commutation (21) et le deuxième circuit de commutation (22) lorsque le moteur générateur réalise l'opération d'entraînement ; et

    désactive à la fois le premier circuit de commutation (21) et le deuxième circuit de commutation (22) lorsque le moteur générateur ne réalise pas l'opération d'entraînement.


     
    2. Dispositif de détection d'angle de rotation selon la revendication 1,
    dans lequel, lorsque le premier circuit de commutation (21) est dans un état inactivé, une valeur de résistance d'une résistance de rétroaction (20) d'un amplificateur opérationnel constituant le circuit d'excitation (11) est réglée de manière à ce que l'amplitude du signal d'excitation devienne la valeur d'amplitude lorsqu'il est inactivé ; et
    le premier circuit de commutation (21) est disposé dans le circuit d'excitation (11) et, lorsqu'il est dans un état activé, change la résistance de rétroaction (20) de l'amplificateur opérationnel du circuit d'excitation (11) à une première résistance grâce à laquelle l'amplitude du signal d'excitation devient la valeur d'amplitude lorsqu'il est activé, et, lorsqu'il est dans un état inactivé, à la résistance de rétroaction (20) de l'amplificateur opérationnel du circuit d'excitation (11).
     
    3. Dispositif de détection d'angle de rotation selon la revendication 1,
    dans lequel, lorsque le premier circuit de commutation (21) est dans un état inactivé, une valeur de résistance d'une résistance de rétroaction (20) qui règle une tension de sortie du circuit d'alimentation électrique (12) est réglée de manière à ce que l'amplitude du signal d'excitation devienne la valeur d'amplitude lorsqu'il est inactivé ; et
    le premier circuit de commutation (21) est disposé dans le circuit d'alimentation électrique (12) et, lorsqu'il est dans un état activé, change la résistance de rétroaction (20) qui règle la tension de sortie du circuit d'alimentation électrique (12) à une troisième résistance grâce à laquelle l'amplitude du signal d'excitation qui est réglée selon la tension de sortie du circuit d'alimentation électrique (12) devient la valeur d'amplitude lorsqu'il est activé, et, lorsqu'il est dans un état inactivé, à la résistance de rétroaction (20) qui règle la tension de sortie du circuit d'alimentation électrique (12).
     
    4. Dispositif de détection d'angle de rotation selon la revendication 1,
    dans lequel, lorsque le premier circuit de commutation (21) est dans un état inactivé, une valeur de résistance d'une résistance qui règle une fréquence de transmission du circuit d'excitation (11) est réglée de manière à ce que la fréquence du signal d'excitation devienne la fréquence lorsqu'il est inactivé ; et
    le premier circuit de commutation (21) est disposé dans le circuit d'excitation (11), et, lorsqu'il est dans un état activé, change la résistance qui règle la fréquence de transmission du circuit d'excitation (11) à une quatrième résistance grâce à laquelle la fréquence du signal d'excitation devient la fréquence lorsqu'il est activé, et, lorsqu'il est dans un état inactivé, à la résistance qui règle la fréquence de transmission du circuit d'excitation (11).
     
    5. Dispositif de détection d'angle de rotation selon l'une quelconque des revendications 1 à 4,
    dans lequel le deuxième circuit de commutation (22) est disposé dans le circuit d'amplification (13) et, lorsqu'il est dans un état activé, change une résistance qui règle un taux d'amplification du circuit d'amplification (13) à une deuxième résistance qui supprime le taux d'amplification du circuit d'amplification (13), et, lorsqu'il est dans un état inactivé, à la résistance qui règle un taux d'amplification du circuit d'amplification (13) ; et
    la deuxième résistance est réglée de manière à ce qu'un effet d'augmentation de l'amplitude du signal d'excitation par le premier circuit de commutation (21) et un effet de suppression de l'amplitude du signal d'induction par le deuxième circuit de commutation (22) s'annulent l'un l'autre lorsque le premier circuit de commutation (21) et le deuxième circuit de commutation (22) sont tous deux dans un état actif.
     
    6. Procédé de détection d'angle de rotation utilisé dans un dispositif de détection d'angle de rotation comportant :

    un résolveur (10) qui a une bobine d'excitation et une bobine d'induction, et dans lequel un champ magnétique formé par un signal d'excitation appliqué à la bobine d'excitation est modulé en fréquence par une rotation d'un moteur générateur et induit dans la bobine d'induction ;

    un circuit d'excitation (11) qui applique le signal d'excitation, qui est sinusoïdal, à la bobine d'excitation du résolveur (10) ;

    un circuit d'alimentation électrique (12) qui alimente en énergie électrique le circuit d'excitation (11) ;

    un circuit d'amplification (13) qui amplifie une amplitude d'un signal d'induction qui est induit dans la bobine d'induction et délivre une amplitude amplifiée ; et

    une unité de calcul d'angle (14) qui détecte un angle de rotation et une vitesse de rotation du moteur générateur, qui est apte à une opération d'entraînement et une opération de génération d'énergie électrique, à partir du signal d'excitation délivré par le circuit d'excitation (11) et à partir du signal d'induction délivré par le circuit d'amplification (13),

    le procédé comprenant :

    une étape d'activation dans laquelle, lorsque le moteur générateur réalise l'opération d'entraînement, une amplitude ou une fréquence du signal d'excitation est changée à une valeur d'amplitude lorsqu'il est activé ou à une fréquence lorsqu'il est activé grâce à laquelle une valeur requise d'une précision de détection du résolveur (10) est satisfaite, et le taux d'amplification du circuit d'amplification (13) est changé de manière à ce que l'amplitude du signal d'induction délivré par le circuit d'amplification (13) soit conservée à un niveau de signal requis par l'unité de calcul d'angle (14) ; et

    une étape de désactivation dans laquelle, lorsque le moteur générateur ne réalise pas l'opération d'entraînement, l'amplitude ou la fréquence du signal d'excitation est changée à une valeur d'amplitude lorsqu'il est inactivé ou à une fréquence lorsqu'il est inactivé, grâce à laquelle une précision de détection du résolveur (10) qui permet d'obtenir des informations concernant la vitesse de rotation du moteur générateur est conservée, et le taux d'amplification du circuit d'amplification (13) est modifié de manière à ce que l'amplitude du signal d'induction délivré par le circuit d'amplification (13) soit conservée à un niveau de signal requis par l'unité de calcul d'angle (14).


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description