(19)
(11)EP 3 218 888 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 14905722.6

(22)Date of filing:  11.11.2014
(51)Int. Cl.: 
G01S 13/93  (2020.01)
B60W 30/08  (2012.01)
G01S 7/00  (2006.01)
G01S 15/93  (2020.01)
G01S 17/93  (2020.01)
G08G 1/16  (2006.01)
B60W 30/095  (2012.01)
G01S 13/72  (2006.01)
G01S 15/66  (2006.01)
G01S 17/66  (2006.01)
(86)International application number:
PCT/CN2014/090823
(87)International publication number:
WO 2016/074155 (19.05.2016 Gazette  2016/20)

(54)

TRAJECTORY DETECTION

BAHNERKENNUNG

DÉTECTION DE TRAJECTOIRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
20.09.2017 Bulletin 2017/38

(73)Proprietor: Harman International Industries, Incorporated
Stamford, Connecticut 06901 (US)

(72)Inventors:
  • YANG, Zeng
    Shanghai 200233 (CN)
  • ZHANG, Qingshan
    Shanghai 200233 (CN)

(74)Representative: Westphal, Mussgnug & Partner Patentanwälte mbB 
Werinherstrasse 79
81541 München
81541 München (DE)


(56)References cited: : 
CN-A- 1 916 991
US-A1- 2001 018 641
US-A1- 2010 198 513
US-B2- 6 944 543
CN-A- 103 350 698
US-A1- 2007 043 502
US-A1- 2013 261 948
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure generally relates to trajectory detection.

    BACKGROUND



    [0002] Trajectory, also called path history, refers to a recent route that a vehicle has traversed. Trajectory detection can facilitate many vehicular applications. Therefore, nowadays some vehicle-mounted systems can implement trajectory detection. In some existing solutions, trajectory detection is based on global positioning system (GPS) data. However, due to poor precision of GPS data, trajectories calculated based on GPS data may not be accurate enough.

    [0003] Document US 2010/198513 A1 discloses a vehicle awareness system for monitoring remote vehicles relative to a host vehicle. The vehicle awareness system includes at least one object sensing device and a vehicle-to-vehicle communication device. A data collection module is provided for obtaining a sensor object data map and vehicle-to-vehicle object data map. A fusion module merges the sensor object data map and vehicle-to-vehicle object data map for generating a cumulative object data map. A tracking module estimates the relative position of the remote vehicles to the host vehicle.

    [0004] Document US 2013/261948 A1 discloses a periphery vehicle determination apparatus disposed in a host vehicle which includes a behavior obtaining section obtaining a behavior related information of an immediately adjacent object, a vehicle-to-vehicle communication device, an information obtaining section obtaining vehicle information sets from periphery vehicles, a specifying section specifying a vehicle information set from an immediately adjacent vehicle based on the behavior related information, a transceiving section transmiting and receiving an immediately adjacent information, and an anteroposterior relation determination section specifying an anteroposterior relation of the periphery vehicles in a one-dimensional direction by correlating the immediately adjacent information transmitted from the periphery vehicles based on a repeated identification information included in at least two of the immediately adjacent information.

    [0005] Document US 2007/043502 A1 discloses a collision detection and path prediction system adapted for use with a traveling host vehicle having an operator. The system includes a locator device configured to determine the current position coordinates, and pluralities of trail and immediate dynamic path coordinates of the vehicle and a communicatively coupled traveling remote vehicle. The system further includes a preferred controller configured to predict a collision between the two vehicles from the coordinates, and determine a plurality of projected path coordinates for the host vehicle relative to the remote vehicle trail coordinates.

    SUMMARY



    [0006] The invention relates to a trajectory detection method according to claim 1 and a trajectory detection system according to claim 7.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.

    FIG. 1 schematically illustrates relative position detection;

    FIG. 2 schematically illustrates a block diagram of a trajectory detection system 300 according to embodiments;

    FIG. 3 schematically illustrates a practical trajectory detection scenario;

    FIG. 4 schematically illustrates a flow chart of a process for detecting trajectories for more than one vehicle according to embodiments;

    FIG. 5 schematically illustrates calculating first position variation according to embodiments; and

    FIG. 6 schematically illustrates a time alignment process according to embodiments.


    DETAILED DESCRIPTION



    [0008] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise.

    [0009] Currently, some vehicles are equipped with object detection sensors which can detect relative positions of vehicles nearby. These relative positions can be utilized to improve the accuracy of trajectory detection, as normally object detection sensors have better precision than GPS devices.

    [0010] FIG. 1 schematically illustrates relative position detection. As shown in FIG. 1, a vehicle 100 (the host vehicle) may use its object detection sensor to detect a relative position of a vehicle 200 (the target vehicle) with regard to itself. The relative position of the vehicle 200 may include a relative distance between the vehicle 100 and the vehicle 200, plus direction information. In FIG. 1, the direction information is illustrated using a straight line arrow. In some embodiments, the direction information may be contain an arc from the heading of vehicle 100, which is illustrated using a dotted line in FIG. 1, to an arrow V from the vehicle 100 to the vehicle 200. For example, as shown in FIG. 1, the arc, which is anti-clockwise, is labelled as A.

    [0011] There are various sensors which can detect relative position of an object with ideal accuracy. In some embodiments, the vehicle 100 may use a radar, a lidar, a sonar or even a camera to detect the vehicle 200, and obtain data of the relative position.

    [0012] Based on the relative position of the vehicle 200, the trajectory of the vehicle 200 can be calculated in conjunction with dynamic feature thereof. In some embodiments, the vehicle 100 may receive dynamic data from the vehicle 200, which contain at least one dynamic feature of the vehicle 200. The at least one dynamic feature of the vehicle 200 may include heading, velocity, or a combination thereof. There are various methods for calculating a traversing path of an object based on its dynamic feature, for example, inertial navigation methods, dead reckoning methods and the like. In such way, the vehicle 100 can calculate the trajectory of the vehicle 200 based on the relative position and the received dynamic data. Since the dynamic data may be generated by one or more on-board sensors of the vehicle 200, real-time information contained therein can describe the real-time movement of the vehicle 200 more precisely. Therefore, the trajectory calculated based on the relative position and the dynamic data may be more accurate.

    [0013] Hereunder gives specific embodiments for implementing the above described trajectory detection method. Detail processing steps and structural schemes will be illustrated. Note that the details are merely for illustrating, but not intended to limit the scope of the present disclosure.

    [0014] FIG. 2 schematically illustrates a block diagram of a trajectory detection system 300 according to embodiments. The trajectory detection system 300 may be mounted on a vehicle, such as the vehicle 100, for detecting trajectory of other vehicles, such as the vehicle 200.

    [0015] In some embodiments, the trajectory system 300 may include an object detection sensor 301, a communication device 303 and a processing device 305. The object detection sensor 301 may be used for detecting relative positions of other vehicles. The communication device 303 may be used for receiving dynamic data from other vehicles. And the processing device 305 may be used for calculating trajectories based on the relative positions and the dynamic data. In some embodiments, the trajectory system 300 may further include a memory device 307 for storing the received dynamic data therein, such that the processing device 305 can invoke dynamic data of a specific vehicle from the memory device 307 when trajectory calculation is initiated. The calculated trajectory may be output for other usages, such as safety application.

    [0016] It should be noted that components of the trajectory detection system 300 are not necessarily mounted together on one vehicle. For example, the processing device 305 may be disposed in a remote server which can communicate with a vehicle having other components of the trajectory detection system 300, such that the processing device 305 can obtain dynamic data and relative position information to implement its processing.

    [0017] In practical scenarios, there may be more than one vehicle surrounding the host vehicle. For example, FIG. 3 schematically illustrates a practical trajectory detection scenario in which there is a vehicle 400, other than the vehicle 200 as mentioned above, near the host vehicle 100. Dotted lines with arrows ends at the vehicles 100, 200 and 400 represent trajectories thereof, respectively. Dotted lines starting from the vehicle 100 schematically illustrate a detection range of the object detection sensor 301 mounted on the vehicle 100. In such occasion, the trajectory detection system 300 needs to detect the trajectories of the vehicle 200 and the vehicle 400, respectively. Descriptions below will illustrate how the trajectory detection system 300 can distinguish the two vehicles 200 and 400, and calculate their trajectories, respectively.

    [0018] FIG. 4 schematically illustrates a flow chart of a process 500 for detecting trajectories for more than one vehicle according to embodiments.

    [0019] In S501, the object detection sensor 301 detects relative position of the vehicle 200 with regard to the vehicle 100, and relative position of the vehicle 400 with regard to the vehicle 100.

    [0020] In some embodiments, the object detection sensor 301, such as a radar, can actually track the vehicle 200 and the vehicle 400, so the relative positions of the two vehicles 200 and 400 are updated continuously in real-time. It could be understood that the object detection sensor 301 is capable of distinguishing different objects.

    [0021] In S503, the communication device 303 receives dynamic data from the vehicle 200 and dynamic data from the vehicle 400.

    [0022] The dynamic data received from the vehicles 200 and 400 respectively contain dynamic features of the vehicles 200 and 400. As described above, the dynamic data may contain information of headings and velocities, and may be generated by on-board sensors which can detect headings and velocities accurately. In some embodiments, the dynamic data may be transmitted packet by packet. For example, at a specific time point, the on-board sensors mounted on the vehicle 200 generate dynamic data of the vehicle 200. Thereafter, the vehicle 200 sends a packet containing the dynamic data to the vehicle 100. The steps of generating dynamic data and sending packet containing the dynamic data may be repeated at the vehicle 200, such that real-time dynamic data reflecting how the vehicle 200 is moving can be received by the vehicle 100 packet by packet. Similar processing may also be implemented at the vehicle 400. In some embodiments, the dynamic data may be carried in basic safety message (BSM) packets for those vehicles which can implement BSM communication. As BSM packets originally contain dynamic data like heading and velocity, less change to existing vehicle mounted components may be required. It should be noted that other communication schemes can also be used.

    [0023] The dynamic data received from the vehicle 200 and the dynamic data received from the vehicle 400 may be respectively stored in the memory device 307. In such way, the vehicle 100 can keep recording a movement history for each of the vehicles nearby.

    [0024] It should be noted that, S501 and S503 are not necessarily performed in a specific sequence. In some embodiments, the trajectory detection system 300 may keep receiving and recording the dynamic data, and keeping detecting and recording the relative positions at the meantime. When trajectory calculation is required, the stored dynamic data and relative position may be used for calculating the trajectory.

    [0025] In S505, the processing device 305 implements a pattern matching process.

    [0026] Although the object detection sensor 301 can distinguish the vehicles 200 and 400, and the dynamic data won't be mixed up as the communication device 303 can recognize different transmitters, there is still a need to match the relative positions with the dynamic data. Specifically, in the practical scenario illustrated in FIG. 3, there are two sets of relative positions respectively correspond to the two vehicles 200 and 400, and two sets of dynamic data respectively belong to the two vehicles 200 and 400. The trajectory detection system 300 needs to match the relative positions with the dynamic data which belong to the same vehicle.

    [0027] In some embodiments, a movement pattern may be calculated based on each set of the relative positions, and each set of the dynamic data. Then the movement patterns may be compared and analyzed to determine which set of relative positions corresponds to which set of dynamic data.

    [0028] Specifically, for example, the processing device 305 may calculate a first position variation based on two relative positions in the set of relative positions of the vehicle 200. The position variation may represent a relative position change of the vehicle 200 between two time points at which the two relative positions are detected. FIG. 5 schematically illustrates calculating the first position variation according to embodiments. Positions of the vehicles 100 and 200 at a first time point are illustrated using broken line icons, and their positions at a second time point are illustrated using solid line icons, respectively. At the first time point, the relative position of the vehicle 200 with regard to the vehicle 100 can be denoted as a first vector. Details of the first vector may include a first relative distance d1 and a first relative angle A1, which can be detected by the object detection sensor 301. At the second time point, the relative position of the vehicle 200 with regard to the vehicle 100 can be denoted as a second vector with a second relative distance d2 and a second relative angle A2, which is also detectable. As long as the position variation of the vehicle 100 between the first time point and the second time point can be easily calculated based on heading and velocity data obtained from on-board sensors of itself, the position variation of the vehicle 200 between the first and second time points also can be calculated.

    [0029] Further, the processing device 305 may select two packets received from a vehicle. Dynamic data contained in the selected two packets may be generated at the first and second time points, or time points close to the first and second time points. As such, a second position variation reflecting how the vehicle moves between the first and second time points can be calculated based on the dynamic data contained in the selected two packets. Since there are other vehicles sending dynamic data to the vehicle 100, the processing device 305 may calculate a plurality of second position variations for these vehicles. Thereafter, the processing device 305 may compare the first position variation with each of the second position variations to determine whether there is a match, i.e., whether there is a set of dynamic data which is received from the vehicle 200. Similar processing may be implemented for matching the relative positions with the dynamic data which both belong to the vehicle 400. As such, the trajectories of the vehicles 200 and 400 can be calculated based on their respective dynamic data and relative position.

    [0030] In some embodiments, the time slot between the first and the second time points may be set as a time slot for receiving two packets, for example, 100 ms when using BSM packets. In some embodiments, the position variation is calculated for more than one time slots. It could be understood that as time elapses, movement patterns of the vehicle 200 and the vehicle 400 will be more and more distinct. Therefore, calculating position variation for more time slots may further help matching the relative positions and the dynamic data.

    [0031] Calculating and comparing the position variations can be realized by various algorithms well known in the art. Therefore, it won't be described in detail here.

    [0032] In S507, the processing device 305 implements a time alignment process for the received dynamic data.

    [0033] Relative positions are detected at specific time points. It could be understood that if the time points at which the dynamic data are generated can be known, the accuracy may be further improved. However, although the packets containing the dynamic data normally have time stamps, the time stamps only reflect when the packets are sent at a transmitter side. Considering the time gap between the dynamic data collecting and the packet transmitting, and possibility of congestion and packet drop, time alignment may be required. Hereunder gives details for implementing the time alignment process for the dynamic data received from the vehicle 200. Similar processing may be implemented for the dynamic data received from the vehicle 400.

    [0034] FIG. 6 schematically illustrates a time alignment process according to embodiments. Specifically, the time alignment may be implemented as follows. A first set of time points 11, 13, 15 and 17 may be obtained by analyzing the packets received from the vehicle 200, for example, simply by analyzing their time stamps. As stated above, there is a gap between when the dynamic data are collected and when the packets containing the dynamic data are sent. Since the first set of time points 11, 13, 15 and 17 obtained based on the time stamps may represent when the packets are sent, in some embodiments, the processing device 305 may subtract each of the first set of time points 11, 13, 15 and 17 with a first predetermined value to obtain a second set of time points 21, 23, 25 and 27. The first predetermined value may be set based on the time gap between the dynamic data collecting and the packet transmitting. For example, normally the gap between collecting the dynamic data and sending the BSM packet, which is transmitted in every 100 ms, containing the dynamic data may be 50 ms. Accordingly, the first predetermined value may be set as 50 ms. With such processing, the second set of time points 21, 23, 25 and 27 may be closer to the actual time points when the dynamic data are collected.

    [0035] In some embodiments, the processing device 305 may further modify the second set of time points 21, 23, 25 and 27 to eliminate or at least alleviate the influence of packet drop and/or congestion. For example, the processing device 305 may calculate an interval between each pair of neighboring time points in the second set of time points 21, 23, 25 and 27. If there is an interval which is greater than a first predetermined threshold, it may be determined that a packet drop exists between the two time points. For example, as BSM packets are transmitted in every 100 ms, if the time interval between two consecutive packets received at the vehicle 100 is greater than 200 ms, it could be conceived that a packet drop occurred. In such case, the processing device 305 may implement an interpolation calculation. For example, referring to FIG. 6, the interval between the time points 21 and 23 is greater than the first predetermined threshold, it could be assumed that there is a packet drop occurred between the time points 21 and 23. In some embodiments, dynamic data contained in the assumed dropped packet may be estimated based on the dynamic data contained in the two packets corresponding to the two time points 21 and 23, and the estimated dynamic data may be deemed as being collected at a time point 22 between the two time points 21 and 23.

    [0036] In some embodiments, the processing device 305 may further check whether this is an interval which is greater than a second predetermined threshold. For example, the second predetermined threshold may be set as 150 ms. Since BSM packets should be transmitted in every 100 ms, if the interval between two consecutive packets is greater than 150 ms, it can be speculated that the latter packet may be delayed, i.e., congestion occurred. Therefore, an extrapolation process may be performed. As such, the latter one of the two time points may be adjusted to be closer to the former one, so as to alleviate the influence of congestion. For example, referring to FIG. 6, the interval between the time points 23 and 25 is greater than the second predetermined threshold. Therefore, the latter time point 25 is adjusted to be a new time point 25A which is closer to the former time point 23.

    [0037] After the above processing, the dynamic data, together with the result of interpolation, may be corresponded to the updated second set of time points 21, 22, 23, 25A, and 27, which may be closer to the time points 01, 03, 05, 07 and 09 compared with the first set of time points 11, 13, 15 and 17. That is to say, after the above processing, the time information corresponding to the dynamic data may better reflect when these dynamic data are actually collected. It should be noted that the above mentioned detail values of the first and the second predetermined thresholds are merely examples. Those skilled in the art can make adjustment based on practical requirements.

    [0038] It should be noted that, the sequence of S505 and S507 may be changeable. In some embodiments, the time alignment may be performed prior to the pattern matching, such that the pattern matching may be more effective.

    [0039] In S509, the processing device 305 calculates a trajectory of the vehicle 200 and a trajectory of the vehicle 400 based on the dynamic data and the relative positions.

    [0040] As the dynamic data received from the vehicle 200 are matched with the relative position of the vehicle 200, and their time information are aligned, the trajectory of the vehicle 200 can be calculated, so does the trajectory of the vehicle 400.

    [0041] Take calculating the trajectory of the vehicle 200 as an example. The processing device 305 may obtain from the object detection sensor 301 a specific relative position of the vehicle 200 with regard to the vehicle 100 from the set of relative positions. The specific relative position of the vehicle 200 may be detected at a specific time point, for example, the present time point. The processing device 305 may further obtain a specific set of dynamic data of the vehicle 200 received by the communication device 303. In some embodiments, the specific set of dynamic data of the vehicle 200 may contain the dynamic feature of the vehicle 200 before the specific time point when the specific relative position is detected. Based on the dynamic feature history and the present specific relative position, the trajectory of the vehicle 200 can be calculated. For example, the processing device 305 may set the current position of the vehicle 100 as an origin in a coordinate system. A current position of the vehicle 200 in the coordinate system can be calculated based on the relative position of the vehicle 200 with regard to the vehicle 100. And the trajectory of the vehicle 200 calculated by the processing device 305 ends at the calculated current position of the vehicle 200.

    [0042] In some embodiments, the processing device 305 may keep obtaining the dynamic data received from the vehicle 200 after the current time point. As such, the processing device 305 can calculate and keep updating the trajectory of the vehicle 200 after the specific time point, which trajectory starts from the calculated current position of the vehicle 200. In some embodiments, during updating the trajectory of the vehicle 200, the processing device 305 may modify the trajectory by user instruction or repeatedly. For example, in every 10 seconds, the processing device 305 may obtain a relative position of the vehicle 200 at the new present time point, calculate a new current position of the vehicle 200 based on the new relative position, and update the trajectory based on the new current position and the new dynamic data received from the vehicle 200 after the new present time point. Calculations of the trajectory of the vehicle 400, or other surrounding vehicles, are similar.

    [0043] In some embodiments, the trajectory detection system 300 may further include a display device for illustrating the calculated trajectory thereon. Note that the calculate trajectory reflect movement of the target vehicle(s) relative to the host vehicle 100. Therefore, in some embodiments, an analogue of the vehicle 100, or even the trajectory of the vehicle 100 may also be illustrated together with the calculated trajectory on the display device.

    [0044] There is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally a design choice representing cost vs. efficiency tradeoffs. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.

    [0045] While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting.


    Claims

    1. A trajectory detection method, comprising:

    receiving, on a first vehicle (100), from a second vehicle (200), dynamic data containing at least one dynamic feature of the second vehicle (200);

    detecting a relative position of the second vehicle (200) with regard to the first vehicle (100) using an object detection sensor (301) mounted on the first vehicle (100); and

    generating a trajectory of the second vehicle (200) based on the relative position and the dynamic data, wherein the dynamic data are generated at different time points and transmitted in packets, and the method further comprises:

    obtaining a first set of time points (11, 13, 15, 17) respectively representing when the packets are sent from the second vehicle (200);

    subtracting each one of the first set of time points (11, 13, 15, 17) by a predetermined value to obtain a second set of time points (21, 23, 25, 27);

    detecting the relative position of the second vehicle (200) with regard to the first vehicle (100) at one of the second set of time points (21, 23, 25, 27); and

    calculating the trajectory of the second vehicle (200) based on the relative position, the dynamic data and the second set of time points (21, 23, 25, 27).


     
    2. The trajectory detection method according to claim 1, wherein at least one of:

    the relative position is detected by a radar, a lidar, a sonar or any combination thereof; and

    the dynamic data comprise velocity data and heading data.


     
    3. The trajectory detection method according to claim 1, wherein the first vehicle (100) detects the relative position of the second vehicle (200) with regard to the first vehicle (100) at a first time point, and calculates the trajectory of the second vehicle (200) based on a first set of dynamic data containing the at least one dynamic feature of the second vehicle (200) which are received before or after the first time point, where the trajectory ends at or starts from a point calculated based on a position where the first vehicle (100) locates at the first time point and the relative position.
     
    4. The trajectory detection method according to claim 1, further comprising:

    receiving a plurality sets of dynamic data from a plurality of vehicles;

    detecting at least two relative positions of the second vehicle (200) with regard to the first vehicle (100) at different time points;

    calculating a first position variation of each of the plurality of vehicles based on the dynamic data received from the corresponding vehicle;

    calculating a second position variation of the second vehicle (200) based on the at least two relative positions; and

    determining whether there is a vehicle in the plurality of vehicles which represents the second vehicle (200) by comparing the first position variation of each of the plurality of vehicles with the second position variation of the second vehicle (200).


     
    5. The trajectory detection method according to claim 1, further comprising at least one of:

    if there is a pair of neighboring time points in the second set of time points (21, 23, 25, 27), which have an interval greater than a first predetermined threshold, performing an interpolation calculation for the dynamic data corresponding to the pair of neighboring time points; and

    if there is a pair of neighboring time points in the second set of time points (21, 23, 25, 27), which have an interval greater than a second predetermined threshold, modifying the latter time point in the pair to be closer to the former time point in the pair.


     
    6. The trajectory detection method according to claim 1, further comprising:
    generating a trajectory of the first vehicle (100) based on dynamic data containing at least one dynamic feature of the first vehicle (100) and position relationship between the first vehicle (100) and a second vehicle (200), where the dynamic data are generated by a device mounted on the first vehicle (100), and the position relationship is generated by an object detection device mounted on the second vehicle (200).
     
    7. A trajectory detection system suitable to be mounted on a first vehicle (100), comprising:

    an object detection sensor (301) for detecting a relative position of a second vehicle (200) with regard to the first vehicle (100);

    a communication device (303) for receiving, from the second vehicle (200), dynamic date containing at least one kind of dynamic feature of the second vehicle (200); and

    a processing device (305) for calculating a trajectory of the second vehicle (200) based on the relative position and the dynamic data, wherein the dynamic data are generated at different time points and transmitted in packets, and the processing device (305) is configured to:

    obtain a first set of time points (11, 13, 15, 17) respectively representing when the packets are sent from the second vehicle (200);

    subtract each one of the first set of time points (11, 13, 15, 17) by a predetermined value to obtain a second set of time points (21, 23, 25, 27);

    detect the relative position of the second vehicle (200) with regard to the first vehicle (100) at one of the second set of time points (21, 23, 25, 27); and

    calculate the trajectory of the second vehicle (200) based on the relative position, the dynamic data and the second set of time points (21, 23, 25, 27).


     
    8. The trajectory detection system according to claim 7, wherein at least one of:

    the object detection sensor (301) comprises a radar, a lidar, a sonar or any combination thereof; and

    the dynamic data comprise velocity data and heading data.


     
    9. The trajectory detection system according to claim 7, wherein the processing device (305) is configured to:

    obtain the relative position which is detected at a first time point;

    obtain a first set of dynamic data which contain the at least one dynamic feature of the second vehicle (200) which are received before or after the first time point; and

    calculate the trajectory of the second vehicle (200) based on the first set of dynamic data, where the trajectory ends at or starts from a point calculated based on a position where the first vehicle (100) locates at the first time point and the relative position.


     
    10. The trajectory detection system according to claim 7, wherein the communication device (303) is adapted for receiving a plurality sets of dynamic data from a plurality of vehicles, and the processing device (305) is further configured to:

    calculate a first position variation of each of the plurality of vehicles based on the dynamic data received from the corresponding vehicle;

    calculate a second position variation of the second vehicle (200) based on the at least two relative positions; and

    determine whether there is a vehicle in the plurality of vehicles which represents the second vehicle (200) by comparing the first position variation of each of the plurality of vehicles with the second position variation of the second vehicle (200).


     
    11. The trajectory detection system according to claim 7, wherein the communication device (303) is adapted for receiving the dynamic data packet by packet, the object detection sensor (301) is adapted for detecting relative positions of the second vehicle (200) with regard to the first vehicle (100) at different time points, and the processing device (305) is further configured to:

    obtain a first set of time points (11, 13, 15, 17) respectively representing when the packets are sent at the second vehicle (200);

    subtract each one of the first set of time points (11, 13, 15, 17) by a predetermined value to obtain a second set of time points (21, 23, 25, 27);

    select one of the second set of time points (21, 23, 25, 27) and obtain the relative position of the second vehicle (200) with regard to the first vehicle (100) detected at the selected time point; and

    calculate the trajectory of the second vehicle (200) based on the selected relative position, the dynamic data and the second set of time points (21, 23, 25, 27).


     
    12. The trajectory detection system according to claim 11, wherein the processing device (305) is further configured to:

    determine whether there is a pair of neighboring time points in the second set of time points (21, 23, 25, 27), which have an interval greater than a first predetermined threshold; and

    perform an interpolation calculation for the dynamic data corresponding to the pair of neighboring time points in response to determining that the interval between the pair of neighboring time points is greater than the first predetermined threshold.


     
    13. The trajectory detection system according to claim 11, characterized in that, the processing device (305) is further configured to:

    determine whether there is a pair of neighboring time points in the second set of time points (21, 23, 25, 27), which have an interval greater than a second predetermined threshold; and

    modify the latter time point in the pair to be closer to the former time point in the pair in response to determining that the interval between the pair of neighboring time points is greater than the second predetermined threshold.


     
    14. The trajectory detection system according to claim 7, wherein the processing device (305) is further configured to:
    generate a trajectory of the first vehicle (100) based on dynamic data containing at least one dynamic feature of the first vehicle (100) and position relationship between the first vehicle (100) and a second vehicle (200), where the dynamic data are generated by a device mounted on the first vehicle (100), and the position relationship is generated by an object detection device mounted on the second vehicle (200).
     


    Ansprüche

    1. Bahnerkennungsverfahren, Folgendes umfassend:

    Empfangen dynamischer Daten von einem zweiten Fahrzeug (200) an einem ersten Fahrzeug (100), die mindestens eine dynamische Eigenschaft des zweiten Fahrzeugs (200) beinhalten;

    Erkennen einer relativen Position des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100) durch Verwenden eines Objekterkennungssensors (301), der auf dem ersten Fahrzeug (100) montiert ist; und

    Generieren einer Bahn des zweiten Fahrzeugs (200), basierend auf der relativen Position und den dynamischen Daten, wobei die dynamischen Daten zu verschiedenen Zeitpunkten generiert und in Paketen übertragen werden, und das Verfahren ferner Folgendes umfasst:

    Erhalten eines ersten Satzes an Zeitpunkten (11, 13, 15, 17), von denen jeder darstellt, wann die Pakete von dem zweiten Fahrzeug (200) versendet werden;

    Subtrahieren eines vorgegebenen Wertes von jedem von dem ersten Satz an Zeitpunkten (11, 13, 15, 17), um einen zweiten Satz an Zeitpunkten (21, 23, 25, 27) zu erhalten;

    Erkennen der relativen Position des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100) zu einem von dem zweiten Satz an Zeitpunkten (21, 23, 25, 27); und

    Berechnen der Bahn des zweiten Fahrzeugs (200) basierend auf der relativen Position, den dynamischen Daten und dem zweiten Satz an Zeitpunkten (21, 23, 25, 27).


     
    2. Bahnerkennungsverfahren nach Anspruch 1, wobei mindestens eines von Folgendem gilt:

    die relative Position wird durch ein Radar, ein LiDAR, ein Sonar oder eine Kombination davon erkannt; und

    die dynamischen Daten umfassen Geschwindigkeitsdaten und Steuerkursdaten.


     
    3. Bahnerkennungsverfahren nach Anspruch 1, wobei das erste Fahrzeug (100) die relative Position des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100) zu einem ersten Zeitpunkt erkennt, und eine Bahn des zweiten Fahrzeugs (200) basierend auf einem ersten Satz an dynamischen Daten berechnet, die mindestens eine dynamische Eigenschaft des zweiten Fahrzeugs (200) beinhalten, die vor oder nach dem ersten Zeitpunkt empfangen werden, wobei die Bahn an einem Punkt endet oder beginnt, der basierend auf der relativen Position und einer Position berechnet wird, von der aus das erste Fahrzeug (100) zu dem ersten Zeitpunkt ortet.
     
    4. Bahnerkennungsverfahren nach Anspruch 1, ferner Folgendes umfassend:

    Empfangen einer Vielzahl von Sätzen dynamischer Daten von einer Vielzahl von Fahrzeugen;

    Erkennen von mindestens zwei relativen Positionen des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100) zu verschiedenen Zeitpunkten;

    Berechnen einer ersten Positionsveränderung von jedem von der Vielzahl von Fahrzeugen, basierend auf den dynamischen Daten, die von dem entsprechenden Fahrzeug empfangen wurden;

    Berechnen einer zweiten Positionsveränderung des zweiten Fahrzeugs (200), basierend auf den mindestens zwei relativen Positionen; und

    Bestimmen, ob in der Vielzahl von Fahrzeugen ein Fahrzeug existiert, das das zweite Fahrzeug (200) darstellt, durch Vergleichen der ersten Positionsveränderung von jedem von der Vielzahl von Fahrzeugen mit der zweiten Positionsveränderung des zweiten Fahrzeugs (200).


     
    5. Bahnerkennungsverfahren nach Anspruch 1, ferner mindestens eines von Folgendem umfassend:

    falls ein Paar benachbarter Zeitpunkte in dem zweiten Satz an Zeitpunkten (21, 23, 25, 27) existiert, das ein Intervall aufweist, das größer ist als ein erster vorgegebener Schwellenwert, das Durchführen einer Interpolationsberechnung für die dynamischen Daten, die dem Paar benachbarter Zeitpunkte entsprechen; und

    falls in dem zweiten Satz an Zeitpunkten (21, 23, 25, 27) ein Paar benachbarter Zeitpunkte existiert, die ein Intervall aufweisen, das größer ist als ein zweiter vorgegebener Schwellenwert, das Modifizieren des letzteren Zeitpunkts in dem Paar benachbarter Zeitpunkte, sodass er näher an dem ersten Zeitpunkt in dem Paar liegt.


     
    6. Bahnerkennungsverfahren nach Anspruch 1, ferner Folgendes umfassend:
    Generieren einer Bahn des ersten Fahrzeugs (100), basierend auf dynamischen Daten, die mindestens eine dynamische Eigenschaft des ersten Fahrzeugs (100) und eine Positionsbeziehung zwischen dem ersten Fahrzeug (100) und einem zweiten Fahrzeug (200) beinhalten, wobei die dynamischen Daten durch eine Vorrichtung generiert werden, die auf dem ersten Fahrzeug (100) montiert ist, und die Positionsbeziehung durch eine Objekterkennungsvorrichtung generiert wird, die auf dem zweiten Fahrzeug (200) montiert ist.
     
    7. Bahnerkennungssystem, das dafür geeignet ist, auf einem ersten Fahrzeug (100) montiert zu werden, Folgendes umfassend:

    einen Objekterkennungssensor (301) zum Erkennen einer relativen Position eines zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100);

    eine Kommunikationsvorrichtung (303) zum Empfangen dynamischer Daten von dem zweiten Fahrzeug (200), wobei die dynamischen Daten mindestens eine Art dynamischer Eigenschaften des zweiten Fahrzeugs (200) beinhalten; und

    eine Verarbeitungsvorrichtung (305) zum Berechnen einer Bahn des zweiten Fahrzeugs (200), basierend auf der relativen Position und den dynamischen Daten, wobei die dynamischen Daten zu verschiedenen Zeitpunkten generiert und in Paketen übertragen werden, und die Verarbeitungsvorrichtung (305) zu Folgendem konfiguriert ist:

    Erhalten eines ersten Satzes an Zeitpunkten (11, 13, 15, 17), von denen jeder darstellt, wann die Pakete von dem zweiten Fahrzeug (200) versendet werden;

    Subtrahieren eines vorgegebenen Wertes von jedem von dem ersten Satz an Zeitpunkten (11, 13, 15, 17) um einen zweiten Satz an Zeitpunkten (21, 23, 25, 27) zu erhalten;

    Erkennen der relativen Position des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100) zu einem von dem zweiten Satz an Zeitpunkten (21, 23, 25, 27); und

    Berechnen der Bahn des zweiten Fahrzeugs (200) basierend auf der relativen Position, den dynamischen Daten und dem zweiten Satz an Zeitpunkten (21, 23, 25, 27).


     
    8. Bahnerkennungssystem nach Anspruch 7, wobei mindestens eines von Folgendem gilt:

    der Objekterkennungssensor (301) umfasst ein Radar, ein LiDAR, ein Sonar oder jedwede Kombination davon; und

    die dynamischen Daten umfassen Geschwindigkeitsdaten und Steuerkursdaten.


     
    9. Bahnerkennungssystem nach Anspruch 7, wobei die Verarbeitungsvorrichtung (305) zu Folgendem konfiguriert ist:

    Erhalten der relativen Position, die zu einem ersten Zeitpunkt erkannt wird;

    Erhalten eines ersten Satzes dynamischer Daten, die mindestens eine dynamische Eigenschaft des zweiten Fahrzeugs (200) beinhalten und vor oder nach dem ersten Zeitpunkt empfangen werden; und

    Berechnen der Bahn des zweiten Fahrzeugs (200) basierend auf dem ersten Satz dynamischer Daten, wobei die Bahn an einem Punkt endet oder beginnt, der basierend auf der relativen Position und einer Position berechnet wird, von der aus das erste Fahrzeug (100) zu dem ersten Zeitpunkt ortet.


     
    10. Bahnerkennungssystem nach Anspruch 7, wobei die Kommunikationsvorrichtung (303) darauf ausgelegt ist, eine Vielzahl von Sätzen dynamischer Daten von einer Vielzahl von Fahrzeugen zu empfangen, und die Verarbeitungsvorrichtung (305) ferner zu Folgendem konfiguriert ist:

    Berechnen einer ersten Positionsveränderung von jedem aus der Vielzahl von Fahrzeugen, basierend auf den dynamischen Daten die von dem entsprechenden Fahrzeug empfangen wurden;

    Berechnen einer zweiten Positionsveränderung des zweiten Fahrzeugs (200), basierend auf den mindestens zwei relativen Positionen; und

    Bestimmen, ob in der Vielzahl von Fahrzeugen ein Fahrzeug existiert, das das zweite Fahrzeug (200) darstellt, durch Vergleichen der ersten Positionsveränderung von jedem von der Vielzahl von Fahrzeugen mit der zweiten Positionsveränderung des zweiten Fahrzeugs (200).


     
    11. Bahnerkennungssystem nach Anspruch 7, wobei die Kommunikationsvorrichtung (303) darauf ausgelegt ist, die dynamischen Daten Paket für Paket zu empfangen, der Objekterkennungssensor (301) darauf ausgelegt ist, relative Positionen des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100) zu verschiedenen Zeitpunkten zu erkennen, und die Verarbeitungsvorrichtung (305) ferner zu Folgendem konfiguriert ist:

    Erhalten eines ersten Satzes an Zeitpunkten (11, 13, 15, 17), von denen jeder angibt, wann die Pakete von dem zweiten Fahrzeug (200) versendet werden;

    Subtrahieren eines vorgegebenen Wertes von jedem von dem ersten Satz an Zeitpunkten (11, 13, 15, 17) um einen zweiten Satz an Zeitpunkten (21, 23, 25, 27) zu erhalten;

    Auswählen von einem von dem zweiten Satz an Zeitpunkten (21, 23, 25, 27) und Erhalten der relativen Position des zweiten Fahrzeugs (200) in Bezug auf das erste Fahrzeug (100), das zu dem ausgewählten Zeitpunkt erkannt wird; und

    Berechnen der Bahn des zweiten Fahrzeugs (200), basierend auf der ausgewählten relativen Position, den dynamischen Daten und dem zweiten Satz an Zeitpunkten (21, 23, 25, 27).


     
    12. Bahnerkennungssystem nach Anspruch 11, wobei die Verarbeitungsvorrichtung (305) ferner zu Folgendem konfiguriert ist:

    Bestimmen, ob in dem zweiten Satz an Zeitpunkten (21, 23, 25, 27) ein Paar benachbarter Zeitpunkte existiert, die ein Intervall aufweisen, das größer ist als ein vorbestimmter Schwellenwert; und

    Durchführen einer Interpolationsberechnung für die dynamischen Daten, die dem Paar benachbarter Zeitpunkte entsprechen, als Reaktion darauf, dass bestimmt wird, dass das Intervall zwischen dem Paar benachbarter Zeitpunkte größer ist als der erste vorbestimmte Schwellenwert.


     
    13. Bahnerkennungssystem nach Anspruch 11, dadurch gekennzeichnet, dass die Verarbeitungsvorrichtung (305) ferner zu Folgendem konfiguriert ist:

    Bestimmen, ob in dem zweiten Satz an Zeitpunkten (21, 23, 25, 27) ein Paar benachbarter Zeitpunkte existiert, die ein Intervall aufweisen, das größer ist als ein zweiter vorbestimmter Schwellenwert; und

    Modifizieren des letzteren Zeitpunkts in dem Paar, sodass er näher an dem ersten Zeitpunkt in dem Paar ist, als Reaktion darauf, dass bestimmt wird, dass das Intervall zwischen dem Paar benachbarter Zeitpunkte größer ist als der zweite vorbestimmte Schwellenwert.


     
    14. Bahnerkennungssystem nach Anspruch 7, wobei die Verarbeitungsvorrichtung (305) ferner zu Folgendem konfiguriert ist:
    Generieren einer Bahn des ersten Fahrzeugs (100), basierend auf dynamischen Daten, die mindestens eine dynamische Eigenschaft des ersten Fahrzeugs (100) und eine Positionsbeziehung zwischen dem ersten Fahrzeug (100) und einem zweiten Fahrzeug (200) beinhalten, wobei die dynamischen Daten durch eine Vorrichtung generiert werden, die auf dem ersten Fahrzeug (100) montiert ist, und die Positionsbeziehung durch eine Objekterkennungsvorrichtung generiert wird, die auf dem zweiten Fahrzeug (200) montiert ist.
     


    Revendications

    1. Procédé de détection de trajectoire comprenant :

    la réception, sur un premier véhicule (100), à partir d'un second véhicule (200), de données dynamiques contenant au moins une caractéristique dynamique du second véhicule (200) ;

    la détection d'une position relative du second véhicule (200) par rapport au premier véhicule (100) en utilisant un capteur de détection d'objet (301) monté sur le premier véhicule (100) ; et

    la génération d'une trajectoire du second véhicule (200) sur la base de la position relative et des données dynamiques, dans lequel les données dynamiques sont générées à différents points temporels et transmises dans des paquets, et le procédé comprend en outre :

    l'obtention d'un premier ensemble de points temporels (11, 13, 15, 17) représentant respectivement quand les paquets sont transmis à partir du second véhicule (200) ;

    la soustraction à chacun du premier ensemble de points temporels (11, 13, 15, 17) d'une valeur prédéterminée pour obtenir un second ensemble de points temporels (21, 23, 25, 27) ;

    la détection de la position relative du second véhicule (200) par rapport au premier véhicule (100) à un du second ensemble de points temporels (21, 23, 25, 27) ; et

    le calcul de la trajectoire du second véhicule (200) sur la base de la position relative, des données dynamiques et du second ensemble de points temporels (21, 23, 25, 27).


     
    2. Procédé de détection de trajectoire selon la revendication 1, dans lequel au moins une parmi :

    la position relative est détectée par un radar, un lidar, un sonar ou n'importe quelle combinaison de ceux-ci ; et

    les données dynamiques comprennent des données de vitesse et des données de cap.


     
    3. Procédé de détection de trajectoire selon la revendication 1, dans lequel le premier véhicule (100) détecte la position relative du second véhicule (200) par rapport au premier véhicule (100) à un premier point temporel, et calcule la trajectoire du second véhicule (200) sur la base d'un premier ensemble de données dynamiques contenant l'au moins une caractéristique dynamique du second véhicule (200) qui sont reçues avant ou après le premier point temporel, où la trajectoire termine ou commence en un point calculé sur la base d'une position où se situe le premier véhicule (100) au premier point temporel et de la position relative.
     
    4. Procédé de détection de trajectoire selon la revendication 1, comprenant en outre :

    la réception d'une pluralité d'ensembles de données dynamiques à partir d'une pluralité de véhicules ;

    la détection d'au moins deux positions relatives du second véhicule (200) par rapport au premier véhicule (100) à des points temporels différents ;

    le calcul d'une première variation de position de chacun de la pluralité de véhicules sur la base des données dynamiques reçues à partir du véhicule correspondant ;

    le calcul d'une seconde variation de position du second véhicule (200) sur la base des au moins deux positions relatives ; et la détermination s'il existe un véhicule dans la pluralité de véhicules qui représente le second véhicule (200) en comparant la première variation de position de chacun de la pluralité de véhicules avec la seconde variation de position du second véhicule (200).


     
    5. Procédé de détection de trajectoire selon la revendication 1, comprenant en outre au moins un parmi :

    s'il existe une paire de points temporels voisins dans le second ensemble de points temporels (21, 23, 25, 27), qui ont un intervalle supérieur à un premier seuil prédéterminé, l'exécution d'un calcul d'interpolation pour les données dynamiques correspondant à la paires de points temporels voisins ; et

    s'il existe une paire de points temporels voisins dans le second ensemble de points temporels (21, 23, 25, 27), qui ont un intervalle supérieur à un second seuil prédéterminé, la modification du dernier point temporel dans la paire pour qu'il soit plus proche du premier point temporel dans la paire.


     
    6. Procédé de détection de trajectoire selon la revendication 1, comprenant en outre :
    la génération d'une trajectoire du premier véhicule (100) sur la base de données dynamiques contenant au moins une caractéristique dynamique du premier véhicule (100) et d'une relation de position entre le premier véhicule (100) et un second véhicule (200), où les données dynamiques sont générées par un dispositif monté sur le premier véhicule (100) et la relation de position est générée par un dispositif de détection d'objet monté sur le second véhicule (200).
     
    7. Système de détection de trajectoire adapté pour être monté sur un premier véhicule (100), comprenant :

    un capteur de détection d'objet (301) pour la détection d'une position relative d'un second véhicule (200) par rapport au premier véhicule (100) ;

    un dispositif de communication (303) pour recevoir, à partir du second véhicule (200), des données dynamiques contenant au moins un type de caractéristique dynamique du second véhicule (200) ; et

    un dispositif de traitement (305) pour calculer une trajectoire du second véhicule (200) sur la base de la position relative et des données dynamiques, dans lequel les données dynamiques sont générées à différents points temporels et transmises dans des paquets, et le dispositif de traitement (305) est configuré pour :

    obtenir un premier ensemble de points temporels (11, 13, 15, 17) représentant respectivement quand les paquets sont transmis à partir du second véhicule (200) ;

    soustraire à chacun du premier ensemble de points temporels (11, 13, 15, 17) une valeur prédéterminée pour obtenir un second ensemble de points temporels (21, 23, 25, 27) ;

    détecter la position relative du second véhicule (200) par rapport au premier véhicule (100) à un du second ensemble de points temporels (21, 23, 25, 27) ; et

    calculer la trajectoire du second véhicule (200) sur la base de la position relative, des données dynamiques et du second ensemble de points temporels (21, 23, 25, 27).


     
    8. Système de détection de trajectoire selon la revendication 7, dans lequel au moins un parmi :

    le capteur de détection d'objet (301) comprend un radar, un lidar, un sonar ou n'importe quelle combinaison de ceux-ci ; et

    les données dynamiques comprennent des données de vitesse et des données de cap.


     
    9. Système de détection de trajectoire selon la revendication 7, dans lequel le dispositif de traitement (305) est configuré pour :

    obtenir la position relative qui est détectée à un premier point temporel ;

    obtenir un premier ensemble de données dynamiques qui contiennent l'au moins une caractéristique dynamique du second véhicule (200) qui sont reçues avant ou après le premier point temporel ; et

    calculer la trajectoire du second véhicule (200) sur la base du premier ensemble de données dynamiques, où la trajectoire termine ou commence en un point calculé sur la base d'une position où se situe le premier véhicule (100) au premier point temporel et de la position relative.


     
    10. Système de détection de trajectoire selon la revendication 7, dans lequel le dispositif de communication (303) est adapté pour recevoir une pluralité d'ensembles de données dynamiques à partir d'une pluralité de véhicules, et le dispositif de traitement (305) est configuré en outre pour :

    calculer une première variation de position de chacun de la pluralité de véhicules sur la base des données dynamiques reçues à partir du véhicule correspondant ;

    calculer une seconde variation de position du second véhicule (200) sur la base des au moins deux positions relatives ; et déterminer s'il existe un véhicule dans la pluralité de véhicules qui représente le second véhicule (200) en comparant la première variation de position de chacun de la pluralité de véhicules avec la seconde variation de position du second véhicule (200).


     
    11. Système de détection de trajectoire selon la revendication 7, dans lequel le dispositif de communication (303) est adapté pour recevoir les données dynamiques paquet par paquet, le capteur de détection d'objet (301) est adapté pour détecter des positions relatives du second véhicule (200) par rapport au premier véhicule (100) à différents points temporels, et le dispositif de traitement (305) est configuré en outre pour :

    obtenir un premier ensemble de points temporels (11, 13, 15, 17) représentant respectivement quand les paquets sont transmis au niveau du second véhicule (200) ;

    soustraire à chacun du premier ensemble de points temporels (11, 13, 15, 17) une valeur prédéterminée pour obtenir un second ensemble de points temporels (21, 23, 25, 27) ;

    sélectionner un du second ensemble de points temporels (21, 23, 25, 27) et obtenir la position relative du second véhicule (200) par rapport au premier véhicule (100) détectée au point temporel sélectionné ; et

    calculer la trajectoire du second véhicule (200) sur la base de la position relative sélectionnée, des données dynamiques et du second ensemble de points temporels (21, 23, 25, 27).


     
    12. Système de détection de trajectoire selon la revendication 11, dans lequel le dispositif de traitement (305) est configuré en outre pour :

    déterminer s'il existe une paire de points temporels voisins dans le second ensemble de points temporels (21, 23, 25, 27), qui ont un intervalle supérieur à un premier seuil prédéterminé ; et

    exécuter un calcul d'interpolation pour les données dynamiques correspondant à la paires de points temporels voisins en réponse à la détermination que l'intervalle entre la paire de points temporels voisins est supérieur au premier seuil prédéterminé.


     
    13. Système de détection de trajectoire selon la revendication 11, caractérisé en ce que le dispositif de traitement (305) est configuré en outre pour :

    déterminer s'il existe une paire de points temporels voisins dans le second ensemble de points temporels (21, 23, 25, 27), qui ont un intervalle supérieur à un second seuil prédéterminé ; et

    modifier le dernier point temporel dans la paire pour qu'il soit plus proche du premier point temporel dans la paire en réponse à la détermination que l'intervalle entre la paire de points temporels voisins est supérieur au second seuil prédéterminé.


     
    14. Système de détection de trajectoire selon la revendication 7, dans lequel le dispositif de traitement (305) est configuré en outre pour :
    générer une trajectoire du premier véhicule (100) sur la base de données dynamiques contenant au moins une caractéristique dynamique du premier véhicule (100) et d'une relation de position entre le premier véhicule (100) et un second véhicule (200), où les données dynamiques sont générées par un dispositif monté sur le premier véhicule (100) et la relation de position est générée par un dispositif de détection d'objet monté sur le second véhicule (200).
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description