(19)
(11)EP 3 220 108 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 17161339.1

(22)Date of filing:  16.03.2017
(51)International Patent Classification (IPC): 
G01F 23/24(2006.01)

(54)

LIQUID LEVEL SENSOR, METHOD FOR CONTROLLING THE SAME AND REACTOR WITH THE SAME

FLÜSSIGKEITSSTANDSENSOR, VERFAHREN ZUR STEUERUNG DAVON UND REAKTOR DAMIT

CAPTEUR DE NIVEAU DE LIQUIDE, SON PROCÉDÉ DE COMMANDE ET RÉACTEUR L'INCLUANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.03.2016 CN 201610156734

(43)Date of publication of application:
20.09.2017 Bulletin 2017/38

(73)Proprietor: Leica Microsystems Ltd. Shanghai
Shanghai 201206 (CN)

(72)Inventors:
  • WANG, Wei
    Jiangsu, Jiangsu 211106 (CN)
  • LIU, Bin
    Shanghai, Shanghai 201206 (CN)
  • CHEN, Peng
    Shanghai, Shanghai 200120 (CN)

(74)Representative: m patent group 
Postfach 33 04 29
80064 München
80064 München (DE)


(56)References cited: : 
JP-A- 2014 211 345
US-A1- 2003 046 997
US-A1- 2015 323 938
US-A- 3 905 243
US-A1- 2011 087 448
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present invention relates to a liquid level sensor, and also relates to a method for controlling the same and a reactor with the same.

    BACKGROUND



    [0002] A reactor for tissue processing must be provided with a liquid level sensor to control the liquid level. However, a corrosive treating agent (such as xylene or liquid paraffin) may damage or pollute the existing liquid level sensor (like a photoelectric sensor) during processing.

    [0003] US3905243A relates to a liquid-level sensing device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof.

    [0004] US2003046997A1 relates to a liquid level sensor for use in the measuring oil level within a refrigeration compressor.

    [0005] US2015323938A1 relates to methods and apparatus for controlling and determining the level of a material in a vessel using one or more temperature sensors.

    [0006] JP 2014 211345 A relates to a liquid level detection device for detecting the liquid level of a liquid contained in a container, and more specifically to a liquid level detection device utilizing the fact that the heat dissipation constant of a self-heated resistor differs between the liquid phase and the gas phase.

    SUMMARY



    [0007] Embodiments of the present invention seek to solve at least one of the problems existing in the related art to at least some extent. Accordingly, the present invention provides a liquid level sensor having advantages of high corrosion resistance, a simple structure and low production cost.

    [0008] The present invention further provides a method for controlling the liquid level sensor.

    [0009] The present invention further provides a reactor with the liquid level sensor.

    [0010] A liquid level sensor according to embodiments of a first aspect of the present invention is provided according to claim 1. The liquid level sensor according to the embodiments of the present invention has advantages of high corrosion resistance, simple structure and low production cost.

    [0011] Moreover, the liquid level sensor according to the embodiments of the present invention may further have additional technical features as follows.

    [0012] In an embodiment, the first mounting base defines an accommodating chamber whose opposite first and second ends are open, in which a first end of the metal shell is accommodated in the accommodating chamber of the first mounting base or extended beyond the accommodating chamber of the first mounting base.

    [0013] In an embodiment, the first mounting base includes: a mounting part having a cross section with a circular edge and formed with external threads at an outer peripheral face thereof; and a holding part connected with the mounting part and having a cross section with a polygonal edge.

    [0014] In an embodiment, the edge of the holding part is located outside of the edge of the mounting part, and the liquid level sensor further includes a seal ring fitted over the mounting part.

    [0015] In an embodiment, the metal shell is provided with a step part thereon and the seal ring fitted over the metal shell abuts against the step part.

    [0016] In an embodiment, the heating element is adjacent to the first end of the metal shell, and the temperature detector is adjacent to the first end of the metal shell.

    [0017] A method for controlling a liquid level sensor according to embodiments of a second aspect of the present invention is provided according to claim 7. With the method according to the embodiments of the present invention, it is possible to determine whether the liquid level reaches the position of the liquid level sensor accurately.

    [0018] In an embodiment, the predetermined temperature is in a range from 110°C to 120°C when the liquid is xylene or liquid paraffin; the predetermined temperature is in a range from 90°C to 100°C when the liquid is another treating agent except xylene or liquid paraffin.

    [0019] In an embodiment, the predetermined temperature is 115°C when the liquid is xylene or liquid paraffin; the predetermined temperature is 95°C when the liquid is another treating agent except xylene or liquid paraffin.

    [0020] In an embodiment, the heating element is controlled by PID control. When the liquid is liquid paraffin, parameters P=110, 1=120, D=1212 if the temperature reading of the temperature detector is smaller than or equal to 110°C, otherwise, parameters P=200, I=1000, D=0; when the liquid is another treating agent except xylene or liquid paraffin, parameters P=120, 1=1212, D=80 if the temperature reading of the temperature detector is smaller than or equal to 90°C, otherwise, parameters P=200, 1=1000, D=0. P, I and D are the tuning parameters of the PID controller. P is the proportional gain (Kp), I is the integral gain (Ki) and D is the derivative gain (Kd).

    [0021] In an embodiment, when the liquid is xylene or liquid paraffin, if the decrease value of the temperature reading of the temperature detector during 5 seconds is greater than or equal to 6°C, it is determined that the liquid level reaches the position of the liquid level sensor, otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor; when the liquid is another treating agent except xylene or liquid paraffin, if the decrease value of the temperature reading of the temperature detector during 5 seconds is greater than or equal to 10°C, it is determined that the liquid level reaches the position of the liquid level sensor, otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor.

    [0022] A reactor according to embodiments of a third aspect of the present invention includes: a body defining a cavity therein; and a liquid level sensor according to the first aspect of the present invention, the liquid level sensor being disposed on a wall of the cavity.

    [0023] According to an embodiment of the present invention, a through-hole is formed in a side wall of the cavity; the reactor further includes a second mounting base disposed at an outer side of the body and defining a mounting chamber communicated with the cavity via the through-hole, in which the first mounting base is disposed on the second mounting base, and the first end of the metal shell is accommodated in one of the accommodating chamber of the first mounting base, the mounting chamber and the cavity.

    [0024] In an embodiment, a portion of the first mounting base is threadedly fitted with the wall surface of the mounting chamber, and the first end of the metal shell is extended into the cavity via the through-hole.

    [0025] In an embodiment, a seal ring is disposed between the first mounting base and the second mounting base.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0026] 

    Fig. 1 is an exploded view of a reactor according to an embodiment of the present invention;

    Fig. 2 is an exploded view of a liquid level sensor according to an embodiment of the present invention;

    Fig. 3 is an exploded view of a cable assembly of a liquid level sensor according to an embodiment of the present invention;

    Fig. 4 is a schematic view of a cable assembly of a liquid level sensor according to an embodiment of the present invention.


    DETAILED DESCRIPTION



    [0027] Embodiments of the present invention will be described in detail and examples of the embodiments will be illustrated in the drawings. The embodiments described herein with reference to drawings are explanatory, which are used to illustrate the present invention, but shall not be construed to limit the present invention.

    [0028] A reactor 1 according to embodiments of the present invention will be described with reference to the drawings. As shown in Figs. 1 to 4, the reactor 1 according to embodiments of the present invention includes a liquid level sensor 10 and a body 20. The body 20 defines a cavity therein.

    [0029] The liquid level sensor 10 includes a first mounting base 101 and a cable assembly 102. The cable assembly 102 includes a metal shell 1021, a heating element 1022 for heating the metal shell 1021, and a temperature detector 1023 for detecting a temperature of the metal shell 1021. The metal shell 1021 is disposed on the first mounting base 101. The liquid level sensor 10 is disposed on a wall of the cavity to facilitate the contact between a first end 10212 of the metal shell 1021 and the liquid in the cavity.

    [0030] A method for controlling the liquid level sensor 10 according to embodiments of the present invention will be described in the following. That is, the liquid level sensor 10 according to embodiments of the present invention is employed to determine whether the liquid level in the cavity of the reactor 1 reaches a predetermined position.

    [0031] The method for controlling the liquid level sensor 10 according to embodiments of the present invention includes the following steps: heating the metal shell 1021 to a predetermined temperature by the heating element 1022 and maintaining the metal shell 1021 at the predetermined temperature; and detecting the temperature of the metal shell 1021 by the temperature detector 1023 and calculating a decrease value of a temperature reading of the temperature detector 1023 during a predetermined time period, determining that the liquid level reaches a position of the liquid level sensor 10 (i.e. the predetermined position) if the decrease value is greater than or equal to a predetermined value, otherwise, determining that the liquid level does not reach the position of the liquid level sensor 10.

    [0032] Specifically, the heating element 1022 may be used to heat the metal shell 1021 to a relatively high temperature. If the liquid in the cavity of the reactor 1 reaches the predetermined position, the liquid in the cavity is in contact with the first end 10212 of the metal shell 1021. Since the temperature of the liquid in the cavity is low, the liquid may cool the first end 10212 of the metal shell 1021 after they are in contact with each other, such that the temperature of the first end 10212 of the metal shell 1021 is decreased to a certain extent during a predetermined time period. Consequently, if the decrease value of the temperature reading of the temperature detector 1023 is greater than or equal to a predetermined value, it is determined that the liquid level reaches the position of the liquid level sensor 10; otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor 10.

    [0033] The liquid level sensor 10 according to embodiments of the present invention is provided with the heating element 1022 for heating the metal shell 1021, and the temperature detector 1023 for detecting the temperature of the metal shell 1021, so as to determine whether the liquid in the reactor 1 reaches the predetermined position according to the temperature change of the metal shell 1021 (i.e. the decrease value of the temperature reading of the temperature detector 1023) during the predetermined time period. Thus, the liquid level sensor 10 according to embodiments of the present invention has a different working principle from the existing liquid level sensor (e.g. a photoelectric sensor).

    [0034] The liquid level sensor 10 according to embodiments of the present invention determines whether the liquid in the reactor 1 reaches the predetermined position according to the temperature change during the predetermined time period, so the liquid level sensor 10 according to embodiments of the present invention may utilize the metal shell 1021 as a component to contact with the liquid in the reactor 1. In such a way, the corrosion-resistant performance of the liquid level sensor 10 may be improved considerably.

    [0035] Furthermore, the liquid level sensor 10 according to embodiments of the present invention mainly includes the metal shell 1021, the heating element 1022 and the temperature detector 1023. These components have simple structures and low production costs. Accordingly, the liquid level sensor 10 according to embodiments of the present invention also has advantages of simple structure and low production cost.

    [0036] Therefore, the liquid level sensor 10 according to embodiments of the present invention has advantages of high corrosion resistance, simple structure and low production cost.

    [0037] With the method for controlling the liquid level sensor 10 according to embodiments of the present invention, it is possible to determine whether the liquid level reaches the position of the liquid level sensor 10 accurately.

    [0038] As shown in Figs. 1 to 4, the reactor 1 according to embodiments of the present invention includes the body 20 and the liquid level sensor 10.

    [0039] The body 20 defines a cavity therein, and a through-hole is formed in a side wall of the cavity. The reactor 1 further includes a second mounting base 30 disposed at an outer side of the body 20 and defining a mounting chamber communicated with the cavity via the through-hole.

    [0040] The liquid level sensor 10 includes the first mounting base 101, the metal shell 1021, the heating element 1022 and the temperature detector 1023. The first mounting base 101 is disposed on the second mounting base 30. That is, it is more convenient and easier to mount the liquid level sensor 10 on the body 20 by providing the second mounting base 30.

    [0041] Specifically, the first mounting base 101 may be in threaded connection with the second mounting base 30. For example, the first mounting base 101 is formed with external threads on its outer peripheral face while the second mounting base 30 is formed with internal threads on a wall surface of its mounting chamber. Part of threads of the first mounting base 101 is threadedly fitted in the mounting chamber of the second mounting base 30.

    [0042] As shown in Figs. 1 and 2, in an embodiment of the present invention, the first mounting base 101 includes a mounting part 1011 and a holding part 1012. The cross section of the mounting part 1011 has a circular edge and the mounting part 1011 is formed with external threads at an outer peripheral face thereof, in which the mounting part 1011 is threadedly fitted in the mounting chamber of the second mounting base 30. The holding part 1012 is connected with the mounting part 1011 and the cross section of the holding part 1012 has a polygonal edge.

    [0043] Since the cross section of the holding part 1012 has the polygonal edge, it is possible to mount the first mounting base 101 on the second mounting base 30 more conveniently.
    Advantageously, the mounting part 1011 and the holding part 1012 may be formed integrally.

    [0044] As shown in Fig. 2, a first seal ring 103 is disposed between the first mounting base 101 and the second mounting base 30, so as to improve the sealing performance of the reactor 1 and to prevent the liquid in the reactor 1 from flowing out through a gap between the first mounting base 101 and the second mounting base 30.

    [0045] Specifically, the edge of the holding part 1012 is located outside of the edge of the mounting part 1011, so the first mounting base 101 may be provided with a step part. The first seal ring 103 is fitted over the mounting part 1011 and clamped between the holding part 1012 and the second mounting base 30.

    [0046] More specifically, a first end face of the holding part 1012 is opposite to the second mounting base 30; a first end face of the second mounting base 30 is opposite to the holding part 1012; the first seal ring 103 is clamped between the first end face of the holding part 1012 and the first end face of the second mounting base 30.

    [0047] In an example of the present invention, the first mounting base 101 defines a first accommodating chamber whose opposite first and second ends are open. The first end 10212 of the metal shell 1021 is accommodated in one of the first accommodating chamber, the mounting chamber and the cavity.

    [0048] Specifically, the mounting chamber is in communication with the cavity and the mounting chamber is in communication with the first accommodating chamber, or the first accommodating chamber may be in direct communication with the cavity, so the first end 10212 of the metal shell 1021 may contact with the liquid in the cavity.

    [0049] Advantageously, the first end 10212 of the metal shell 1021 passes through the first accommodating chamber, the mounting chamber and the through-hole and extends into the cavity, such that the first end 10212 of the metal shell 1021 may be in contact with more liquid in the cavity more easily and timely, so as to improve the sensitivity of the liquid level sensor 10.

    [0050] The metal shell 1021 may be made of a metal material of high corrosion resistance, for example, stainless steel. A part of the metal shell 1021 may be accommodated in the first accommodating chamber of the first mounting base 101.

    [0051] Advantageously, as shown in Fig. 2, the liquid level sensor 10 further includes a second seal ring 104 fitted over the metal shell 1021 and clamped between the metal shell 1021 and the first mounting base 101, so as to improve the sealing performance of the reactor 1 and to prevent the liquid in the reactor 1 from flowing out through a gap between the first mounting base 101 and the metal shell 1021.

    [0052] Specifically, the metal shell 1021 is provided with a step part thereon, and the second seal ring 104 abuts against the step part.

    [0053] As shown in Figs. 3 and 4, in some examples of the present invention, the metal shell 1021 defines a second accommodating chamber 10211 therein, and the heating element 1022 and the temperature detector 1023 are disposed within the second accommodating chamber 10211 respectively. According to the present invention, a first surface of the heating element 1022 is in contact with a first wall surface of the second accommodating chamber 10211, and the shape of the first surface is matched with that of the first wall surface. In such a way, the whole first surface of the heating element 1022 contacts with the first wall of the second accommodating chamber 10211, so as to heat the metal shell 1021 more effectively and rapidly.

    [0054] Advantageously, the temperature detector 1023 is adjacent to the first end 10212 of the metal shell 1021. The first end 10212 of the metal shell 1021 contacts with the liquid in the reactor 1 in use, so the temperature detector 1023 may detect the temperature of the first end 10212 of the metal shell 1021 more accurately and rapidly by the fact that the temperature detector 1023 is adjacent to the first end 10212 of the metal shell 1021, so as to improve the sensitivity of the liquid level sensor 10.

    [0055] More advantageously, the heating element 1022 is adjacent to the first end 10212 of the metal shell 1021, so as to heat the first end 10212 of the metal shell 1021 more effectively.

    [0056] The liquid level sensor 10 according to embodiments of the present invention is controlled in different ways regarding specific using situations and conditions.

    [0057] Specifically, the predetermined temperature is in a range from 110°C to 120°C, preferably 115°C, when the liquid in the reactor 1 is xylene or liquid paraffin. That is, when the liquid in the reactor 1 is xylene or liquid paraffin, the metal shell 1021 is heated to and maintained at a range from 110°C to 120°C, preferably 115°C.

    [0058] The predetermined temperature is in a range from 90°C to 100°C, preferably 95°C, when the liquid in the reactor 1 is another treating agent except xylene or liquid paraffin. That is, when the liquid in the reactor 1 is another treating agent except xylene or liquid paraffin, the metal shell 1021 is heated to and maintained at a range from 90°C to 100°C, preferably 95°C.

    [0059] In order to heat the metal shell 1021 fast and maintain the temperature of the metal shell 1021, a combination of high-speed PID and low-speed PID may be used to control the heating element 1022.

    [0060] Specifically, when the liquid is xylene or liquid paraffin, parameters P=110, 1=120, D=1212 if the temperature reading of the temperature detector 1023 is smaller than or equal to 110°C; parameters P=200, 1=1000, D=0 if the temperature reading of the temperature detector 1023 is greater than 110°C.

    [0061] When the liquid is another treating agent except xylene or liquid paraffin, parameters P=120, I=1212, D=80 if the temperature reading of the temperature detector 1023 is smaller than or equal to 90°C; parameters P=200, I=1000, D=0 if the temperature reading of the temperature detector 1023 is greater than 90°C.

    [0062] The liquid level in the reactor 1 may rise constantly after the reactor 1 is supplied with the liquid. When the liquid level reaches the position of the liquid level sensor 10, the liquid contacts with and cools the metal shell 1021, so as to lower the temperature of the metal shell 1021 quickly. Hence, it may be determined that the liquid level reaches the position of the liquid level sensor 10 if the temperature of the metal shell 1021 is lowered by a predetermined value during a predetermined time period, i.e. the temperature reading of the temperature detector 1023 is decreased by the predetermined value during the predetermined time period.

    [0063] In a specific example of the present invention, when the liquid is xylene or liquid paraffin, if the decrease value of the temperature reading of the temperature detector 1023 during 5 seconds is greater than or equal to 6°C, it is determined that the liquid level reaches the position of the liquid level sensor 10, otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor 10.

    [0064] In other words, if the decrease value of the temperature reading of the temperature detector 1023 during no more than 5 seconds is no less than 6°C, it is determined that the liquid level reaches the position of the liquid level sensor 10, otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor 10. For example, when the temperature reading of the temperature detector 1023 during 4 seconds is decreased by 6°C, or when the temperature reading of the temperature detector 1023 during 5 seconds is decreased by 8°C, or when the temperature reading of the temperature detector 1023 during 5 seconds is decreased by 6°C, it may be determined that the liquid level reaches the position of the liquid level sensor 10.

    [0065] When the liquid is another treating agent except xylene or liquid paraffin, if the decrease value of the temperature reading of the temperature detector 1023 during 5 seconds is greater than or equal to 10°C, it is determined that the liquid level reaches the position of the liquid level sensor 10, otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor 10.

    [0066] In other words, if the decrease value of the temperature reading of the temperature detector 1023 during no more than 5 seconds is no less than 10°C, it is determined that the liquid level reaches the position of the liquid level sensor 10, otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor 10. For example, when the temperature reading of the temperature detector 1023 during 4 seconds is decreased by 10°C, or when the temperature reading of the temperature detector 1023 during 5 seconds is decreased by 12°C, or when the temperature reading of the temperature detector 1023 during 5 seconds is decreased by 10°C, it may be determined that the liquid level reaches the position of the liquid level sensor 10.

    [0067] In the description of the present invention, it is to be understood that terms such as "central," "longitudinal," "lateral," "length," "width," "thickness," "upper," "lower," "front," "rear," "left," "right," "vertical," "horizontal," "top," "bottom," "inner," "outer," "clockwise," "counterclockwise," "axial," "radial" and "circumferential" should be construed to refer to the orientation or position as shown in the drawings under discussion. These relative terms are for convenience of description and do not indicate or imply that the apparatus or members must have a particular orientation or be constructed and operated in a particular orientation. Therefore, these terms shall not be construed to limit the present invention.

    [0068] In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with "first" and "second" may explicitly or implicitly include one or more of this feature. In the description of the present invention, "a plurality of' means two or more than two, unless specified otherwise.

    [0069] In the present invention, unless specified or limited otherwise, the terms "mounted," "connected," "coupled," "fixed" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or interaction of two elements, which can be understood by those skilled in the art according to specific situations.

    [0070] In the present invention, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature "on," "above" or "on top of' a second feature may include an embodiment in which the first feature is right or obliquely "on," "above" or "on top of' the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below," "under" or "on bottom of' a second feature may include an embodiment in which the first feature is right or obliquely "below," "under" or "on bottom of' the second feature, or just means that the first feature is at a height lower than that of the second feature.

    [0071] Reference throughout this specification to "an embodiment," "some embodiments," "examples," "specific examples," or "some examples" means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. Thus, these terms throughout this specification do not necessarily refer to the same embodiment or example of the present invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, those skilled in the art can combine different embodiments or examples described in the specification.

    Reference numerals:



    [0072] 
    1
    reactor
    10
    liquid level sensor
    101
    first mounting base
    1011
    mounting part
    1012
    holding part
    102
    cable assembly
    1021
    metal shell
    10211
    second accommodating chamber
    10212
    first end
    1022
    heating element
    1023
    temperature detector
    103
    first seal ring
    104
    second seal ring
    20
    body
    30
    second mounting base



    Claims

    1. A liquid level sensor (10), comprising:

    a first mounting base (101); and

    a cable assembly (102), comprising:

    a metal shell (1021) disposed on the first mounting base (101) and defining an accommodating chamber (10211) therein;

    a heating element (1022) for heating the metal shell (1021); and

    a temperature detector (1023) for detecting a temperature of the metal shell (1021), wherein the liquid level sensor (10) further comprises a seal ring (104) fitted over the metal shell (1021) and clamped between the metal shell (1021) and the first mounting base (101),

    the heating element (1022) and the temperature detector (1023) are disposed in the accommodating chamber (10211) of the shell (1021), characterized in that a first surface of the heating element (1022) is in contact with a first wall surface of the accommodating chamber (10211) of the shell (1021), a shape of the first surface being matched with that of the first wall surface.


     
    2. The liquid level sensor (10) according to claim 1, wherein the first mounting base (101) defines an accommodating chamber whose opposite first and second ends are open, wherein a first end (10212) of the metal shell (1021) is accommodated in the accommodating chamber of the first mounting base (101) or extended beyond the accommodating chamber of the first mounting base (101).
     
    3. The liquid level sensor (10) according to claim 2, wherein the heating element (1022) is adjacent to the first end (10212) of the metal shell (1021), and the temperature detector (1023) is adjacent to the first end (10212) of the metal shell (1021).
     
    4. The liquid level sensor (10) according to any one of the preceding claims, wherein the first mounting base (101) comprises:

    a mounting part (1011) having a cross section with a circular edge and formed with external threads at an outer peripheral face thereof; and

    a holding part (1012) connected with the mounting part (1011) and having a cross section with a polygonal edge.


     
    5. The liquid level sensor (10) according to claim 4, wherein the edge of the holding part (1012) is located outside of the edge of the mounting part (1011), and the liquid level sensor (10) further comprises a seal ring (103) fitted over the mounting part (1011).
     
    6. The liquid level sensor (10) according to any one of the preceding claims, wherein the metal shell (1021) is provided with a step part thereon and the seal ring (104) fitted over the metal shell (1021) abuts against the step part.
     
    7. A method for controlling a liquid level sensor (10) according to any one of claims 1 to 6, comprising:

    heating the metal shell (1021) to a predetermined temperature by a heating element (1022); and

    detecting the temperature of the metal shell (1021) by a temperature detector (1023) and calculating a decrease value of a temperature reading of the temperature detector (1023) during a predetermined time period, determining that the liquid level reaches a position of the liquid level sensor (10) if the decrease value is greater than or equal to a predetermined value, otherwise, determining that the liquid level does not reach the position of the liquid level sensor (10),

    wherein the metal shell (1021) defines an accommodating chamber (10211) therein, the heating element (1022) and the temperature detector (1023) are disposed in the accommodating chamber (10211) of the shell (1021),

    wherein a first surface of the heating element (1022) is in contact with a first wall surface of the accommodating chamber (10211) of the shell (1021), a shape of the first surface being matched with that of the first wall surface.


     
    8. The method according to claim 7, wherein the predetermined temperature is in a range from 110°C to 120°C when the liquid is xylene or liquid paraffin; the predetermined temperature is in a range from 90°C to 100°C when the liquid is another treating agent except xylene or liquid paraffin.
     
    9. The method according to claim 8, wherein the predetermined temperature is 115°C when the liquid is xylene or liquid paraffin; the predetermined temperature is 95°C when the liquid is another treating agent except xylene or liquid paraffin.
     
    10. The method according to any one of claims 7 to 9, wherein the heating element (1022) is controlled by PID control;
    when the liquid is xylene or liquid paraffin, parameters are P=110, 1=120, D=1212 if the temperature reading of the temperature detector (1023) is smaller than or equal to 110°C, otherwise, parameters are P=200, I=1000, D=0;
    when the liquid is another treating agent except xylene or liquid paraffin, parameters are P=120, I=1212, D=80 if the temperature reading of the temperature detector (1023) is smaller than or equal to 90°C, otherwise, parameters are P=200, I=1000, D=0.
     
    11. The method according to any one of claims 7 to 10, wherein
    when the liquid is xylene or liquid paraffin, if the decrease value of the temperature reading of the temperature detector (1023) during 5 seconds is greater than or equal to 6°C, it is determined that the liquid level reaches the position of the liquid level sensor (10), otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor (10);
    when the liquid is another treating agent except xylene or liquid paraffin, if the decrease value of the temperature reading of the temperature detector (1023) during 5 seconds is greater than or equal to 10°C, it is determined that the liquid level reaches the position of the liquid level sensor (10), otherwise, it is determined that the liquid level does not reach the position of the liquid level sensor (10).
     
    12. A reactor (1), comprising:

    a body (20) defining a cavity therein; and

    a liquid level sensor (10) according to any one of claims 1 to 6 disposed on a wall of the cavity.


     
    13. The reactor according to claim 12, wherein a through-hole is formed in a side wall of the cavity; the reactor further comprises a second mounting base (30) disposed at an outer side of the body (20) and defining a mounting chamber communicated with the cavity via the through-hole, wherein the first mounting base (101) is disposed on the second mounting base (30), and a first end (10212) of the metal shell (1021) is accommodated in one of an accommodating chamber of the first mounting base (101), the mounting chamber and the cavity.
     
    14. The reactor according to claim 13, wherein a portion of the first mounting base (101) is threadedly fitted with the wall surface of the mounting chamber, and the first end (10212) of the metal shell (1021) is extended into the cavity via the through-hole; and/or
    wherein a seal ring is disposed between the first mounting base (101) and the second mounting base (30).
     


    Ansprüche

    1. Flüssigkeitspegelsensor (10), der folgendes aufweist:

    eine erste Befestigungsbasis (101); und

    eine Kabelanordnung (102), die folgendes aufweist:

    eine Metallhülse (1021), die auf der ersten Befestigungsbasis (101) angeordnet ist und darin eine Aufnahmekammer (10211) definiert;

    ein Heizelement (1022) zum Erwärmen der Metallhülse (1021); und

    einen Temperaturdetektor (1023) zum Erfassen einer Temperatur der Metallhülse (1021), wobei der Flüssigkeitspegelsensor (10) ferner einen Dichtungsring (104) aufweist, der auf der Metallhülse (1021) angebracht und zwischen der Metallhülse (1021) und der ersten Befestigungsbasis (101) geklemmt ist,

    wobei das Heizelement (1022) und der Temperaturdetektor (1023) in der Aufnahmekammer (10211) der Hülse (1021) angeordnet sind,

    dadurch gekennzeichnet, dass eine erste Oberfläche des Heizelements (1022) mit einer ersten Wandoberfläche der Aufnahmekammer (10211) der Hülse (1021) in Kontakt steht, wobei eine Form der ersten Oberfläche an die der ersten Wandoberfläche angepasst ist.


     
    2. Flüssigkeitspegelsensor (10) nach Anspruch 1, wobei die erste Befestigungsbasis (101) eine Aufnahmekammer definiert, deren zueinander gegenüberliegendes erstes und zweites Ende offen sind, wobei ein erstes Ende (10212) der Metallhülse (1021) in der Aufnahmekammer der ersten Befestigungsbasis (101) aufgenommen ist oder sich über die Aufnahmekammer der ersten Befestigungsbasis (101) hinaus erstreckt.
     
    3. Flüssigkeitspegelsensor (10) nach Anspruch 2, wobei das Heizelement (1022) an das erste Ende (10212) der Metallhülse (1021) angrenzt und der Temperaturdetektor (1023) an das erste Ende (10212) der Metallhülse (1021) angrenzt.
     
    4. Flüssigkeitspegelsensor (10) nach einem der vorstehenden Ansprüche, wobei die erste Befestigungsbasis (101) umfasst:

    ein Befestigungsbestandteil (1011), das einen Querschnitt mit einer kreisförmigen Kante hat und mit Außengewinden an einer äußeren Umfangsfläche davon ausgebildet ist; und

    ein Haltebestandteil (1012), das mit dem Befestigungsbestandteil (1011) verbunden ist und einen Querschnitt mit einer polygonalen Kante aufweist.


     
    5. Flüssigkeitspegelsensor (10) nach Anspruch 4, wobei die Kante des Haltebestandteils (1012) außerhalb der Kante des Befestigungsbestandteils (1011) angeordnet ist und der Flüssigkeitspegelsensor (10) ferner einen Dichtungsring (103) aufweist, der über dem Befestigungsbestandteil (1011) angebracht ist.
     
    6. Flüssigkeitspegelsensor (10) nach einem der vorstehenden Ansprüche, wobei die Metallhülse (1021) mit einem Stufenbestandteil versehen ist und der über der Metallhülse (1021) angebrachte Dichtungsring (104) an dem Stufenbestandteil anliegt.
     
    7. Verfahren zur Steuerung eines Flüssigkeitspegelsensors (10) nach einem der Ansprüche 1 bis 6, umfassend:

    Erwärmen der Metallhülse (1021) auf eine vorbestimmte Temperatur durch ein Heizelement (1022); und

    Erfassen der Temperatur der Metallhülse (1021) durch einen Temperaturdetektor (1023) und Berechnen eines Abnahmewertes einer Temperaturablesung des Temperaturdetektors (1023) während einer vorbestimmten Zeitdauer, Bestimmen, dass der Flüssigkeitspegel eine Position des Flüssigkeitspegelsensors (10) erreicht, wenn der Abnahmewert größer oder gleich einem vorbestimmten Wert ist, andernfalls Bestimmen, dass der Flüssigkeitspegel die Position des Flüssigkeitspegelsensors (10) nicht erreicht,

    wobei die Metallhülse (1021) eine Aufnahmekammer (10211) darin definiert, das Heizelement (1022) und der Temperaturdetektor (1023) in der Aufnahmekammer (10211) der Hülse (1021) angeordnet sind,

    wobei eine erste Oberfläche des Heizelements (1022) mit einer ersten Wandoberfläche der Aufnahmekammer (10211) der Hülse (1021) in Kontakt ist, wobei eine Form der ersten Oberfläche an die der ersten Wandoberfläche angepasst ist.


     
    8. Verfahren nach Anspruch 7, wobei die vorbestimmte Temperatur in einem Bereich von 110°C bis 120°C liegt, wenn die Flüssigkeit Xylol oder Flüssigparaffin ist; die vorbestimmte Temperatur in einem Bereich von 90°C bis 100°C liegt, wenn die Flüssigkeit ein anderes Behandlungsmittel als Xylol oder Flüssigparaffin ist.
     
    9. Verfahren nach Anspruch 8, wobei die vorbestimmte Temperatur 115°C beträgt, wenn die Flüssigkeit Xylol oder flüssiges Paraffin ist; die vorbestimmte Temperatur 95°C beträgt, wenn die Flüssigkeit ein anderes Behandlungsmittel als Xylol oder flüssiges Paraffin ist.
     
    10. Verfahren nach einem der Ansprüche 7 bis 9, bei dem das Heizelement (1022) durch PID-Regelung gesteuert wird;
    wenn die Flüssigkeit Xylol oder flüssiges Paraffin ist, sind die Parameter P=110, I=120, D=121212, wenn die Temperaturanzeige des Temperaturdetektors (1023) kleiner oder gleich 110°C ist, andernfalls sind die Parameter P=200, I=1000, D=0;
    wenn es sich bei der Flüssigkeit um ein anderes Behandlungsmittel außer Xylol oder Flüssigparaffin handelt, sind die Parameter P=120, I=1212, D=80, wenn die Temperaturanzeige des Temperaturdetektors (1023) kleiner oder gleich 90°C ist, andernfalls sind die Parameter P=200, I=1000, D=0.
     
    11. Das Verfahren nach einem der Ansprüche 7 bis 10, wobei,
    wenn es sich bei der Flüssigkeit um Xylol oder flüssiges Paraffin handelt, festgestellt wird, wenn der Abnahmewert der Temperaturmessung des Temperaturdetektors (1023) während 5 Sekunden größer oder gleich 6°C ist, dass der Flüssigkeitspegel die Position des Flüssigkeitspegelsensors (10) erreicht, andernfalls festgestellt wird, dass der Flüssigkeitspegel die Position des Flüssigkeitspegelsensors (10) nicht erreicht;
    wenn es sich bei der Flüssigkeit um ein anderes Behandlungsmittel als Xylol oder flüssiges Paraffin handelt, wenn der Abnahmewert der Temperaturanzeige des Temperaturdetektors (1023) während 5 Sekunden größer oder gleich 10°C ist, festgestellt wird, dass der Flüssigkeitspegel die Position des Flüssigkeitspegelsensors (10) erreicht, andernfalls festgestellt wird, dass der Flüssigkeitspegel die Position des Flüssigkeitspegelsensors (10) nicht erreicht.
     
    12. Reaktor (1), der folgendes aufweist:

    einen Körper (20), der einen Hohlraum darin definiert; und

    einen Flüssigkeitspegelsensor (10) nach einem der Ansprüche 1 bis 6, der an einer Wand des Hohlraums angeordnet ist.


     
    13. Reaktor nach Anspruch 12, wobei ein Durchgangsloch in einer Seitenwand des Hohlraums ausgebildet ist; der Reaktor ferner eine zweite Befestigungsbasis (30) aufweist, die an einer Außenseite des Körpers (20) angeordnet ist und eine Befestigungskammer definiert, die über das Durchgangsloch mit dem Hohlraum in Verbindung steht, wobei die erste Befestigungsbasis (101) auf der zweiten Befestigungsbasis (30) angeordnet ist und ein erstes Ende (10212) der Metallhülse (1021) in einer Aufnahmekammer der ersten Befestigungsbasis (101), der Befestigungskammer oder dem Hohlraum aufgenommen ist.
     
    14. Reaktor nach Anspruch 13, wobei ein Bestandteil der ersten Befestigungsbasis (101) mit der Wandoberläche der Befestigungskammer verschraubt ist und das erste Ende (10212) der Metallhülse (1021) durch das Durchgangsloch in den Hohlraum hineinragt; und/oder
    wobei ein Dichtungsring zwischen der ersten Befestigungsbasis (101) und der zweiten Befestigungsbasis (30) angeordnet ist.
     


    Revendications

    1. Un capteur de niveau de liquide (10) comprenant:

    une première base de montage (101)

    un ensemble de câbles (102) comprenant:

    une coque métallique (1021) disposée sur ladite première base de montage (101) et définissant une chambre de réception (10211) dans celle-ci ;

    un élément chauffant (1022) pour chauffer la coque métallique (1021); et

    un détecteur de température (1023) pour détecter une température de la coque métallique (1021), le capteur de niveau de liquide (10) comprenant en outre une bague d'étanchéité (104) montée sur la coque métallique (1021) et serrée entre la coque métallique (1021) et la première base de montage (101),

    dans lequel l'élément chauffant (1022) et le détecteur de température (1023) sont disposés dans la chambre de réception (10211) de la coque (1021),

    caractérisé en ce qu'une première surface de l'élément chauffant (1022) est en contact avec une première surface de paroi de la chambre de réception (10211) de la coque (1021), dans lequel une forme de la première surface correspond à celle de la première surface de paroi.


     
    2. Le capteur de niveau de liquide (10) selon la revendication 1, dans lequel la premier base de montage (101) définit une chambre de réception dont les première et deuxième extrémités opposées sont ouvertes, dans lequel une première extrémité (10212) de la coque métallique (1021) est reçue dans la chambre de réception de la première base de montage (101) ou s'étend au-delà de la chambre de réception de la première base de montage (101).
     
    3. Le capteur de niveau de liquide (10) selon la revendication 2, dans lequel l'élément chauffant (1022) est adjacent à la première extrémité (10212) de la coque métallique (1021) et le détecteur de température (1023) est adjacent à la première extrémité (10212) de la coque métallique (1021).
     
    4. Le capteur de niveau de liquide (10) selon l'une des revendications précédentes, la première base de montage (101) comprenant:

    un élément de montage (1011) ayant une section transversale avec un bord circulaire et formé avec des filetages mâles sur une surface périphérique extérieure de celui-ci ; et

    un élément de montage (1012) relié à l'élément de montage (1011) et ayant une section transversale à bord polygonal.


     
    5. Le capteur de niveau de liquide (10) selon la revendication 4, dans lequel le bord du composant de montage (1012) est situé à l'extérieur du bord du composant de montage (1011), et le capteur de niveau de liquide (10) comprend en outre une bague d'étanchéité (103) montée sur le composant de montage (1011).
     
    6. Le capteur de niveau de liquide (10) selon l'une des revendications ci-dessus, dans lequel la coque métallique (1021) est pourvue d'un élément de marche et la bague d'étanchéité (104) placée sur la coque métallique (1021) est en contact avec l'élément de marche.
     
    7. Une procédé de commande d'un capteur de niveau de liquide (10) selon l'une quelconque des revendications 1 à 6, comprenant :

    le chauffage de la coque métallique (1021) à une température prédéterminée par un élément chauffant (1022) ; et

    détecter la température de la coque métallique (1021) par un détecteur de température (1023) et calculer une valeur de diminution d'une lecture de température du détecteur de température (1023) pendant une période de temps prédéterminée, déterminer que le niveau de liquide atteint une position du capteur de niveau de liquide (10) si la valeur de diminution est supérieure ou égale à une valeur prédéterminée, sinon déterminer que le niveau de liquide n'atteint pas la position du capteur de niveau de liquide (10),

    dans lequel ladite coque métallique (1021) définit une chambre de réception (10211) à l'intérieur, ledit élément chauffant (1022) et ledit détecteur de température (1023) sont disposés dans ladite chambre de réception (10211) de ladite coque (1021),

    dans lequel une première surface de l'élément chauffant (1022) est en contact avec une première surface de paroi de la chambre de réception (10211) de la coque (1021), dans lequel une forme de la première surface correspond à celle de la première surface de paroi.


     
    8. La procédé selon la revendication 7, dans lequel la température prédéterminée se situe dans une plage de 110° C à 120° C lorsque le liquide est du xylène ou de la paraffine liquide ; la température prédéterminée se situe dans une plage de 90° C à 100° C lorsque le liquide est un agent de traitement autre que le xylène ou la paraffine liquide.
     
    9. La procédé selon la revendication 8, dans lequel la température prédéterminée est de 115° C lorsque le liquide est du xylène ou de la paraffine liquide ; la température prédéterminée est de 95° C lorsque le liquide est un agent de traitement autre que le xylène ou la paraffine liquide.
     
    10. La procédé selon l'une quelconque des revendications 7 à 9, dans laquelle l'élément chauffant (1022) est contrôlé par un contrôle PID ;
    si le liquide est du xylène ou de la paraffine liquide, les paramètres sont P=110, I=120, D=1212 si la lecture de la température du détecteur de température (1023) est inférieure ou égale à 110° C, sinon les paramètres sont P=200, I=1000, D=0 ;
    si le liquide est un agent de traitement autre que le xylène ou la paraffine liquide, les paramètres sont P=120, I=1212, D=80 si la lecture de la température du détecteur de température (1023) est inférieure ou égale à 90° C, sinon les paramètres sont P=200, 1=1000, D=0.
     
    11. Le procédé selon l'une des revendications 7 à 10, selon laquelle,
    si le liquide est du xylène ou de la paraffine liquide, si la valeur de diminution de la mesure de température du détecteur de température (1023) est supérieure ou égale à 6° C pendant 5 secondes, on détermine que le niveau du liquide atteint la position du capteur de niveau de liquide (10), sinon on détermine que le niveau du liquide n'atteint pas la position du capteur de niveau de liquide (10) ;
    si le liquide est un agent de traitement autre que le xylène ou la paraffine liquide, si la valeur de diminution de l'indication de température du détecteur de température (1023) est supérieure ou égale à 10° C pendant 5 secondes, il est déterminé que le niveau de liquide atteint la position du détecteur de niveau de liquide (10), sinon il est déterminé que le niveau de liquide n'atteint pas la position du détecteur de niveau de liquide (10).
     
    12. Un réacteur (1) comprenant :

    un corps (20) définissant une cavité à l'intérieur

    un capteur de niveau de liquide (10) selon l'une des revendications 1 à 6, qui est disposé sur une paroi de la cavité.


     
    13. Le réacteur selon la revendication 12, dans lequel un trou traversant est formé dans une paroi latérale de la cavité ; le réacteur comprend en outre une deuxième base de montage (30) disposée sur un extérieur du corps (20) et définissant une chambre de montage communiquant avec la cavité par le trou traversant, dans lequel la première base de montage (101) est disposée sur la deuxième base de montage (30) et une première extrémité (10212) de la coque métallique (1021) est reçue dans une chambre de réception de la première base de montage (101), de la chambre de montage ou de la cavité.
     
    14. Le réacteur selon la revendication 13, dans lequel un composant du premier socle de montage (101) est boulonné à la surface de la paroi de la chambre de montage et la première extrémité (10212) de la coque métallique (1021) fait saillie à travers le trou de passage dans la cavité ; et/ou
    dans lequel une bague d'étanchéité est disposée entre la première base de montage (101) et la deuxième base de montage (30).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description